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Abstract

In this paper we present a new way of producing affine invariant histograms
from images. The approach is based on a probabilistic interpretation of the
image function as in the multiscale autoconvolution (MSA) transform, but
the histograms extract much more information of the image than traditional
MSA. The new histograms can be considered as generalizations of the im-
age gray scale histogram, encoding also the spatial information. It turns out
that the proposed method can be efficiently computed using the Fast Fourier
Transform, and it will be shown to have essentially the same computational
load as MSA. The experiments performed indicate that the new invariants are
capable of reliable classification of complex patterns, outperforming MSA
and many other methods.

1 Introduction

Invariant descriptors have drawn much attention in pattern recognition, since they provide
an elegant way of dealing with pose changes. These descriptors may have many different
levels of invariance, which will determine what kind of pose changes they can cope with.
Some approaches have only rotation or scaling invariance, but this is generally not suffi-
cient to model real view angle changes. Instead, the affine transformation has proven to
be a reasonably accurate estimate for the pose changes in many occasions.

The affine transformation consists of two components, a translation and a multiplica-
tion by a matrix. In many approaches the invariance is achieved by using a combination
of normalization and a descriptor with weaker invariance. An extreme example could be
normalization of both components and application of a noninvariant descriptor [3]. The
problem here is that the accurate normalization of the matrix multiplication is generally
difficult for arbitrary shaped patches. In many other methods, like affine invariant mo-
ments [4], [8], [9], cross-weighted moments [10], and spatial multiscale affine invariants
(SMA) [7], only the effect of the translation is eliminated separately by first translating the
image to its centroid. The drawback is that the overall invariant may be strongly affected
by the accuracy of finding the centroid, which can be difficult in nonideal conditions.
There are also methods like trace transform [5] and affine invariant spectral signatures [2]
that are capable of handling the linear transformation and translation together, but they
are rather expensive to compute and difficult to implement. Yet another approach could
be to use affine invariant Fourier descriptors as proposed in [1]. However this requires
extraction of a closed boundary curve of the object.



The multiscale autoconvolution (MSA) transform [6] provides a method for construct-
ing a large number of affine invariants with reasonable computational load and straightfor-
ward implementation. The idea behind MSA is to combine the affine coordinate system
with a probabilistic interpretation of the image function. One obtains a random variable
whose properties are unaffected by the affine transformation, and in [6] the MSA trans-
form was defined to be the mean value of this random variable. However, using only the
mean value we capture just a small part of the information carried by this variable. In
this paper we propose a histogram method which approximates the whole distribution of
this random variable, and the new method turns out to have essentially the same computa-
tional complexity as the traditional MSA. The experiments performed indicate that using
the new approach we can achieve similar accuracy as in MSA with only a fraction of the
transformation parameters.

2 Multiscale autoconvolution

We begin by recalling the ideas behind the multiscale autoconvolution [6] transform,
which will then directly lead to the derivation of the new approach. But before continuing
we define the spatial affine transformation as follows.

Definition 1 A spatial affine transformationA of coordinates x∈R2 is given byA (x) =
Tx+ t, where t,x∈ R2 and T is a2×2 nonsingular matrix whose elements belong toR.
Further let f(x): R2 → R, f ≥ 0 be an image intensity function. The affine transformed
version f′ of f is given by

f ′(x) = f ◦A −1(x) = f (T−1x−T−1t).

2.1 Affine coordinate system

Let f (x): R2 → R, f ≥ 0 be an image intensity function and letx0,x1,x2 ∈ R2 be three
points from the support off . Now given these three points fix a coordinate system using
the basis vectorsx1− x0 and x2− x0, and consider a pointuα,β having the coordinate
values(α,β ) ∈ R2 in this system. The pointuα,β is given in the original coordinate
system as

uα,β = α(x1−x0)+β (x2−x0)+x0.

Let A be an affine transformation applied to the imagef as in Definition 1, and take
the pointsx′0,x

′
1,x

′
2∈R2 from the support of the imagef ′ = f ◦A −1 to be the transformed

versions corresponding tox0, x1, andx2, i.e.x′i = Txi + t. Also define

u′
α,β = α(x′1−x′0)+β (x′2−x′0)+x′0.

