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Abstract

In this paper we present a new affine invariant image transform, based on
ridgelets. The proposed transform is directly applicable to segmented image
patches. The new method has some similarities with the previously proposed
Multiscale Autoconvolution, but it will offer a more general framework and
possibilities for variations. The obtained transform coefficients can be used
in affine invariant pattern classification, and as shown in the experiments, al-
ready a small subset of them is enough for reliable recognition of complex
patterns. The new method is assessed in several experiments and it is ob-
served to perform well under many nonaffine distortions.

1 Introduction

Often in computer vision applications we need to recognize objects or scenes viewed from
various directions. Although this is a natural process for humans it has proven to be a dif-
ficult problem in computer vision. An common solution for this task is a combination
of image segmentation, feature extraction, and recognition. In the segmentation step we
try to extract a set of patches in a way that is insensitive to possible pose changes. For
doing this there exists a wide range of possible approaches, going from simple threshold-
ing to more sophisticated methods like mean-shift segmentation [1], similarity-measure-
segmentation [2], and affine covariant area detectors [3], [4]. However, the optimal choice
of the method depends heavily on the specific application.

In the case of successful segmentation we still have to deal with the geometric dis-
tortion induced by the view angle change. These distortions are usually well modeled by
an affine transformation, and hence it is enough to design feature extraction techniques
which eliminate this effect. The related methods may be divided into two main categories.
The approaches in the first category use normalization to eliminate the affine changes and
only then apply some feature extraction to the normalized patches. An example of such
technique could be detection of ellipses using the Harris affine detector [3], which normal-
izes the ellipses to circles and then applies for instance the SIFT [5] operator to them. The



drawback in these approaches is the fact that the result becomes sensitive to the success
of the affine normalization, which is generally difficult for arbitrary shaped patches. The
methods in the second category apply affine invariant feature extraction to the patches di-
rectly, and the features are obtained without any normalization also in the case of patches
with arbitrary shape. This paper proposes a new method for such feature extraction.

The first affine invariant feature extraction method, the affine invariant moments, was
proposed already 40 years ago [6], though later corrected in [7] and [8]. Since then sev-
eral other methods have appeared, including cross-weighted moments [9], trace transform
[10], affine invariant spectral signatures [11], Multiscale Autoconvolution (MSA) [12] and
spatial multiscale affine invariants [13]. The new technique we propose here is based on
ridgelets [14] [15]. Ridgelets have recently attained a lot of interest in both mathematics
and image processing [16] [17], due to their nice properties in describing objects contain-
ing straight lines. The new invariant introduced shares some similarities with Multiscale
Autoconvolution, but the idea of using ridgelet type basis functions offers more varia-
tions and discriminating power. According to our knowledge no affine invariants based
on ridgelets have been previously presented.

2 Motivation

The idea behind ridgelet-based affine invariants comes from the Multiscale Autoconvo-
lution transform, which we discuss next. Iff : R2 → R is an image function, the MSA
transform off is defined by

M f (α,β ) =
1

‖ f‖3
L1

∫
R2

f̂ (−ξ ) f̂ (αξ ) f̂ (βξ ) f̂ (γξ )dξ , (1)

where f̂ (ξ ) =
∫

R2 e−2π ix·ξ f (x)dx andγ = 1−α − β . Using the inner product( f ,g) =∫
R2 f (x)g(x)dx we may write this as

M f (α,β ) =
1

‖ f‖3
L1

∫
R2

( f ,e−2π ix·ξ )( f ,e2π iαx·ξ )( f ,e2π iβx·ξ )( f ,e2π iγx·ξ )dξ . (2)

This form produces affine invariants:M( f ◦A −1) = M f for any affine transformation
A . This is due to two facts. Iff is replaced by the translationg(x) = f (x− x0), then
(g,e2π ix·ξ ) = e−2π ix0·ξ ( f ,e2π ix·ξ ), and the choiceα + β + γ = 1 makes the exponentials
cancel in (2). Also, iff is replaced byg(x) = f (A−1x) whereA is a 2×2 nonsingular
matrix, then(g,e2π iδx·ξ ) = ( f ,e2π iδx·At ξ )|detA| for anyδ ∈ R. If one makes the change
of variablesξ 7→ A−tξ in (2) then the matrices and determinants cancel and we see that
the expression is also invariant under composition with nonsingular matrices.

3 The new transform

The new ridgelet-based affine invariant transform is best understood by looking at the
form (2). This form is invariant under replacingf by f ◦A−1 since the analyzing element
e2π iδx·ξ is a function of the inner productx·ξ only. Then one obtains( f ◦A−1,e2π iδx·ξ ) =
|detA|( f ,e2π iδAx·ξ ). SinceAx· ξ = x ·Atξ the matrixA may be removed by changing



variablesξ 7→ A−tξ in theξ -integral. One then only needs to divide by a suitable power
of ‖ f‖L1 to make the determinants cancel.

