
Short paper proceedings of ”Third ISSMO/ UBCAD/ UB/ AIAA World Congress on Structural
and Multidisciplinary Optimization”, Amherst, NY, May, 1999 (CD-ROM, 5 pp.)

Combining Automatic Derivatives and Hand-coded Derivatives
in Sensitivity Analysis for Shape Optimization Problems

Raino A. E. Mäkinen

Faculty of Information Technology, University of Jyväskylä, Finland

1. Abstract
A hybrid approach for shape design sensitivity analysis for a class of shape optimization is presented.
Hand-coded derivatives and automatic derivatives are combined in such a way that the adjoint
equation technique can be utilized. This approach yields significant reduction in the memory and
time required to compute derivatives if compared to the approach where automatic differentiation
is applied to the whole code. Numerical examples are given.

2. Keywords
Sensitivity analysis, Shape Optimization, Automatic Differentiation

3. Problem Formulation
We consider the following abstract shape optimization problem in discrete form

min
a∈RN

J0(a) = I0(a, q(a)) (1)

subject to (2)
Ji(a) = Ii(a, q(a)) ≤ 0, i = 1, ...,m (3)
R(a, q) = 0. (4)

Here a is the vector of design parameters defining the shape Ωa of the system. The state q(a) of
the system is obtained by solving the state equation (4).

Although gradient free global optimization methods like Genetic Algorithms are becoming more and
more popular also in shape optimization, they cannot compete efficient gradient based methods like
Sequential Quadratic Programming when good initial guess is known and high accuracy is requested.
Unfortunately, gradient based methods require the computation of the partial derivatives of cost and
constraint functions with respect to design variables. Finite difference approximations for derivatives
may not be accurate and are obtained too slowly. Therefore, obtaining analytic derivatives is an
important step in the numerical optimization process.

By shape design sensitivity analysis we mean computing derivatives of the functionals Ji with
respect to geometrical parameters defining the positions of nodal coordinates of the finite element
mesh. Hand-coding of shape design sensitivity analysis has been considered extremely elaborate and
difficult even for linear state problems. This is probably due to the bad form in which most of the
sensitivity formulae are presented. In these formulae there are usually too much explicit dependence
on certain application or element type. This implies nonstructured programs which are difficult to
debug and maintain. Despite this, hand-coded sensitivity analysis can be done with a reasonable
amount of work even in the case of quite complicated state problems [1], [2], [3]. However, fully
hand-coded derivatives are not always feasible at all, e.g. if unstructured and/or adaptive mesh
generator is used.

4. On automatic differentiation of programs
Automatic differentiation (AD) is a technique for augmenting computer programs with derivative

computations [4]. It exploits the fact that every computer program executes a sequence of elemen-
tary arithmetic operations. By applying the chain rule of derivative calculus repeatedly to these
operations, accurate derivatives of arbitrary order can be computed automatically. Automatic dif-
ferentiation has two basic modes the “forward” and “reverse” modes. The running time and storage
requirements of the forward mode is approximately proportional to the number of design variables.
The reverse mode which is closely related to adjoint methods has a lower operations count for
derivative computations, but potentially very large memory requirements.

Automatic differentiation can be implemented in two different ways: Existing analysis code written
in e.g. Fortran 77 is precompiled using a precompiler (like ADIFOR [5]) into a new code that
includes derivative calculations, or operator overloading technique available in e.g. Fortran 90 is
used to produce sensitivity information. Modern programming languages like Fortran 90 make
it possible to redefine the meaning of elementary operators. That is, we can define a new type
for floating point numbers that has gradient information associated with it. For each elementary
operation and standard function (+, *, sin(), dot_product(),...) we can define the meaning of the
operation for variables of that new data type. The advantages of operator overloading is that it
almost completely hides the AD tool from the user. If the implementation of the AD tool is changed
the source code needs no modification.

Although AD techniques can be applied to add gradient computations to codes in their entirety,
significant reduction in the memory and time required to compute derivatives are of the possible
if hand-coding is coupled with AD techniques. Therefore we proceed with the following hybrid
approach. First, we implement the forward mode of AD using operator overloading in Fortran 90.
Secondly, we develop the geometric sensitivity analysis with respect to positions of nodal coordinates
in general matrix form for a class of elliptic partial differential equations.

