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Abstract. A fixed domain approach is presented for solving optimal shape design problems.
In the proposed method the original optimal shape design problem is converted to a control
problem settleä in a fixed domain. The method is demonstrated in solving an optimal shape
design problem arising from transmission problems. Results of numerical tests are presented.
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1. INtnooUCTIoN

The standard way to solve optimal shape design problems numerically is the boundary
variation method. In that meihod the unknown boundary is parametrized using a set of
design parameters. The choice of this parametrization at the beginning of the optimization
determines a restricted class of the domains that can be achieved. For example, if a single
connected domain is assumed at the beginning, the optimal shape that is obtained, if it
exisis,, is rvithin this class of domains, although the true optimal domain may be doubly
connectecl.

The implemeniation of the boundary variation method on computer is usually not a
trivial tasli.. Namely, at each step of the iterative optimization process, a new finite eiement
mesh must be generated, Haslinger and Neittaanmäki [4].

From these points of view, fixed domain approach in optimal design problems are very
useful and we quote the mapping method, Murat and Simon [7], the penalization method,
Karvarada [5], the controllability approach, Tiba [9].

Here, we discuss another approach suggested by recent controllability-type results for
eiliptic systems [9], [1], [11]. It may be mainly compared with the mapping meihod
since it reduces the opiimal sirape design problem to a control in the coefficients þroblem.
Horvever, no global description of the boundary of the variable domains is needed and no
scaiing has to be performed.
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Our basic idea is a simple one: if Q is a subset of a fixed domain D, then it is possible to
find some mapping p: D -' R (by an exact controllability-type argument [10]) such that
p > 0 in O, p:0 on ôO and p < 0 in D \CI'. Then the Heaviside mapping ¡l: R + R

(1) H(p) -
1

0

p>0,
P 10,

is the characteristic function of Q in D. We obtain a good approximation of ii by the use
of the Yosida approximation -Il. of the maximal'monotone extension of fl in tl x R:

1, P)€,
p € [0,e],
p<0.

(2) H,(p): !!

0,

In the sequel, s'e sha.ll ap1:ly bhis approach to a rnoclel problem discussed by Céa [S] and
Pironne¿ru [8, Ch. 8]. In section 2, rve perform a brief theoretical analysis of the proposed
mebhod and some numelica,l resuibs are given in section 3.

Finally, rve mention that our investigation may be also compared with the topology
optimization mebhocl as clescril¡ecl in the recenl rvork of BendsØe and Rodrigues [2].

(["tX + a2(1 - x)]VyoVto * aosew - fu:) dx V t¿ € Ht(D)

2. Tsn NrAIN RESULTS

We siudy the follorving opbimization problem, denoted (P):

(3) minimize lrr" - yal2 d* (p)

subject to the transmission problem

(4) -atLW * aoat - / in f),
(5) -az\vz*aoaz-linD\R
(6) ar* : nr*, ut = uz in ôa\(ôc) n aD),ctn o?7

(7) o,* : o in ôD, i :1,2 '

Above ae,, ã1, o,2 ãrepositive constants, $ a"rrot"s the exterior normal derivative to O
or D, yd € Lz(E), f e Lt(Q), E c D is a fixed measurable subset and ye e Ht(O) is
given by

( u,(æ\ in 0.(8) yo(ø) : t ;;i;i i" p'r c¿ .

If ¡ is the characleristic function of 0 in D, then the variational formulation of the problem
(4)-(7) is given by

,

(e) t.



ancl, in [8], it is analysed the case when

(i0) xe{g:D-,R; g(t):0ors(x):1 VceD}

is lhe control parameter. But the form of the constraint (10) makes the problem difficult
to handle. Instead, we replace (9) bV

rt(11) I futï(p)+or(7-¡fþ))lvyoVto* aoaç¿w-fù dn:A, Ywe Ht(D)
Jn

and we obbain an unconstrained control problem (3), (11).

Rnu¡,nx 2.1. Obviously, ff (p) is measurable for any measurable p, so H(p) e I-(D). In
[10], it is assumed ihat 0 is the image under a regular bijection B : R' --r R' of ihe unit
sphere and it is shown lhat one can find p e C2(D) such that p ) 0 in O, p : 0 in ôO
and p < 0 in .D \ O. This is also valid for more general O (not connected, for instance).
Sinceforanymeasurablep, thesetC):{reDl H(p) > 1} - {x eD I p(ø) l0}
is measurable, we rennounce the regularity conditions on p, equivalently on the variable
domain Q.

These considerations show that we allow CI to belong to a class including the images of
the unit sphere in R' under regular bijections, which is specific to the mapping method.