Using the relationx′i = Txi + t here, we have

u′
α,β = α(Tx1−Tx0)+β (Tx2−Tx0)+Tx0 + t = A (uα,β ), (1)

indicating that also the pointu′
α,β is the affine image of the pointuα,β . Figure 1 illustrates

this phenomenon.
Given a pair of imagesf and f ′ we could use several(α,β ) pairs and for example

the valuesf (uα,β ) as descriptors to estimate whether the images are the same up to an
affine transformation. The problem here is that we would need to find corresponding point
tripletsx0, x1, x2 andx′0, x′1, x′2 from the imagesf and f ′, which can be difficult in general.
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Figure 1: Illustration of the behavior of the affine coordinate system under affine trans-
formation.

2.2 Probabilistic approach

Instead of using fixed pointsx0, x1, andx2 we assume the points to be independent random
variablesX0, X1, andX2 with probability density functionpXi (x) = 1

‖ f‖L1
f (x). Then also

uα,β will become a random variable

Uα,β = α(X1−X0)+β (X2−X0)+X0.

Let nowA be an affine transformation with parametersT andt, and letf ′ = f ◦A −1

be the transformed image. Using the transformed image, we takeX′
0, X′

1, and X′
2 so

that they are independent random variables with probability density functionpX′
i
(x) =

1
‖ f ′‖L1

f ′(x). It is not hard to show (see [6]) that thenX′
0

d= A (X0), X′
1

d= A (X1), and

X′
2

d= A (X2), where we writeX
d= Y if the random variablesX andY have the same

distribution. Using theX′
i to defineU ′

α,β we have as in (1)

U ′
α,β = α(X′

1−X′
0)+β (X′

2−X′
0)+X′

0
d= A (Uα,β ).

To eliminate the affine transformation, we consider the random variablesf (Uα,β ) and
f ′(U ′

α,β ), and we get the relation

f ′(U ′
α,β ) = f (A −1(U ′

α,β )) d= f (A −1(A (Uα,β ))) = f (Uα,β ).

Hence the random variablesf ′(U ′
α,β ) and f (Uα,β ) have the same distribution, which is

independent of the affine transformationA .

2.3 Definition and expressions for MSA

Since f ′(U ′
α,β ) and f (Uα,β ) have the same distribution, they must also have the same

expected value. Based on this fact, the multiscale autoconvolution transform was defined
in [6] as follows.

Definition 2 (Multiscale autoconvolution) Let f be a function in L1(R2)∩L2(R2) with
f ≥ 0, and let p(x) = 1

‖ f‖L1
f (x) be the corresponding probability density function. Take

X0, X1 and X2 to be independent random variables with values inR2 and with probability
density function pXj (x j) = p(x j). For α,β ∈ R define a new random variable

Uα,β = X0 +α(X1−X0)+β (X2−X0).



The MSA transform of f is defined as the expected value of f(Uα,β ),

M f (α,β ) = E[ f (Uα,β )].

In [6] it was further noted that givenp(x) = 1
‖ f‖L1

f (x), we can express the probability

density function of the variableUα,β in Definition 2 as

pUα,β
(u) = (pα ∗ pβ ∗ pγ)(u), (2)

whereγ = 1−α−β , pa(x) = 1
a2 p( x

a) if a 6= 0 andpa = δ (x) if a= 0 (Dirac delta). Using
this result the MSA transform can be expressed in the form

M f (α,β ) =
∫

R2
f (u)pUα,β

(u)du=
∫

R2
f (u)(pα ∗ pβ ∗ pγ)(u)du. (3)

Now using (3) we could evaluate the MSA values for a given image functionf . However,
the double convolution is computationally expensive and thus it was observed in [6] that
(3) can be alternatively expressed in terms of the Fourier transform as

M f (α,β ) =
1

f̂ (0)3

∫
R2

f̂ (−ξ ) f̂ (αξ ) f̂ (βξ ) f̂ (γξ )dξ , (4)

where f̂ (ξ ) = F ( f ) =
∫

R2 f (x)e−i2πx·ξ dx is the Fourier transform off .

3 The new approach

In the derivation of MSA it was first shown that using an affine coordinate system and a
probabilistic approach, we can construct a random variablef (Uα,β ) which has the same
distribution asf ′(U ′

α,β ) for any affine transformed versionf ′ of f . The descriptor was
taken to be the expected value of this random variable. Now it is very likely that by
taking only the expected value we will lose much of the information carried by the vari-
able f (Uα,β ). In [6] it was remarked that we could also use the higher order moments
E[ f (Uα,β )k] as descriptors, but computing each of them contains again another evalua-
tion of an integral similar to (4). In order to capture all the information inf (Uα,β ) we
would need to estimate the entire distribution of this random variable. Although com-
puting this directly may be difficult, we will show that it can be easily and accurately
estimated by a histogram.