5. Hybrid approach to sensitivity analysis
Quasilinear state problem

Many physical phenomena in elasticity, fluid dynamics and electromagnetics can be modeled using
the second order quasilinear partial differential equation of type

∇ · σ + g = 0, σ = ρ(u)∇u (5)

with suitable boundary conditions. The discrete analogue of (5) reads

R(a; q) ≡K(a; q) q − f(a) = 0, (6)

where K and f are the “stiffness” matrix and “force” vector, respectively.

Differentiating (6) implicitly gives

∂R(a; q)

∂ak
+
∂R(a; q)

∂q

∂q

∂ak
= 0. (7)

By introducing an adjoint state vector p we can eliminate the partial derivative of q from (7) and
obtain (

∂R(a; q)

∂q

)T

p = ∇qI(a, q) (8)

∂J(a)

∂ak
=
∂I(a, q)

∂ak
− pT

(
∂R

∂ak

)
(9)

In existing FE-software hand-coded Jacobian ∂R/∂q is often available as it is required for the
Newton–Raphson method. Also hand-coding the righthand side of (8) is usually not more difficult
than coding the cost function I(a, q) itself.

The derivatives in (9) are more difficult due to the dependencies

a→X(a)→ R(·, q), I(·, q) (10)

which imply that one must first differentiate the nodal coordinate matrix X(a) with respect to
design parameters. Hand-coding of this is error-prone and sometimes even impossible. Therefore,
in our hybrid approach the derivatives on the right hand side of (9) are computed using AD.

Below is a Fortran 90-style pseudocode for calculating the value of the cost function and its gradient
at a given point aa. We assume that three-noded elements are used and there is one degree of
freedom per node. The Fortran 90-module AD contains the code needed to implement a new data
type DVAR and overload the arithmetic operations and standard functions for this new data type. Also
mixed DVAR/REAL arithmetic is implemented. Moreover, it contains the functions AD_indep_var,
AD_gradient and AD_pd which declare independent variable vector, return the gradient or partial
derivative of a variable of type DVAR, respectively.

subroutine objfun(n, aa, I, dI)
USE AD
real, intent(IN) :: aa(n)
real, intent(OUT):: I, dI(:)

real:: Pe(3)
TYPE(DVAR):: X(Nnodes,2), Re(3), II
real, dimension(Nnodes,Nnodes):: Jac
real, dimension(Nnodes):: Q, dQ, P, R, dIQ
a = AD_indep_var(aa)
Call Generate_Mesh(a, X)
Q = 0.0
do while (.not.converged)

Call Calc_Jacobian_and_Residual(X, Q, Jac, R)
Call LinearSolve(Jac, dQ, -R)
Q = Q + dQ

end do
Call CostFunction(X, Q, II, dIQ)
Call LinearSolve(Transpose(Jac), P, dIQ)
I = ad_value(II)
dI = ad_gradient(II)
do e=1,Nelems

Pe = gather(P, e)
call Calc_Element_Residual(e, X, Q, Re)
do k=1,N

dI(k) = dI(k) - dot_product(Pe, AD_pd(Re, k))
end do

end do
end subroutine Objfun

Linear state problem
If the state problem (5) is linear then the sensitivity of the residual can be hand-coded in a straight-
forward and portable way. Let us assume for simplicity that ρ and g are constants. Then using
n-noded isoparametric elements the stiffness matrix and force vector corresponding the element Ωe

are given by

K =

∫
Ω̂

ρBTB|J | dxh, f =

∫
Ω̂

gN |J | dxh, (11)

where Ω̂ is the reference element and |J | is the Jacobian of the mapping Ω̂→ Ωe.

