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On a Topology Optimization Problem Governed
by the One-dimensional Wave Equation®

Raino A. E. Mikinen'

Abstract

We formulate a topology optimization like problem for the one-dimensional
time-harmonic wave equation. The wave equation is discretized using a mixed
formulation. The time-periodic solution is obtained using an exact controlla-
bility approach. The optimization problem is solved using a gradient method
utilizing exact sensitivities. Numerical examples are given.

1 Introduction

This paper discusses a design optimization problem governed by the wave equa-
tion. We concentrate on a material distribution / topology optimization like prob-
lem where a coefficient of the wave equation is sought to control the wave motion.
Practical applications include e.g. electromagnetic band gap structures and photonic
crystal waveguides [2], [6], [4], [9]. We consider the time-harmonic case but use a
tully time-dependent mixed model. The periodity is obtained by an exact controlla-
bility approach.

The paper is organized as follows. In Section 2 we define the equations gov-
erning wave propagation in inhomogeneous media and their mixed finite element
discretization; in Section 3 we formulate the design optimization problem, whereas
sensitivity analysis and numerical realization issues are discussed in Sections 4 and
5, respectively. In Section 6 we demonstrate our approach with numerical examples
dealing with design of band gap like structures.

*This research was supported by the Finnish Cultural Foundation
TDepartment of Mathematical Information Technology, University of Jyvaskyld, PO Box 35
(Agora), FI-40014 University of Jyvdskyld, Finland, raino.a.e.makinen@jyu. fi



2 The state problem

Consider the following wave equation in a truncated computational domain 2 (see
Figure 1):
T Gr—0 x0T
ET(.CL')w — u = miz X [ , ]
uw+Vu-n=g onddx|0,T],

1)

where the variable coefficient of the absolute term, given by

]_, ZL’GQ\QO
Er(x):
1+q(x), €y q>0,

is used to model an inhomogeneity appearing inside ;. On 02, the condition is
the simplest approximation of the combination of a non-reflecting boundary and
external excitation. The problem (1) may model e.g. scattering of 3D acoustic or 2D
polarized electric field.

We consider a time-periodic excitation ¢ and solution to (1) with angular fre-
quency w and time-period 7' = 27 /w. The normal practise would be to re-write (1)
as a complex valued Helmholtz equation. However, the solution of the Helmholtz
problem is equivalent to finding a periodic solution of the original wave equation
[1]. The T-periodic solution can be obtained by using the exact controllabily ap-
proach: the initial condition of the wave equation is adjusted in such a way that the
solution and its time derivative coincides with the initial condition at time 7'.

Following [5] we define the following mixed exact controllability formulation of
the time-periodic wave equation:

v —V-p=0 inQx][0,T] (2)

pi—Vo=0 inQ x[0,T] 3)

v+cep-n=g ondx[0,T] 4)

v(0) =v(T) =ep, p0)=p(T)=e inQ. )

One immediately notices that the relation between (1) and (2)—(5) is the following:
v=1w, Pp=Vu. (6)

02

Figure 1: Problem geometry
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Thus, the formulation has a flavor of a full 3D Maxwell system. This becomes more
evident when using formulation in differential forms, as shown in [10].
In the rest of this paper we limit ourselves to the one-dimensional case

&V —p, =0 in@Q (7)

].7 —v, =0 in@Q (8)

v(0,1) = p(0,1) = g(t) ©)
o(L,t) + p(L, 1) = 0. (10)

In order to perform the spatial discretization with the finite element method we
derive the weak form of the system (7)—(10). By multiplying the equations (7) and
(8) by test functions and performing integration by parts in the latter, the weak form

L L
/ evw dr — / powdr =0 Yw € L*(Q) (11)
0 0

/0 b d + / vty dz + p(LYO(L) + (p(0) + g(0)0(0) W€ HI(Q).  (12)

is obtained.
Let [0, L] be divided into n — 1 segments of length h. We perform the spatial
discretization of (11)—(12) as follows

n—1

vp(x,t) = Z vi(twi(z), pn(x,t) = sz(t)d}z(l‘), (13)

i=1

where {w;}!""' are piecewise constant basis functions and {1;}7_, are piecewise lin-
ear and continuous basis functions.
The semi-discretized wave equation can now be written in a matrix form as fol-

lows

M, O v 0 —-Bj||v 10

K MRS R IR 1t
where the “mass” matrix blocks are given by

MU = d1ag {heT((z_%)h)}:L:2 c R(n—l)x(n—1)7

M, = diag {g hoh, ... hh, g} € R™™,

The blocks of the “stiffness/damping” matrix are given by



B = c R(n—l)xnﬂ

-1 1
G = diag{1,0,0,...,0,0,1} € R™*",

and the “forcing” vector by

g =[9(0),0,...,0]".

