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Abstract. A fixed domain approach is presented for solving optimal shape design problems.
In the proposed method the original optimal shape design problem is converted to a control
problem settled in a fixed domain. The method is demonstrated in solving an optimal shape
design problem arising from transmission problems. Results of numerical tests are presented.
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1. INTRODUCTION

The standard way to solve optimal shape design problems numerically is the boundary
variation method. In that method the unknown boundary is parametrized using a set of
design parameters. The choice of this parametrization at the beginning of the optimization
determines a restricted class of the domains that can be achieved. For example, if a single
connected domain is assumed at the beginning, the optimal shape that is obtained, if it
exists, is within this class of domains, although the true optimal domain may be doubly
connected.

The implementation of the boundary variation method on computer is usually not a
trivial task. Namely, at each step of the iterative optimization process, a new finite element
mesh must be generated, Haslinger and Neittaanmaki [4].

From these points of view, fixed domain approach in optimal design problems are very
useful and we quote the mapping method, Murat and Simon [7], the penalization method,
Kawarada 5], the controllability approach, Tiba [9].

Here, we discuss another approach suggested by recent controllability—type results for
elliptic systems [9], [1], [11]. It may be mainly compared with the mapping method
since 1t reduces the optimal shape design problem to a control in the coefficients problem.
However, no global description of the boundary of the variable domains is needed and no
scaling has to be performed.
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Our basic idea is a simple one: if  is a subset of a fixed domain D, then it is possiblé to
find some mapping p: D — R (by an exact controllability—type argument [10]) such that
p>0inQ,p=00n 9N and p < 0in D\ Q. Then the Heaviside mapping H: R — R

1, p 20,

) SO N

is the characteristic function of { in D. We obtain a good approximation of it by the use
of the Yosida approximation H, of the maximal monotone extension of H in R x R:

Ly p>E,
(2) H:(p)= Ié? pe[U'JE]':
0, p<0.

In the sequel, we shall apply this approach to a model problem discussed by Céa [3] and
Pironneau [8, Ch. 8]. In section 2, we perform a brief theoretical analysis of the proposed
method and some numerical results are given in section 3.

Finally, we mention that our investigation may be also compared with the topology
optimization method as described in the recent work of Bendsge and Rodrigues [2].

2. THE MAIN RESULTS
We study the following optimization problem, denoted (P):

B 2

(3) mlggglze/;g lya — ya|® dz (P)
subject to the transmission problem
(4) —a1Ayy +aoyr = f in Q,
(5) —aAys + agyy = f in D\

N 5} .
(6) a % = a %; Y1 = ya in OQ\(3Q N AD),
(7) a;%:{) in 8D, i=1,2.

- 7] . .
Above ag, a1, ay are positive constants, — denotes the exterior normal derivative to
(A

or D, yg € L*(E), f € L*(Q), E C D is a fixed measurable subset and yo € H'(Q) is
given by

_ yi(z) in Q,
(&) y”(“‘)‘{yz(m) in D\ Q.

If x is the characteristic function of Q in D, then the variational formulation of the éroblem
(4)-(7) is given by
(9) / ([arx + a2(1 = x)|Vya Vw + agyqw — fw) de Y w € H'(D)

D
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and, in (8], it is analysed the case when
(10) x€{9: D—R; g(z)=0o0rg(z)=1 VazeD}

is the control parameter. But the form of the constraint (10) makes the problem difficult
to handle. Instead, we replace (9) by

(11) /D ([a1 H(p) + az(1 — H(p))|VyaVw + agyow — fw) dz =0, Y we H'(D)

and we obtain an unconstrained control problem (3), (11).

REMARK 2.1. Obviously, H(p) is measurable for any measurable p, so H(p) € L>*(D). In
[10], it is assumed that Q is the image under a regular bijection B : R™ — R™ of the unit
sphere and it is shown that one can find p € C?*(D) such that p > 0 in 2, p = 0 in 9Q
and p < 0in D\ ©. This is also valid for more general  (not connected, for instance).
Since for any measurable p, the set @ = {z € D | H(p) > 1} ={z € D | p(z) > 0}
1s measurable, we rennounce the regularity conditions on p, equivalently on the variable
domain §2.

These considerations show that we allow 2 to belong to a class including the images of
the unit sphere in R™ under regular bijections, which is specific to the mapping method.