From the above we see that we can replace the analyzing elementse2π iδx·ξ by other
functions ofx · ξ , and the resulting forms will be invariant with respect to composition
by matrices. We propose to use analyzing elementsψ(αx ·ξ −β ), whereψ : R → C is a
function (wavelet) inL1∩L∞ andα,β ∈ R. Define

ψαξ ,β (x) = ψ(αx ·ξ −β ),

whereξ ∈ R2. Then ψαξ ,β has the shape ofψ (though scaled and translated) when
restricted to lines parallel toξ , and is constant in directions perpendicular toξ . The
functionψαξ ,β looks like a ridge, and such functions are called ridgelets in literature [14]
[15]. We illustrate one example ridge in Figure 1.

So far we have only considered invariance with respect tof 7→ f ◦A−1, whereA is
a matrix. Translation invariance is achieved by shifting the image to its centroid. We
will use f̃ (x) = f (x+ µ( f )), whereµ( f ) = 1∫

R2 χ f (x)dx(
∫

R2 x1χ f (x)dx,
∫

R2 x2χ f (x)dx)t ,

whereχ f (x) is the characteristic function of the support of the imagef . We consider the
following image transform.

Definition 1 Let f ∈ L∞(R2) be a compactly supported image function. We define

I f (α1,α2,β1,β2) =
1

‖ f‖2
L1

∫
R2

( f̃ ,ψξ ,0)( f̃ ,ψα1ξ ,β1
)( f̃ ,ψα2ξ ,β2

)dξ ,

whereα1,α2,β1,β2 ∈ R. In the caseβ1 = β2 = 0, we also write

I f (α1,α2) = I f (α1,α2,0,0).

The most important property of the new transform is its affine invariance.

Proposition 1 The transform f7→ I f is affine invariant: one has
I( f ◦A −1)(α1,α2,β1,β2) = I f (α1,α2,β1,β2) for any parametersα j ,β j ∈R and for any
affine transformationA .

Proof. If g(x) = f (x−x0) is a translated version off , then the centered images ˜g and
f̃ are the same. ConsequentlyIg = I f for all choices of the parameters.

Invariance with respect to composition by matrices also follows from the discussion
above. Letg(x) = f (A−1x) whereA is a nonsingular 2×2 matrix. Then one hasµ(g) =
Aµ( f ) andg̃(x) = f (A−1(x+Aµ( f ))) = f̃ (A−1x), and

(g̃,ψαξ ,β ) =
∫

R2
f̃ (A−1x)ψ̄(αx ·ξ −β )dx= |detA|

∫
R2

f̃ (x)ψ̄(αAx·ξ −β )dx

= |detA|
∫

R2
f̃ (x)ψ̄(αx ·At

ξ −β )dx= |detA|( f̃ ,ψαAt ξ ,β ).

Since‖g‖L1 = |detA|‖ f‖L1, we obtain

Ig(α1,α2,β1,β2) =
|detA|
‖ f‖2

L1

∫
R2

( f̃ ,ψAt ξ ,0)( f̃ ,ψα1At ξ ,β1
)( f̃ ,ψα2At ξ ,β2

)dξ .



We make the change of variablesξ 7→ A−tξ in the last integral. The Jacobian is|detA|−1,
and we obtainIg = I f for all α j andβ j .

There is some redundancy in the choice of the parametersα1,α2,β1,β2. This is seen in
the following symmetries of the transform, which follow immediately from the definition
by changes of variables.

Proposition 2 (a) I f (α1,α2,β1,β2) = I f (α2,α1,β2,β1).

(b) I f (α1,α2,0,0) = α
−2
1 I f (1/α1,α2/α1,0,0).

(c) I f (α1,α2,0,0) = α
−2
2 I f (α1/α2,1/α2,0,0).

We will mostly use the transform in the caseβ1 = β2 = 0, and in this case the sym-
metries indicate that it is enough to compute the values ofI f (α1,α2) when(α1,α2) is in
the triangle

T = convex hull{(−1,−1),(−1,1),(1,1)}. (3)

We conclude by noting that the definition may be generalized to obtain other affine
invariant transforms, which are of the form

I ′ f (α1, . . . ,αk,β1, . . . ,βk) =
1

‖ f‖s−1
L1

∫
R2

H(( f̃ ,ψα1ξ ,β1
), . . . ,( f̃ ,ψαkξ ,βk

))dξ .

Here we assume thatH : Ck →R is a continuous function which is homogeneous of order
s> 2, i.e.H satisfiesH(λz1, . . . ,λzk) = λ sH(z1, . . . ,zk) for anyλ ≥ 0 and(z1, . . . ,zk) ∈
Ck. Under these assumptions, the proof thatI ′( f ◦A −1) = I ′ f for any affine transforma-
tion f proceeds analogously as the proof of Proposition 1.