. _ T v | My O |0 -B ta T .
Denoting y=[v p|’, M= [ 0 MJ , K= [BT G }, and f=[0 g we can write the
semidiscrete state problem shortly as follows:

My + Ky =f
y+ Ry (15)
y(0) = y(T).

3 Optimization problem

Our aim is to design the coefficient function ¢, in such a way that the propagating
wave has some desired property. We formulate the design optimization problem
directly in a finite dimensional form. Define a partition

rv,=a+0G—-—1)H,i=1,...m, H=(b—a)/m,

where m and 0 < a < b < L are given. Then the parametrized coefficient function
e-(a; -) is defined as follows

1 r<aorx>b
=1y 16
erless {1 + >0 a;¢i(x)  otherwise, (16)

where ¢; = X[, 4,,,[ (the characteristic function).
Then the semidiscrete ODE constrained design optimization problem can be writ-
ten in abstract form as follows:

{ Find o* € A such that

T(a",y(a") < T(a*,y(a) Va e A, {17)

where A = {a € R" | amin < @& < Qpax, @ = 1,...,m} is the set of admissible design
variable vectors, y(a) solves (15) corresponding to €, (¢; -), and

T m
j(Oé, V) = /0 G(V) dt + 5 Z(az - alnin)(@max - CYZ‘), ﬂ Z 07
=1
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is the cost functional.

Although the problem is formulated using a continuous control variable «, we
would prefer an optimal control of a “bang-bang” type. Especially by choosing
amin = 0 the pure bang-bang solution would imply that ¢,(z) € {1,1 4+ quax}. This
corresponds to the classical topology optimization approach by Bendsge et al. [2].

In the definition of A there is no volume fraction constraint unlike in typical
structural topology optimization problems. To force the final solution to be “black
and white”, a penalty term is added in J. The fixed parameter 3 controls the
amount of penalization.

4 Sensitivity analysis

As our aim is to apply gradient-based optimization methods, the partial derivatives
of the objective function with respect to design variables must be evaluated. We per-
form the algebraic sensitivity analysis using the standard adjoint method. Consider
the Lagrangian

£(a,y,p, ) = /0 G~ p"(My + Ky — £)] di + \T(y(0) - y(T))  (18)

corresponding to the ODE constrained minimization problem (17). As we are look-
ing for the partial derivatives of the objective funtion with respect to design vari-
ables, we take variations of £ with respect to & and y:

T
SaL = / [5G —p'(0My + 6Ky — 5f} dt (19)
0
T
0= [ [(9,6)1y — pT (M5 + Ky)] de + N(@y(0) - y(T))  (20)
0

Setting 0, £ = 0 and moving the time derivative from Jy to p using the integration
by parts, we obtain the adjoint equation

~Mp +K'p =V,G
{ p+Kp=V, 21)

p(0) = p(T).
The adjoint equation has periodic boundary conditions too but it is solved “back-

ward” in time.
As K and f do not depend explicitly on the design, we finally have

T
97 = —/ pTa—My, k=1,..,m. (22)
aak 0 aak



5 Numerical realization

Next we discuss on finding time-harmonic solution to the primal and adjoint state
problems by exact controllability method. Consider the following initial value prob-
lem

My +Ky=f, y(0)=w. (23)

The exact controllability problem related to it reads:

Find w € R" such that the solution to (23) satisfies
(24)
y(0) =w, y(T) =w.
Consider the following two initial value problems
My;+Ky;=f
yrtRyy (25)
ys(0)=0
and
My, + Ky, =0
Yo + Kyo (26)
yvo(0) =w

Then the solution to (23) is given by

y(t) = yo(t) + ys(t) = exp(—tA)w +yy,

where A = M'K. The exact controllability problem (24) can now be formulated as
a linear system of equations

(e —I)w = —y(T). (27)

We discuss later how this can be realized in practical computations.
Similarly, in the case of the adjoint equation (21), the two auxiliary intial value
problems are

—Mp; + K'p; = V,G
ps(T) =0
and
—Mp, + K'py =0
Po + K po (29)
po(T) =q
and the time-periodic solution
p(t) = po(t) + Ps(t) = exp(tA)q + ps(1)
can be obtained by solving
(" ~1) a=—py(0), (30)
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where A = M—KT. )

In the numerical realization, the matrices D := ¢ —Tand D := 72 — I are not
explicitly formed. The systems (27) , (30) can be solved using e.g. the restarted GM-
RES(k) method. The matrix-vector products of the form y*) = Dw*) are computed
by solving the initial value problems numerically with the fourth order Runge-
Kutta method. Similarly, the time-integration in the cost function and its derivative
with respect to design is evaluated using numerical integration.