In this general setting, the interpretation of (9) as a transmission problem (4)—(7) is not
always possible and we work directly with the variational formulation (11). The existence
of a unique solution yo € H'(D) is obvious, Lions and Magenes [6, Ch. IIJ.

We approximate (11) by
(12) / ([a1 He(p) + a2(1 = Ho(p))|VyVw + agyw — fw) dz =0, Ywe H(D),
D
where H. is defined by (2).
THEOREM 2.2. Let y. € H'(D) be the unique solution of (12). Then
(13) | Ye — yq strongly in H'(D),
when € — 0,
Proor: We take w =y, in (12). By the inequality
(14) a1 He(p) 4+ az(1 — He(p)) 2 @ = min(ag, a1, az) > 0,

it yields that {y.} is bounded in H!(D). We denote y. — § weakly in H'(D) and strongly
in L*(D).

We notice that ay He(p) + a2(1 — He(p)) — a1 H(p) + a2(1 — H(p)) a.e. D and, since it
is obviously bounded in L*°(Q2), the Lebesgue theorem gives a; He(p) + az(1 — H:(p)) —
ay H(p) + ax(1 — H(p)) strongly in L?(D), for instance. Then, clearly

(15) [a1 He(p) + az(1 = He(p))|Vye — [a1H(p) + a2(1 — H(p))V,
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weakly in L%(D). Passing to the limit in (12), we get § = yqo.
To establish (13), we start with the following inequality

0<a [ [Vl =90 de < [ [@Hp) + arlt — B0~ v do =
(16) [ (@) + aall — H(o)IV90V(0n — ue) da+ |
fD[aIHE(p) + az(1 = He(p))|Vye V(e — ya) do = I + It .
By (15), we see that I§ — 0, while for I§ we use (12) with w = y. — yq:
(17) 15 = [ laovelum =) + f(ve = )] dx = 0.

Combining (16), (17), we get (13) and finish the proof.

We approximate the problem (3), (9) by the following one:
(F%) minimize/ ly — ya|* dz,
E

subject to any measurable p and y € H!(D) given by (12).

REMARK 2.3. Generally, in the absence of some compactness assumption on the class of
subdomains  (for instance e-cone property, Pironneau [8, Ch.3|, one may not obtain the
existence of a solution for the problem (3)-(7). The same is valid for the problem (P)
since there are no coercivity conditions on the control parameter p. Obviously, one may
ask a boundedness condition on p, [p(z)| < 1, due to the relationship between p and Q. But
this does not imply existence since the weak limit in L*°(D) of a sequence of characteristic

functions is not necessarily a characteristic function.
We denote [y, pe] an é-optimal pair of the problem (P.), § > 0, that is:

(18) Je(y®, pe) < inf(P:) + 6,

where
Je(y*, pe) =/ ly® — yal® dz
E

and

(19) [{)([alHa(pg) + a2(1 — He(pe))|VY*Vw + apy*w — fw) de =0, VwéeE HI(D) .

ProrosITION 2.4. For e — 0, we have y* — § strongly in L?(D) and weakly in IHI(D)

on a subsequence, such that
(20) /(ﬂ—yd)z dz < inf(P)+6
E
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PROOF: By definition, we get
(21) Je(y®,pe) S inf(Pe) + 6 < Je(ye,p) + 6,

for any admissible p and for y. given by (12). The same estimates as in the proof of
Theorem 2.2, applied to (19), yield that {y°} is bounded in H!(D). On a subsequence,
we may assume that y* — ¢ strongly in L?(D) and weakly in H'(D). Therefore, the
left hand-side in (21) converges to the left hand-side from (20). As concerns the right
hand-side in (21), we use Theorem 2.2 again and next we take the infimum on p, which
ends the proof.

REMARK 2.5. By the properties of y*, we also obtain that
Je(y®,pe) < inf(P) + 26

for ¢ sufficiently small. In order to strengthen the above proposition, some relationship
between y* and the solution of (11) associated to pe, stronger than Theorem 2.2, would be
useful.

Let us assume now that H, is a C! approximation of H. Generally, this may be obtained
by applying a Friedrichs mollifier in formula (2). A specific construction will be indicated
in the next section.

In order to solve the problem (P.) by a gradient-type method, we discuss the adjoint

system. Let 6. : L°°(D) — L?*(D) be the approximate state mapping p — y defined by
(12) (we restrict p to be in L°°(D) here).