4 Implementation issues

From now on we chooseψ to be real valued. When implementing the transform in Defi-
nition 1 we would need to evaluate inner products∫

R2
f̃ (x)ψ(αx ·ξ −β )dx, (4)

with ξ in R2. This may be done efficiently using the Radon transform, similarly as in the
case of the standard ridgelet transform [17] [18]. The advantage of this approach is easy
to understand if we consider an example where the direction ofξ remains fixed, but its
absolute value changes. This gives us a set of ridges which have the same orientation,
but they differ by scale. Computing the values for each inner product (4) now involves
summing over the same lines in the image, only weighting them differently. Now in the
Radon transform these sums would already be computed and the inner products can be
obtained just by weighting the sums according to scaled ridge. To see this more precisely
we first change to polar coordinatesξ 7→ rωθ , wherer ∈ R+, ωθ = (cosθ ,sinθ)t , and
θ ∈ [0,2π]. The Jacobian isr and the inner products (4) will look like∫

R2
f̃ (x)ψ(αrx ·ωθ −β )dx. (5)
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Figure 1: An example of a ridge func-
tion, using Gaussian wavelet.
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Figure 2: The(α1,α2) pairs used in the
experiments.

If we further change variables in (5) so thatx 7→ Tu, whereu = (u1,u2)t andT is the
matrix

T =
(

cosθ −sinθ

sinθ cosθ

)
,

we will have (5) as∫
R

∫
R

f̃ (Tu)ψ(αru1−β )du2du1 =
∫

R

(∫
R

f̃ (Tu)du2

)
ψ(αru1−β )du1. (6)

The inner integral is the Radon transform off̃ ,∫
R

f̃ (Tu)du2 =
∫

R
f̃ (u1cosθ −u2sinθ ,u1sinθ +u2cosθ)du2 = R(θ ,u1).

Substituting these to the invariantI f we get

I f (α1,α2,β1,β2) =
1

‖ f‖2
L1

∫ 2π

0

∫ ∞

0

(∫
R

R(θ , t1)ψ(rt1)dt1
)

(∫
R

R(θ , t2)ψ(α1rt2−β1)dt2
)(∫

R
R(θ , t3)ψ(α2rt3−β2)dt3

)
r drdθ . (7)

From this we observe that the invariant can be computed by integrating the Radon trans-
form at a fixed angle against scaled and translated ridges, by integrating overr, and finally
by integrating over all the angles.

When discretizing the integrals in (7), we see that all integrals except the one overr
are limited to a finite interval. However, asr increases the corresponding ridges become
very narrow, which makes the coefficients at large values ofr very small. So we will
only consider coefficients in some circle centered at the origin, which we experimentally
evaluated to be such that the smallest ridge widths were one image pixel. Also, since the
coefficients with smallr contribute more to the value of the invariant than coefficients
with larger, we chose to use logarithmic sampling ofr.

The symmetries in Proposition 2 indicate that if we setβ1 = β2 = 0 we only need to
take(α1,α2) from the triangle (3). Further, because we will chooseψ to be the symmetric
Gaussian,

ψ(x) =
1√
2π

e−
x2
2 , (8)



Figure 3: Some samples of the letter and fish images used in the experiments.

it is enough to consider the triangle{(0,0),(0,1),(1,1)}. However, we found that these
values were not optimal for the implementation because for instance the inner products
(6) converge slower if theα values are close to zero. We found it better to use larger
α values and selected the 55(α1,α2) pairs given in Figure 2. In addition, the fact that
these values are in a uniform grid gives us a significant computational advantage, be-
cause the same inner products (6) will appear in several invariants and altogether we only
need to evaluate them with scalesα = {1,1.22,1.44,1.67,1.89,2.11,2.33,2.56, 2.78,3}.
The implementation for the ridgelet invariant we used is also available at the website:
http://www.ee.oulu.fi/research/imag/msa/.

5 Experiments

In this section we assess the proposed transform (withβ1 = β2 = 0, ψ is the Gaussian (8),
and with the 55(α1,α2) pairs in Figure 2) in several classification tasks. The achieved
results are compared with affine invariant moments [19], Multiscale Autoconvolution [12]
and cross-weighted moments [9]. These comparison methods were implemented as de-
scribed in the given papers. For affine invariant moments we computed 4 and 60 inde-
pendent invariants, for Multiscale Autoconvolution 37 invariants, and for cross-weighted
moments 4 invariants using exponentss= {0.8,0.95,0.99,1.05,1.1,1.2, 1.5,1.07}. The
reason for taking only 4 cross-weighted moments is their very high computational load,
and thus taking more would have resulted in unreasonably long processing times. We
will refer to these comparison methods as AMI4, AMI60, MSA, and CWM, respectively.
The experiments were done using two different image sets, one having 100×100 binary
images of 26 letters in the alphabet, and the other having 128×128 gray-scale images of
64 different fish. The gray-scale values in these images were scaled to the range[0,1].
We illustrate some samples of both image sets in Figure 3.