We choose the element size as hw = ¢; = const. To satisfy the CFL condition,
the time step is chosen as At/h = ¢, = const. Now, to solve the wave equation on
0, 7], the number of time-steps required is K = 27 /wAt. With the previous choices
of h and At, it follows that K = 27/c ¢y, i.e. independent on h and w. Thus the
computational cost of one GMRES iteration essentially equals to the cost of sparse
matrix—vector multiply, i.e. O(N), where N ~ 1/h is the number of degrees of free-
doms.

In papers [3], [5], [7] the controllability problem (24) was solved in a different

way. Instead of the non-symmetric sysmtem Dw = —y;(T") the symmetric system
of “normal equation” D"Dw = —DTy(T) was solved using the conjugate gradient
method.

6 Numerical examples

In this section we present some numerical examples dealing with the optimization
of band gap like structures to confirm the usefulness of the proposed method. All
computations are realized in Matlab [8]. In optimization fmincon with * sqp’ op-
tion from the MATLAB Optimization Toolbox was used.

In all examples the length of the computational domain is L = 1 and the function
G defining the cost function is G(v)(t) = jv(L,t)?, i.e., we are looking for a design
that blocks the time-harmonic wave from going through the structure.

6.1 Example

We chose the following parameters: w = 81, a = 0.2, b = 0.8, opin = 0, Omax =
5 h = 1/200, m = 20, and = 107 Performing 32 SQP iterations (33 function
evaluations) resulted in the design and state solution shown in Figure 2. The initial
and final cost was 3.97 x 10" and 1.17 x 1072, respectively. Note that a completely
“black and white” design was obtained.

In Figure 3 we have plotted the number of GMRES(100) iterations as a function
of design changes. There are considerable differences between the iterations counts
corresponding to different designs. Also the adjoint equation seems to be harder to
solve than the primal one.



v(x,T)

-10¢

-15

15

100

04 0.6
x/L

0.8

p(x,T)

50

***** v(0.t)
V(L.1) 7 \
Op i ———— —_—
\ /’
\ /
. /
| J
50 . . " .
0 0.2 0.4 0.6 0.8 1
vT
50 7
f
i
[
|
|
|
e" | A
[ [
| 1]
07“ [
V]
Vo
\ )
“. “'
50 ‘Vl L I I L
0 0.2 0.4 0.6 0.8 1

x/L

Figure 2: Top left: optimized structure. Top right: incoming and outcoming waves.
Bottom: solution components (v, p) att =T

260 g

240 ‘-"" |
¢ |

=]

[~

=]
T

200} T

180 L
o

300 T

35

280}
260 [

240 I |

35

Figure 3: Number of GMRES iterations for the direct (top) and adjoint (bottom)

problems.



-50

30 50
A
c”\
20, “-‘ I
\ \
\ I
or | N [
o \ [\ ~ | | LN
[ (= | [\ -
40 A N — < oo | LN e
4 \ = | [ BV
| A\
-10f \ \J
\
20F VY (I
\J
-30 . : = ; -50
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
xL xL

Figure 4: Top left: optimized structure. Top right: incoming and outcoming waves.
Bottom: solution components (v,p) att =T

6.2 Example

The parameters defining the problem were kept the same as in Example 6.1, except
that we chose a finer mesh with i = 1/400. Performing 54 SQP iterations (59 func-
tion evaluations) resulted in the design and state solution shown in Figure 4. The
initial and final cost was 3.95 x 10! and 1.36 x 1072, respectively. In this case the
design contains some gray elements. In Figure 5 we have plotted the number of
GMRES(100) iterations as a function of design changes.

We then used the obtained design as an initial one for the same problem with
bigger penalty parameter 5 = 10~2. Performing 9 SQP iterations (10 function eval-
uations) resulted in the design and state solution shown in Figure 6. The initial and
final cost was 7.87 x 1072 and 8.74 x 10™*, respectively.

7 Conclusions

In this paper we have demonstrated a “proof of concept” method to solve numeri-
cally a topology optimization problem governed by a wave equation. The method
is based on solving the time-harmonic wave equation using exact controllability ap-
proach. The topology optimization is done using continuous variables. The “grey
regions” are suppressed by adding a penalty term in the cost functional.
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Although the 1D case is too simple to have significant practical use, it would be
very interesting to apply this approach e.g. to time-harmonic Maxwell system in
two or three dimensional setting.
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