PROPOSITION 2.6. 6. is a Gateaux differentiable mapping and V0.(p)v = r satisfies

(22) /D[(al —a2)H,(p)vVy - Vw + (a1 He(p) + a2(1 — He(p)))Vr - Vw + agrw] dz =0,
Yw e HY(D),

where y = 0,(p) € H'(D) and v is arbitrary fixed in L°°(D). Moreover r € H'(D).

PROOF: Denote yy = 0:(p + Av), A > 0 and subtract the two equations corresponding to
Yy YN

[D([alHe(p + M) — a1 He(p) + aaHe(p) — a2 He(p + Av)|VyVuw+

B aHe(p+ M) + as(1 — Hu(p + 20))|V(ya — )V + ao(ya - y)w) dz =0,

for any w € H'(D) .
We divide by A > 0 in (23) and give to w the value 2%, We obtain the following
inequality:
2

Ya -y
A

—Y

(24) a 3

1 Ya
<lay - az|E|U|L,°°{D)|Vy|L’(Dl ' ’V

H'(D) L*(D)

5



where we also use the property that H, is Lipschitzian of constant % then (24) yields that

{yA; y} is bounded in H'(D) with respect to A > 0.

Let r be the limit in L?(D) strong or H!(D) weak of y—'\/\;y- Passing to the limit in
(23) (divided by A), we obtain (22) and finish the proof.
We define the operator T': L?(D) — L'(D) linear, bounded, by Tq = ¢, where

(25) ¢ =(a; —a)H.(p)Vz-Vy

and z € H'(D) is the solution of the adjoint equation
(206) / ([ar He(p) + a2(1 = H(p))][Vz - Vw + agzw + quw) dz =0, Ywe H'(D).
D

It turns out that the linear, continuous operator S : L°°(D) — L*(D), by Sv = Vl.(p)v =
r, 1s just the adjoint of the operator T'. This may be inferred by the definition, by choosing
w =1 in (26) and w = z in (22).

This enables us to compute the gradient of the cost functional of (P ), which will be
useful in the next section (we denote shortly J.(p) instead of J.(y,p), y = 0:(p)):

lim Je(p+ Av) = Je(p) = 2] r(y —ya) do =
A—0 A E

2/0 rxe(y — ya) dz = 2(Sv, xE(y —ya))12(D) =

2(u,TxE(y = yd))Lw(D)xL(D) , YveL®(D).

—
(S}
=1

—

Here x g is the characteristic function of E in D and to finish the calculation one has to
put ¢ = xe(y — ya) in (25), (26).
3. NUMERICAL EXAMPLES
In this section we choose D = E = (0,1) x (0,1), a; =10, a; = ag = 1 and f = a? +23.

The Heaviside mapping is approximated by

1—%6_51 PZO,

(28) H.(p) = { P

%ec, p<0.

The regularized state problem (12) is discretized by finite element method. In discretization
four node quadrilateral elements are used. The control parameter p in (P,) is taken to be
piecewise constant. The discrete analogue of (12) is then the linear system of equations

(29) | K(p)g = f,

where ¢ is the vector of nodal values of the state solution, I'(p) is the "stiffness” matrix
(clepending on the control variable p) and f is the "force” vector.
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The discrete analogue of (P.) then reads

(P4) minimize (¢ — qa)T M(q — qa)
subject to (29). Here g4 is the vector containing the nodal values of yq and M is the
"mass” matrix. In the numerical solution of (P!) we have used the pre-conditioned,
limited memory quasi-Newton conjugate gradient algorithm from the NAG-subroutine
Library. The gradient of the cost is obtained using the discrete analogues of (26) and (27).

Problem (P!) is highly nonlinear and nonconvex. Therefore a good initial guess is
needed to be able to find the global minimum. If one do not know the topology of the
optimal domain the choice for initial guess may be difficult. However, the choice p = 0 has
proved to be extremely efficient. From (28) it follows that H.(0) = } so the state problem
reduces to

—alAy +apy = f in D
(30) . Oy

aa—n=00n0D,

where @ = (a; + a2)/2. This corresponds to a "homogenized” design.

REMARK 3.1. Choosing 0 < a; << a; corresponds to the material distribution problem
in structural optimization. Namely those regions Q\D with very low thickness a; may be
removed from the structure without weakening it.