In this general setting, the interpretation of (9) as a transmission problem (4)-(7) is not
ah,vays possible and we work directly with the variational formulation (11). The existence
of a uniclue solution lJa e. Ht (D) is obvious, Lions and Magenes [6, Ch. II].

We approximate (11) by

t,(12) ("tU"(p) * a2(I - A"(p))lVyYw * aoUw - f .) dr :0, Vut Ç Ht(D) ,,

where f/" is defined bV (Z).

Tltnoneu 2.2. Let U" e Hl(D) be the unique solution of (12). Then

(13) Ue --+ ye strongly in HL(D),

when e --+ 0.

Pnoor': We take u¡ : Ae in (12). By the inequality

(14) o,tU,(p) + az(l - H,(p)) ) a: min(ø6 ,a1,,a2) ) 0,

it yields that {y"} is bounded in f/l(D). W" denote Ue + ! weakly in I/1(D) and strongly
in L2(D),

We notice that a1 H"(p) * a2(7 - ¡1.(p)) -. a1U(p) * a2(I - n@Ð a.e. D and, since it
is obviously bouncled ir:.0-(f)), the Lebesgue theorem gives atU"(p) * a2(7 - ¡/"(p)) *
atí(p) * a2(7 - n@Ð strongly in L2(D), for instance. Then, clearly

[o'H"(p) !."t(t - ä"(p))]Vae -+ l"'H(p) + a2(1 - H(p))lvú,

3
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weakly in L2(D). Passing to the limit in (12), we get ú : Ae.
To establish (13), we start with the following inequality

t.
t,

0 a

lotí,(p) + ø2(1 - }l,þ))lVyoV(yn - y") dx*

lolo{u, - an)l' a* < fobr}r"þ) 
* o2(1 - a,þ))llv(y. - yrl)l' dæ :

lot]/"(p) + a2(1 - ¡¡,(p))lVy"Y(y" - ya) dr: IT * Ií

By (15), rve see thab .Ir' * 0, while for .If we use (12) with w : Ae -'!Je

(16)

( 17)
I

I3 : I looa"@n - u,) + f (y, - yn)l dr -r 0
Ja

Combining (16), (17), rve get (13) and finish lhe proof.

We approximate the problem (3), (9) bV the follorving one

(P,) l" lv - vol' d*,mrnlmlze

subject to any measurable p and y e HL(D) given by (i2).
ReueRx 2.3. Generally, in the absence of some compactness assumption on the class of
subdomains O (for instance e-cone property, Pironneau [8, Ch.3], one may not obtain the
existence of a solution for the problem (S)-(Z). The same is valid for the problem (P,)
since ihere are no coercivity conditions on the control parameter p. Obviously, one may
ask a boundedness condition on p, lp(r)l ( 1, due to the relationship between p and f). But
this does not imply existence since the weak limit in L*(D) of a sequence of characteristic
functions is not necessariiy a characteristic function.

We denote [U",p"] a^n ó-optimal pair of the problem (P"), ó ) 0, thab is:

(18) J"(a',p) <inf(P")+ ó,

rvhere

Jr(Y',P') = l" lv' - v¿12 dx

and

f(19) I (þrï,(p,) + a,2(1 - H,(p"))lVy"Vu + aoy",ts - Í*) dx :0, Yw €. Ht(D) .
JD

PnopostuoN 2.4. Fore -r 0, we havey" + fr strongly in L'(D) and,weakly in H\(D)
on a subsequence, sucå úJ:aú

l" (a - ya)t dø < inf(p) + ó

4
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PRoor': By definition, we get

(21) J,(A",p.)<inf(P")+ó< J,(a",p)+6,

for any admissible p and for y" given by (12). The same estimates as in the proof of
Theorem 2.2, applied to (19), yield that {y"} ir bounded in .Fll(D). On a subsequence,
we may assume that y' -r ! strongly in L'(D) and weakly in f/1(D). Therefore, the
left hand-side in (21) converges to the left hand-side from (20). As concerns the righi
hancl-side in (21), we use Theorem 2.2 again and next we take the infimum on p, which
ends the proof.

ReunRr 2.5. By the properties of V', w€ also obtain that

J,(v',p")(inf(P)+2ó

for e sufficiently srnall. In order to strengthen the above proposition, some relationship
betrveen y' ancl the solution of (11) associated to p", stronger bhan Theolem 2.2, would be
useful.

Let us assurrre norv that .ll, is a Cl approximation of I/. Generally, tiris may be obtained
by applying a Frieclrichs mollifier in formula (2). A specific construction rvill be indicaled
in the next section.

In order to solve the problem (Pr) by a gradient-type method, we discuss the adjoint
system. Let 0" : L*(D) -- Lz(D) be tire approximate state mapping p + y defined by
(12) (we restrict p to be in .D-(D) here).