For the sensitivity of the “strain–displacement” matrix B and the Jacobian determinant we have
[6], [7]

∂B

∂ak
= −B ∂Xe

∂ak
B,

∂|J |
∂ak

= |J |
n∑

j=1

2∑
i=1

∂ϕj

∂xi

∂Xji

∂ak
(12)

and

∂Ke

∂ak
=

∫
Ω̂

[
ρ

(
∂B

∂ak

)T

B |J |+ ρBT ∂B

∂ak
|J |+ ρBTB

∂|J |
∂ak

]
dxh (13)

∂fe

∂ak
=

∫
Ω̂

gN
∂|J |
∂ak

dxh (14)

Matrix ∂Xe/∂ak is produced by the AD augmented mesh generator. The remaining terms in
formulae (12)–(14) are not more difficult to hand-code than the original finite element code.

6. Numerical examples
Optimal design of a magnet
A classical problem in magnet design is that of finding the pole profile of, for example, a nonlinear
H-shaped magned, in order to have a desired uniform field in the shaded subregion of the air gap
[8]. The pole profile (shown in Figure 1) is given by a Bezier-curve defined by four design variables.
Comparison of AD computed gradients and finite difference (FD) approximations with steplength
10−5 are shown in Table 1. Here ∂kAD and ∂kFD stand for the value of ∂J

∂ak
obtained using AD

and forward difference approximation for ∂J
∂ak

, respectively.

Although the mesh is unstructured reliable derivatives were obtained.

Figure 1. Figure 2.
Moving part of the FE-mesh Scalar magnetic potential contours

k ∂kAD/∂kFD

1 1.0000026
2 1.0000039
3 1.0000021
4 0.99999884

Table 1.

Optimal design of a hollow shaft
The design objective is to choose the outer shape of a hollow shaft that has a given cross-sectional

area and has a maximal torsional stiffness. Due to symmetry, only quarter of the cross-section is
considered. The outer boundary is parametrized using Bezier curve defined by five design variables.
Comparison of AD computed gradients and finite difference (FD) approximations with steplength
10−4 are shown in Table 2.

k ∂kAD/∂kFD

1 1.0000523
2 0.99999747
3 0.99997835
4 0.99997738
5 0.99999647

Table 2.

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

Figure 3. Figure 4.
Cross-section of the shaft. FE-mesh and stress potential contours.

7. Conclusions
The hybrid method for shape design sensitivity analysis is both easy to program and efficient in
terms of computer time and memory. It is efficient as the differentiation of the (non)linear state
solver is avoided making is possible to use standard software (LAPACK, for example) to solve the
linearized state problem. Computed sensitivities are very accurate provided that the mesh is fine
enough and the nonlinear state equation is solved with sufficiently strict stopping criterion. Our
approach is general as it applies to multidisciplinary shape optimization problems and several finite
elements. General purpose programs can be easily developed as the dependence on the specific
application can be isolated into separate modules.

8. References
[1] J. Haslinger and R. A. E. Mäkinen (1992), Shape optimization of elasto-plastic bodies under plane
strains: sensitivity analysis and numerical implementation, Structural Optimization, 4, 133–141.
[2] R. A. E. Mäkinen and J. Toivanen (1994), Optimal shape design for Helmholtz/potential flow problem
using fictitious domain method, Proceedings of 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, 529–536.
[3] P. Tarvainen, R. A. E. Mäkinen and J. Hämäläinen (1998), Shape optimization for laminar and
turbulent flows with applications to geometry design of paper machine headboxes, Proceedings of the Tenth
International Conference on Finite Elements in Fluids, M. Hafez and J. C. Heinrich (eds.), The University
of Arizona, 536–541.
[4] A. Griewank (1989), On Automatic Differentiation, in Mathematical Programming: Recent Develop-
ments and Applications, M. Iri and K. Tanabe (eds.), Kluwer Academic Publishers, Amsterdam, 83–108.
[5] C. Bischof, A. Carle, P. Khademi, and A. Mauer (1996), ADIFOR 2.0: Automatic Differentiation of
Fortran 77 Programs, IEEE Computational Science & Engineering, 3, 18–32.
[6] R. A. Brockman (1987), Geometric sensitivity analysis with isoparametric finite elements, Commun.
Appl. Numer. Methods, 3, 495–499.
[7] R. Mäkinen (1990), Finite element design sensitivity analysis for nonlinear potential problems, Com-
mun. Appl. Numer. Methods, 6, 343–350.
[8] O. Pironneau (1984), Optimal Shape Design for Elliptic Systems, Springer-Verlag.