To estimate the distribution off (Uα,β ) we would first need the probability density
function ofUα,β . Now recall (2), which gives this function in terms ofp(x). This ex-
pression contains again the computationally expensive double convolution, but by taking
Fourier transforms on both sides and noting that the Fourier transform takes convolutions
into products, we will have

F (pUα,β
) = F (pα ∗ pβ ∗ pγ) =

1

f̂ (0)3
f̂ (αξ ) f̂ (βξ ) f̂ (γξ ). (5)

Taking the inverse Fourier transform of (5) we obtain

pUα,β
(u) = F−1

(
1

f̂ (0)3
f̂ (αξ ) f̂ (βξ ) f̂ (γξ )

)
=

1

f̂ (0)3

∫
R2

f̂ (αξ ) f̂ (βξ ) f̂ (γξ )ei2πu·ξ dξ . (6)



The expression (6) is very similar to the Fourier form of MSA given in (4), except that
here we haveei2πu·ξ instead off̂ (−ξ ) which actually simplifies the evaluation.

Using (6) we can efficiently calculate the probability density function ofUα,β . Now
having this function and the image functionf (x), we can perform a simple histogramming
operation to establish an estimate of the distribution off (Uα,β ). This is done by dividing
the gray level interval into a finite number of disjoint setsB j (bins) for j = 1, . . . ,N. The
”mass” in a given binB j is the probability thatf (Uα,β ) lies inB j , which is given by

mj = P( f (Uα,β ) ∈ B j) = P(Uα,β ∈ f−1(B j)) =
∫

f−1(B j )
pUα,β

(u)du. (7)

The histogram is the vector(m1, . . . ,mN), which contains the mass in each bin. Iff ′

is an affine transformed version off , then sincef (Uα,β ) and f ′(U ′
α,β ) have the same

distribution we have

P( f (Uα,β ) ∈ B j) = P( f ′(U ′
α,β ) ∈ B j) for each binB j .

This shows that the histogram is affine invariant.
For digital images the histogramming requires fewer computations than the corre-

sponding discrete Fourier transform, which makes the computational load of the his-
togramming approach essentially equal to the evaluation of only the expected value of
f (Uα,β ). In addition, instead of using the histogram itself as a feature, we can use this
simple one dimensional function to produce estimates for descriptors like expectation
(MSA), higher order moments, skewness, entropy, etc.

At this point we would like to remark that with parametersα = β = 0 we obtain ex-
actly the gray value histogram of the image function. In this sense the multiscale autocon-
volution histograms can be considered as certain kinds of generalized image histograms
which combine the gray value information with the spatial distribution.

4 Implementational issues and computational
complexity

When we want to compute the multiscale autoconvolution histograms from digital images,
we first need to make a discrete form of the equation (6). However in the MSA case it
was found to be better to scale thef rather in spatial domain than in the frequency domain
[6]. We do the same here and using the relationf̂ (aξ ) = f̂a(ξ ), where fa(x) = 1

a2 f ( x
a),

we can write (6) as

pUα,β
(u) = F−1

(
1

f̂ (0)3
f̂α(ξ ) f̂β (ξ ) f̂γ(ξ )

)
. (8)

Now if we considerf to beN1×N2 matrix representing the digital image, the approxi-
mation of (8) can be done just by replacing the continuous Fourier transforms with the
discrete ones. This results in

pUα,β
(u) =

1

f̂ (0)3
F−1(

f̂α(w) f̂β (w) f̂γ(w)
)
, (9)
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Figure 2: Examples of the multiscale autoconvolution histograms for an image and affine
transformed version of it.

where f̂ is now a discrete Fourier transform off andF−1 denotes inverse discrete Fourier
transform. This form is quite straightforward to implement, if we just keep in mind that
the Fourier transform length must be long enough to achieve the estimation of the linear
convolution correctly. If the original image has the sizeM1×M2, the transform lengthNi

must satisfyNi ≥ (|α|+ |β |+ |γ|)Mi −2.
After we have achieved the estimate ofpUα,β

(u) we have to perform the histogram-
ming operation given in (7). This can be done by first dividing the gray level interval in
the desired amount of bins, and then going through all the pixelsu in the imagef , at each
point incrementing the corresponding bin bypUα,β

(u). The number of histogram bins is a
new parameter that can be adjusted, but as in our case the images had discrete gray values
in interval 0. . .255 we found it natural to use histogram length 256. Our implementa-
tion that we used to perform the experiments in Section 5 can be retrieved from URL:
http://www.ee.oulu.fi/research/imag/msa/.