PnoPosIrIoN 2.6. 0, is a Gateaux differentiable mapping andV0"(p)u: r satis¡îes

f
(22) J ol@t - "r)H',(p)uVv' 

Vur * (orH"(p) + o,2(L - ¡f"þ)))Vr 'Vu I asrwl dx :0,

Vu; € Ht(D),

rvjrere y :0,(p) € ¡Jr(D) ancl u is arbitrary fr,xed in L*(D). Moreover r €. Ht(D).

PnOOr: Denote yx:0"(p f )u), À > 0 and subtract the two equations corresponding to

A, Ux:

Ir(rrr"(r + ,lr¡ - atl."(p) * azL,(p) - azl"(p1 Àu)lvyVur

(23) 
þrH,(p* Àu) + ø2(1 - H"(p+ Àu))lv( a^ - y)vw* ao(yr - y).) d,æ :0,

for any u e Ht (D) .

We divide by À > 0 in (23) and give to r¿ the value ry. \Me obtain the foilowing
inequality:

t

(24) u^-v 1

lul¿.-1o¡lYyl¡,1n¡ .a,
À H'(D)

1la¡ - a2l
€,
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where we also use the property that Íf. is Lipschitzia¡r of constant !. then (24) yields that

iry] is bounded in /11(D) with respect to À > 0.

Let r be the limit in L"(D) strong or Ilr(D) weak ot'^^ '. Passing to the limit in
(23) (divided by À), we obtain (22) and finish the proof.

We define bhe operator ? : L'(D) - LL(D) linear, bounded,,by Tq: /, where

(25) t:(q-"2)HLþ)Yz.Vy

a,ncl s e H|(D) is the solubion of bhe adjoint equation

(26 ) t. ([ntI¡.(p) + r¿2.(1 - ¡f"þ))]Vz.Vu I aszw + qtl) dx =0, V¿u € H'(D)

It burrrsotrt bhat bhelinear, continuousoperator S: L*(D) -- L2(D), b¡'$¿r: V9"(p)u:
r', is just the acijoinl of the operator ?. This may be infemed by llle clcfiniiion, lry ç1loo"tt *
Ln : r in (26) and r.¿.' - z in (22).

This enables us to compute the gradient of the cost funcbional of (P.), o'hi.h will l¡e
useful in the next section (rve denote shortly Jr(p) instead of. J"(A,p),, U :0"(p)),

,._- J,(p * Àu) - J,(p) . 'Irm '-'-_z I rl |t-1r)ld.ati-Ã:õ t'=rJu,@-y¿)d,x-
(27) 2 [ ,x"@-yd)d,x=2(Su,xø(y-u¿))r,e):

Jo
2(u,TyB(y - A¿))æfD)xL(D) t Vu e ^L-(D) .

Here ¡s is the characteristic function of E in D and to finish the calcuiation one has to
put q : Xø(y - vd) in (25), (26).

3. NurrlnnrcAl EXAMpLES

In th.is section u'e clr.oose D = E : (0,1) x (0, I), h- 10, cL2 : ao: 1 and f - *? + *2.
The Heaviside mapping is approximated by

1 - |e-å p¿0,
p<0.

(28) H"(p):

The regularized state problern (12) is discretized by finite element meihod. In discretizatiou
four node quadrilateral elements are used.. The controi parameter p in (Pr) ir taken to be
piecewise constant. The discrete analogue of (12) is then the linear system of equations

(2e) K(p)q-f,

s'ltere g is the vector of nodal values of the state solution, /í(p) is the "stiffness" matrix
(cìepending on the control variable p) and / is the "force" vector.

Ie
z
a
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The cliscrebe analogue of (P") then reads

(P:) minimize (q - qo)'ut(q - q¿)

subject to (29). Here q¿ is the vector containing the nodal values of y¿ and M is the
"mass" matrix. In the numerical solution of (Pj) we have usèd the pre-conditioned,
limited memory quasi-Newton conjugate gradient algorithm from the NAG-subroutine
Library. The gradient of the cost is obtained using the discrete analogues of (26) and (27).

Problem (Pj) is highty nonlinear and nonconvex. Therefore a good initial guess is

needed to be able to find the global minimum. If one do not know the topology of the
oplimal domain ihe choice for initial guess may be difficult. However, the choice p = 0 has
proved to be extremely efficient. From (28) it follows thai,f/"(0) : å so the state problem
reduces to

(30)

rvhere ã,: (q + a2)12. This corresponds to a "homogenized" design.