We first started with a simple test involving only the proposed method. We trained a
nearest neighbor classifier using the images of 26 letters. Then we created a test set which
contained 10 randomly affine distorted versions of each letter, a total of 260 images, and
classified them. The resulting recognition rate was 99.2%, and the result verified the affine
invariance in practice and showed that the implementation works.

However in real imaging situations we hardly ever encounter perfect affine transfor-
mations, and thus it is crucial that the methods are robust also against various nonaffine
distortions. For this reason in the rest of the experiments we concentrate on examining
the performance in situations where affine transformation is combined with various other
distortions. To get a fairer comparison of the features we made the classifier to adapt to
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Figure 4: Samples of distorted letter images withD = 0.2 (a) and corresponding classifi-
cation results (b).

the feature space by extending the training set for all methods to contain the original im-
ages and 9 randomly affine transformed versions of each of them. The classification was
then performed using a linear discriminant classifier, preceded by a principal component
analysis if this was required for achieving a nonsingular covariance matrix.

5.1 Experiments with binary images using letter image database

When acquiring binary images, we typically face some binarization errors. To see how
these distortions affect the different methods, we created a test set of letter images that
contained 30 randomly affine transformed versions of each letter, disturbed with binary
noise. We used additive uniformly distributed binary noise followed by filtering that re-
moves small connected components. Some samples of the resulting test images are il-
lustrated in Figure 4(a). The noise levelD is the probability that a pixel is disturbed by
noise before filtering. Figure 4(b) shows the results of this experiment, and it can be
observed that the proposed method works fine even up to noise levelD = 0.25, outper-
forming all the comparison techniques. Affine invariant moments seem to have the worst
performance, though it is considerably improved when we use more of them.

(a) Gaussian noiseσ = 0.2. (b) Occlusion size 12.

Figure 5: Samples of noise distorted fish images.
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Figure 6: Classification results under Gaussian noise and occlusion.

5.2 Experiments with gray-scale images using fish image database

In most applications, recognition is done using gray-scale images. In this case there
are several different sources for imaging errors, and to measure robustness against these
we assess the methods in three different test settings, measuring the performance under
Gaussian noise, occlusion, and nonuniform illumination. In each test we recognized 20
versions of each fish which had been disturbed by a random affine transformation and
then by the given distortion. Unfortunately we had to omit the cross-weighted moments
from this experiment, because the fish database had so many images with a large number
of nonzero pixels that the computation times were prohibitively long.

In the first setting we tested robustness to Gaussian noise distortions, which usually
model many error sources in e.g. CCD sensors. For testing we added random Gaussian
noise having zero mean and different variationsσ to images before classification. We
illustrate some samples in Figure 5(a). The resulting classification errors with different
methods are plotted in Figure 6(a). By looking at the results obtained here, one can see
that the ridgelet approach is more accurate than the comparison methods, particularly at
high noise values.

Another important error source are occlusions in the image. We tested this by intro-
ducing different sized and randomly situated occlusions on the fish images. The occlusion
was a square shape, with uniform gray-value 0.5 and the center of the occlusion always on
the fish. We show some samples of the resulting test images in Figure 5(b). The obtained
results are shown in Figure 6(b). Despite the fact that large occlusions strongly disrupt
the image intensity function, the proposed method makes only a few errors even up to
occlusion size 8, and from there on outperforms the others with a clear difference.

In many situations it is very difficult, if not impossible, to arrange uniform lighting
conditions. To see what kind of effects nonuniform lighting has to the recognition we
created a lighting distortion so that starting from the vertical center line, to the left we
linearly decreased the gray-scale values and to the right we similarly increased them.
Figure 6(c) illustrates the results with several different slopes. Both MSA and ridgelet
methods seem to give robust results up to the slope 5· 10−4, but from there on MSA
collapses and only ridgelets offer reliable results.



6 Conclusions and future work

This paper introduces a novel affine invariant transform. The presented approach is based
on ridgelets and it further gives rise to a framework for constructing a number of other
affine invariant transforms. The invariants are efficiently implemented using the Radon
transform and by proper selection of the transform coefficients. We assessed the method
in experiments demonstrating several distortions appearing in photographing and bina-
rization processes, and the new method gave strong performance. In general the results
illustrate that ridgelet invariants extract highly discriminative and robust information from
image patches. Interesting future research issues include finding optimal functionsψ and
transformation parametersα1,α2,β1,β2. Based on the experiments and flexibility of the
method, we believe that the novel framework introduced will offer a new practical and
effective tool for affine invariant object recognition.
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