In [6] it was shown that the computational complexity of evaluating one MSA descrip-
tor for anN×N image is the same as evaluating the Fourier transform, i.e.O(N2log(N)).
Using similar arguments as in the case of MSA we have that in the new approach, the
evaluation ofpUα,β

(u) has exactly the sameO(N2log(N)) complexity. The histogram op-

eration, if it is done in the way we described it, has the complexityO(N2). So the total
computational complexity of the histogramming approach is determined by the Fourier
transform and isO(N2log(N)). This means that the multiscale autoconvolution and the
proposed multiscale autoconvolution histogram have the same asymptotic complexity.

To have also some insight to the actual computation times, we computed both MSA
and the new method using several image sizesN and severalα,β pairs. Table 1 illustrates
the measured average computation times for oneα,β pair with different image sizes using
our matlab implementations. From there it can be observed that the computation times of
the new approach and traditional MSA are very much in the same range. In addition we

Table 1: Estimated average computation times in seconds for oneα,β pair for the pro-
posed method and MSA with different image sizes.

Image size 100×100 200×200 300×300 400×400 500×500
MSA hist. 0.034 0.13 0.33 0.68 0.94

MSA 0.033 0.12 0.29 0.62 0.85



Figure 3: Examples of the training and testing images. The first row contains training
images and the second row contains test images.

also checked the accuracy of the histogramming approach by comparing the mean values
of the histograms obtained to the corresponding MSA values. As a result we found that
the values were exactly the same within the numerical precision, indicating that also the
MSA values can be accurately retrieved from the multiscale autoconvolution histograms.

5 Experiments

In this section we present some examples illustrating the behavior of the multiscale au-
toconvolution histogram compared to multiscale autoconvolution, normalized image gray
scale histogram (multiscale autoconvolution histogram withα = β = 0), and some other
commonly used affine invariant techniques. These other techniques were taken to be
the spatial multiscale affine (SMA) invariants [7], affine invariant moments (AMI) as de-
scribed in [4], and affine and photometric moments invariants as described in [9]. As the
first example we illustrate multiscale autoconvolution histograms with threeα,β pairs in
Figure 2. In order to reduce fluctuation in the histograms, we have first slightly smoothed
the histogram by convolving it with the Gaussian function having variance 5. Notice the
almost exact invariance of the histograms under affine transformation.

In the experiments we use multiscale autoconvolution histogram with(α,β ) = (−0.1,
0.3), MSA with (α,β ) = (−0.1,0.3), and MSA with 10 invariants using(α,β ) = {(−0.1,
0.1), (−0.1,0.2), (−0.1,0.3), (−0.1,0.4), (−0.2,0.2), (−0.2,0.3), (−0.2,0.4), (−0.3,
0.3), (−0.3,0.4), (−0.4,0.4)}. Since the other comparison methods were faster to eval-
uate we computed 20 invariants for SMA, 40 invariants for AMI, and all the 15 affine
and photometric invariants given in [9]. In addition the affine and photometric invari-
ants described in [9] require a way to divide the object into several affine covariant parts,
which we will make similarly as in the experiments in [9]. We will refer to these methods
as MSAhist, MSA1, MSA, SMA, AMI, and APMI, respectively. The classification was
performed using a simple nearest neighbor classifier, where the distance measure was the
histogram intersection for histogram approaches and Mahalanobis distance for the oth-
ers. The covariance matrix for the Mahalanobis distance was estimated using the features

Table 2: Classification error percents under real view angle distortions.
MSA hist. MSA1 MSA Gray hist. SMA AMI APMI

2.4 % 81.5 % 13.7 % 12.1 % 29.0 % 50.0 % 69.4 %



Figure 4: Examples of occluded images. At the first row the occlusion has size 30×30
and at the second row 50×50.

from the training samples.
We continue to perform some classification experiments using the procedure described

and 45 test objects containing photos, postcards and books. All the test objects were as-
sumed to have rectangular shape in order to make the classification more difficult and
allowing us to use the same division method for APMI as in [9]. For training the classi-
fier we took one 256×256 image from each of the 45 test objects. Then for testing we
took a new set of photographs containing a total of 124 images from these same objects,
where the photographs were taken from various viewing angles. The resulting classifi-
cation problem is not easy since the test set will also contain many nonaffine distortions
due to real photographing conditions and not exactly planar test objects. Before feature
extraction the gray values of all the images were normalized so that they had mean 128
and standard deviation 30. This normalization was done in order to diminish the effects of
changes in the lighting conditions. This improved the results with all the tested methods
except with APMI and thus we applied it to the unnormalized images in the experiments.
Figure 3 illustrates some samples of both testing and training images.