RnueRx 3.1. Choosing 0 1 a2 1( a1 corresponds to ihe material distribútion problem
in slructural optimization. Namely those regions O\D with very low thickness ø2 maf be
removed from the structure without weakening it.
Re ¡øanr 3.2 Anobher approach to gei rid of the constraint (10) is to introduce a control
problem of the form

-ãLAiaoy:finD
-0aã--0onôD,

on

IW-vdlzdt
Jø

(P',) mlnlmtze

subject l,o a2 1p 1 at, p < L*(D) and

(31)
-V.(pvy)+ooy:finD

ôyoñ: o on ôD'

This approach is very similar to that presented in [2]. One may then set ç¿ -- {ø € D 
I

p(*) : atj. Horvever, the set {x e D I ot < p 1 at} is generally non-empt$ which
may make it difficult to interpret the resuits. The discrete analogu" (4) of (P') can be
formulated in the similar ,n/ay as of (P"). However, (Pi) is a constrained optimization
problem.

Finally, rve present some numeiical results that were computed on HPg000/345-computer
rvith double precision arithmetic. In computations the cost function 'ü/as scaled with a fac-
tor0.Sxl0sandtheregularizationparametere -Ill0wasused. Asthediscreiecontrol
parameter p is piecervise constant, nodai averaging of it was done for plotting purposes.

t
I
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CI

f¿

D\o

Figure 3.1

Example 3.1. Let lJ¿ be the solution of the tranSmission problem in the geometry shown
in Figure 3.1. Tr,vo runs with 100 and 900 finite elements were done. In both cases iniiial
guess p :0 was used. The results are shown in Table 3.L and Figures 3.2-3.3 (meshes and
contour p : 0). In both cases the global optimums were clearly found.

Number of
elements Initial cost Final cost Iterations CPU-seconds

100 23.1 1.41 x 10-r 15 29

900 24.9 1.11 x 10-r 23 395

Table 3.1

Figure 3.2
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Figure 3.3

Example 3.2. tei ll¿ be the solution of the transmission problem in the geometry shown
in Figure 3.4. Again two runs with the same meshes as in the previous example were

clone. The results are shown in Table 3.2 and Figures 3.5-3.6. The situation here is more
complicated than in the previous example. However, the results are acceptable.

Figure 3.4

Table 3.2

I

f¿

f)

D\f-¿

o

Number of
elements Initial cost Final cost Iterations CPU-seconds

100 2.84 7"69 x 10-a 20 34

900 3.07 8.07 x 10-i 4I 680



Figure 3.5.

Figure 3.6.

Exarnple 3.3. Let y¿ be as in Example 3.1. Lei Qz -]0,1[x]0, å[U]0, 1l*]*, 1[ and f)a :
B(*0, i), ro : (å,å). touo runs rvith 400 finite elements were done with different initial
guesses

0.2 in Oo

*0.2inD\Oo' f)o :02, f,)a.

The results are shown in Table 3.3 and Figures 3.7-3.8. In both cases only a local minimum
was achieved. However, the topology was changed. The choice of lpl - 0.2 does not imply
lhal lY"(p) is a very good approximation of the Heaviside function. However, choosing lpl
"too large" d.oes nob yield convergence to any sensible solution.

,: 
{
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Figure 3.7

Figure 3.8

O0 Initial cost Final cost Iterations CPU-seconds

Qz TT.2 1.94 x 10-' 43 311

s¿ ts 13.3 2.12 x 10-' 50 410

Table 3.3

Example 3.4. In order to make some comparisons, two test runs with problem (P[) rvere

1>erfonned. In both runs a finite element mesh with 100 elements was used. As (Pi) is
a constrainecl optimization problem we used a SQP-algorithm from the NAG-librtrry in

11



solving il. The results are shown in Table 3.4 and Figures 3.9-3.i0. In both cases the

lopology of blìe oplimal domain can be inferred from the results. However, one could

expecl ülore "sharpness" from the control parameter p. The convergence of the iteration
rvas also slower bhan in the case of (fj).

Initial guess Initiai cost Final cost Iterations CPU-seconds

1i: 5.5 23.r 9.07 x 10-r 110 420

'P:= (Lt in O¡
p=(L2inD\Qg 5.94 3.44 x 10-3 123 468

Table 3.4

Figure 3.9

4. Cor{cLUsIoNS

A fixccl rlom¿rin apploach for solving a shape optimizabion problem was introduced and
a.uah'zccl. The irloposecl rnethod is very simple to implement on coltlputer cornparecl

n'if h thc convenlional bounda,ry variation method. No complicated moving finibe element

rrrt:shcs arrcl ¿r pli<.u'i ltrrorvledge of the topology of the optimal domain are needed. Although
graclienl ba.sccl methocl u,as used in optimization, the gradient computations are very easy

comparccl s'ith lhose of ìroundary variation methods. This makes the method very cost-

cif'cctive in tenns of man-hours and computing time.

12



Figure 3.10
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