REMARK 3.2 Another approach to get rid of the constraint (10) is to introduce a control
problem of the form

(P minimizef ly —ya|* dz
E
subject to ay < p < ay, p € L*®(D) and
-V (pVy) +ay=fin D

p22 =0 on dD.
on

(31)

This approach is very similar to that presented in [2]. One may then set Q = {z € D |
p(z) = a1}. However, the set {z € D | a3 < p < a1} is generally non-empty, which
may make it difficult to interpret the results. The discrete analogue (P} ) of (P') can be
formulated in the similar way as of (P.). However, (P;) is a constrained optimization
problem.

Finally, we present some numerical results that were computed on HP9000/345-computer
with double precision arithmetic. In computations the cost function was scaled with a fac-
tor 0.5 x 10° and the regularization parameter ¢ = 1/10 was used. As the discrete control
parameter p is piecewise constant, nodal averaging of it was done for plotting purposes.
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D\ Q

Q2

Figure 3.1

Example 3.1. Let y4 be the solution of the transmission problem in the geometry shown
in Figure 3.1. Two runs with 100 and 900 finite elements were done. In both cases initial
guess p = 0 was used. The results are shown in Table 3.1 and Figures 3.2-3.3 (meshes and
contour p = 0). In both cases the global optimums were clearly found.

Number of
elements | Initial cost Final cost |Iterations | CPU-seconds
100 23.1 [1.41 x10™° 15 29
900 249 |[1.11 x10~° 23 395
Table 3.1
Figure 3.2



Figure 3.3

Example 3.2. Let y4 be the solution of the transmission problem in the geometry shown
in Figure 3.4. Again two runs with the same meshes as in the previous example were
done. The results are shown in Table 3.2 and Figures 3.5-3.6. The situation here is more
complicated than in the previous example. However, the results are acceptable.

Q

‘\ Q

Y

Figure 3.4

Number of '
elements | Initial cost Final cost |Iterations | CPU-seconds
100 2.84 [7.69 x 10~* 20 34
900 3.07 |8.07 x10~° 41 680

Table 3.2
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Figure 3.5.

N

Figure 3.6.

Example 3.3. Let y,; be as in Example 3.1. Let Q, =]0,1[x]0, 1(U]0,1[x]3,1[ and Q5 =
B(wo, 1), zo = (3,3). Two runs with 400 finite elements were done with different initial

guesses
0.2in Q°
_ Q° = Q,, 5.
. {—0.2inD\Q“’ By

The results are shown in Table 3.3 and Figures 3.7-3.8. In both cases only a local minimum
was achieved. However, the topology was changed. The choice of |p| = 0.2 does not imply
that H.(p) is a very good approximation of the Heaviside function. However, choosing [p|
“too large” does not yield convergence to any sensible solution.
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Figure 3.7

N

Figure 3.8
Q" | Initial cost Final cost |Iterations | CPU-seconds
1978 11.2 |1.94 x 10~2 43 : 311
Op 13.3 [2.12 x 10~1 50 410
Table 3.3

Example 3.4. In order to make some comparisons, two test runs with problem (P} ) were
performed. In both runs a finite element mesh with 100 elements was used. As (P}) is
a constrained optimization problem we used a SQP-algorithm from the NAG-library in
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solving it. The results are shown in Table 3.4 and Figures 3.9-3.10. In both cases the
topology of the optlmal domain can be inferred from the results. However, one could
expect more “sharpness” from the control parameter p. The convergence of the iteration
was also slower than in the case of (P!).

[nitial guess | Initial cost Final cost |Iterations |CPU-seconds
p=>5.5 23.1 [9.07x107° 110 420
p=a; in Qp
p=uay;in D\ Qp 5.94 |[3.44 x 1073 123 468
Table 3.4

Figure 3.9

4., CONCLUSIONS -

A fixed domain approach for solving a shape optimization problem was introduced and
analyzed. The proposed method is very simple to implement on computer compared
with the conventional boundary variation method. No complicated moving finite element
meshes and a priori knowledge of the topology of the optimal domain are needed. Although
gradient based method was used in optimization, the gradient computations are very easy
compared with those of boundary variation methods. This makes the method very cost-
clfective in terms of man-hours and computing time.
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Figure 3.10
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