Table 2 presents the classification results obtained, where it can be seen that the new
approach clearly outperforms the others in classification accuracy. We also observe that
the difference between the MSA hist and MSA1 is very large, indicating that there is
plenty of information in f (Uα,β ) which is completely lost in the expected value. In
addition there is a clear difference between the multiscale histograms with(α,β ) =
(−0.1,0.3) and(α,β )= (0,0), indicating that the spatial information encoded with(α,β )
6= (0,0) can considerably increase the discrimination power of the histograms. The sur-
prise was the poor performance of the APMI. In a separate experiment we found it to be
very sensitive to slight changes in the partitioning caused by the nonaffine transformation,
which may explain some of the poor performance.

We continue by introducing some additional distortions to the test images in order to

Table 3: Classification error percents under noise distortion with variancev.
v MSA hist. MSA Gray hist.
1 2.4 % 12.9 % 12.1 %
3 4.0 % 13.7 % 12.1 %
5 5.7 % 12.9 % 12.9 %
7 14.5 % 12.9 % 21.7 %
8 17.7 % 15.3 % 21.7 %



Table 4: Classification error percents under illumination distortion with slopes.
s MSA hist. MSA Gray hist.
1 (·10−4) 3.2 % 12.9 % 12.1 %
3 4.0 % 13.7 % 10.5 %
5 7.2 % 14.5 % 20.6 %
8 16.1 % 14.5 % 37.9 %

Table 5: Classification error percents under occlusions of sized×d.
Ocl. size MSA hist. MSA Gray hist.
10×10 2.4 % 14.5 % 12.1 %
20×20 2.4 % 15.3 % 12.1 %
30×30 2.4 % 19.4 % 12.9 %
40×40 7.3 % 31.5 % 12.9 %
50×50 15.3 % 39.5 % 19.4 %

see how the methods react to them. As distortions we use Gaussian noise, nonuniform
illumination, and image occlusion. The noise was additive and it was generated from
a normal distribution with zero mean and variancev. The nonuniform illumination was
generated so that starting from the vertical center line, to the left we linearly decreased the
gray-scale values and to the right we similarly increased them. The slope of the illumi-
nation change is denoted ass. Finally, the occlusion was made by introducing randomly
located square patches of sized×d on the objects. The patches contained normally dis-
tributed gray values with mean 128 and variance 20. Some of these occluded images are
illustrated in Figure 4. Tables 3, 4 and 5 show the corresponding classification results with
different types and levels of distortion. We omitted the MSA1, SMA, AMI, and APMI
methods from these experiments due to their high error rates in the first experiment.

The results in the distortion experiment illustrate the differences in the nature of the
methods. In the case of Gaussian noise and nonuniform illumination we can observe that
histogram approaches react to the changes more quickly than MSA. This is probably due
to the fact that the distortions are spread quite evenly over the whole histogram, and the
intersection distances are affected more than the mean value of the histogram computed in
MSA. The situation can be changed by introducing more smoothing over the histograms.
In this case we observed that the multiscale autoconvolution histograms perform much
better under noise, but then the results with pure view angle distortions drop slightly. The
amount of smoothing can be thought as tradeoff between robustness and discriminability
of the method. The effect of occlusions is much better handled by the histograms, since
they affect only a small part of the histogram but change the mean value considerably. The
results indicate that MSA histograms can actually tolerate considerably large occlusions.

6 Conclusions

In this paper we introduce a new way of constructing affine invariant histograms from
images. The proposed approach uses the same affine invariant random variable as the
multiscale autoconvolution, but it is capable of estimating the complete distribution rather
than just the expected value. It was further shown that the computational complexity for
the new method and for MSA was essentially the same. The experiments performed
illustrated the performance of the proposed approach and support the fact that there is
plenty of discriminating information inf (Uα,β ) which is not captured in the expected



value given by MSA. The approach introduced was also shown to clearly outperform
many of the commonly used affine invariant techniques. We performed the experiments
using just a simple setting and only one(α,β ) pair, but we expect that by taking more
pairs and combining their information with sophisticated methods like adaboosting or
support vector machines, we could achieve still better performance and discriminability.
The efficient use of several histograms together and the selection of the best(α,β ) pairs
are important future research issues.
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