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Abstract

Fibre orientation distribution of a turbulent fibre suspension flowing in a planar contraction
is considered. The fibre orientation is modeled using a diffusion–convection type equation
while the average flow velocity of the suspension is modeled using a simple one-dimensional
model. Our aim is to control the fibre orientation distribution at the end of the contraction by
changing its shape. The shape is discretized with Bezier function and the diffusion–convection
equation with SUPG finite element method. Algebraic sensitivity analysis for the discretized
optimization problem is done with the aid of automatic differentiation techniques. Numerical
examples are given.
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1 Introduction
Paper is an anisotrophy material produced from a fiber suspension by a papermaking machine.
The basic structure of a paper is formed at the wet-end of the paper machine. A mixture of water,
wood fibers and some other papermaking substances flows through a headbox slice channel and
continues to a forming section. The headbox slice channel is a contracting nozzle and thus, it
accelerates the fluid velocity to a machine speed. After a free jet from the headbox to the forming
section, most of the water is removed and basic solid structure of the paper is formed.

A fiber orientation distribution determines strength properties of the paper. A random fiber
orientation distribution would result in an equal tensile strength both in a machine direction (MD)
and in a cross-machine direction (CD). The equal tensile strengths are important for some paper
grades, but in practice, the paper is allowed to be stronger in MD than in CD in order to have
good runnability of a paper machine (a strong paper in MD helps in running the machine faster
resulting in more production). But, the tensile strength ratio cannot be too high. Otherwise end-
use properties of the paper during printing processes or in copying machines would be too much
deteriorated.

A speed difference between the headbox jet and moving wires of the forming section affect on
the fiber orientation of the produced paper, but the initial fiber orientation distribution is essential
for practical papermaking. In fact, the jet-to-wire ratio can easily be controlled in a paper machine,
but the initial fiber orientation distribution is determined by the design of the headbox slice channel
fluid dynamics in the nozzle.

A mathematical model for the fibre orientation distribution is based on a work done by Jeffery in
early 1920’s [8]. He studied an ellipsoidal particle moving in a Stokes flow, assuming an inertialess
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particle and constant fluid velocity gradient. The theory is later extended to more complex shear
flows, see for example [15] and [9]. An extended review on the fibre orientation modeling can be
found in [14].

The fibre orientation distribution model has been numerically solved and experimentally val-
idated in [7] and [13]. It was shown that the contracting nozzle and accelerated flow directs the
fibers into the main flow direction resulting in non-uniformly distributed fibers. An effect of so-
called turbulence vanes (located inside the nozzle) on fiber orientation distribution was also shown
in [7]. Thus, it is obvious that the design and resulting fluid dynamics controls the fiber orientation
distribution.

In this paper our goal is to formulate and solve an optimal control problem such that the fiber
orientation distribution will be as random as possible at the end of the nozzle. The distribution
is controlled by an optimal shape design of the contraction. In this paper we do not consider
practical machine construction problems, but we show that the fiber orientation distribution can
be controlled optimally by the design. The optimized design is not necessarily directly applicable
in practice, but it gives fresh ideas to engineers how to develop the design.

2 Fibre orientation model for a one-dimensional headbox
A simplified model of the orientation distribution of fibres moving through the headbox was derived
in [13]. The geometry of the planar contraction (one-dimensional headbox) of varying height 2α is
shown in Figure 1. The one-dimensional headbox problem considers only the mean translation of
the fibres along the central streamline. The model only considers the distribution of the projected
angle ϕ of the fibre. The problem is further simplified by assuming one-dimensional steady flow
u⃗ = (u1(x1), 0). The problem is made dimensionless by scaling variables by the headbox length L
and inlet velocity u1(0).
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Figure 1: Geometry of the one-dimensional headbox

The probability distribution of projected angle ϕ at point x1 is denoted by Ψ(x1, ϕ) and is given
as the solution of the linear diffusion–convection type problem in domain Ω =]0, 1[×]− π

2 ,
π
2 [:

−∇ · A∇Ψ+ b · ∇Ψ+ cΨ = 0 in Ω. (1)

The coefficients of the problem are given by

A =

[
DT 0
0 DR

]
, b =

(
u1, − sin(2ϕ)

∂u1

∂x1

)T

, c = −2 cos(2ϕ)
∂u1

∂x1
,

where DT , DR are given positive constants: the translational dispersion coefficient and rotational
dispersion coefficient, respectively.
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At the headbox inlet to the contraction, we assume that fibres are randomly oriented, i.e. we
have the Dirichlet boundary condition

Ψ = π−1 on Γ1 := {0}×]− π

2
,
π

2
[. (2)

At the outlet and for the angles ϕ = ±π
2 we impose homogeneous Neumann boundary condition

∂Ψ

∂n
= 0 on Γ2 ∪ Γ3, (3)

where Γ2 = {1}×]− π
2 ,

π
2 [, Γ3 = ∂Ω \ (Γ1 ∪ Γ2).

For more fluid dynamical aspects of the fibre orientation distribution model and numerical
simulation results we refer to [7] and [13]. Especially, the model is solved together with a realistic
fluid dynamical model, that is, the full two-dimensional Navier-Stokes equations and a turbulence
model, in [7] for different headbox constructions by varying turbulence vanes inside the nozzle.

3 The shape optimization problem
Our aim is to find a shape of the contraction such that the orientations of fibres at the outlet
would be evenly distributed. Therefore the variable height of the contraction becomes the control
variable. We define the following set of admissible controls:

Uad =

{
α ∈ C1,1([0, 1]) | α̂ ≤ α ≤ ˆ̂α in [0, 1],

∣∣∣∣ dαdx1

∣∣∣∣ ≤ c in ]0, 1[

}
,

where α̂, ˆ̂α are positive C1-functions and c is a given positive constant.
To calculate the mean translational and rotational velocity of the fibre, the mean flow field in the

planar contraction along the central streamline x2 = 0 needs to be defined. For an incompressible,
one-dimensional flow u⃗ = (u1(x1), 0) continuity implies

u1(x1)2α(x1) = constant.

Thus the velocity in x1 direction is given by

u1(x1) =
u1(0)α(0)

α(x1)
=: β

1

α(x1)
,

implying that the flow field is eliminated from the fibre orientation model.
To give the weak formulation of (1)–(3) we introduce the following sets of functions

V = {v ∈ H1(Ω) | v = 0 on Γ1},
Vg = {v ∈ H1(Ω) | v = π−1 on Γ1}.

The weak formulation of (1)–(3) then reads as follows
Find Ψ := Ψ(α) ∈ Vg such that∫

Ω

(A∇Ψ · ∇v + (b(α) · ∇Ψ)v + c(α)Ψv) dx = 0 ∀v ∈ V,
(P(α))

where b(α) = (βα−1, β sin(2ϕ)α−2 dα
dx1

) and c(α) = 2β cos(2ϕ)α−2 dα
dx1

.
Our aim is to find a function α such that the fibre orientation distribution at the outlet is close

to a given target distribution Ψ0 ∈ L2(Γ2). Therefore we formulate the following PDE constrained
optimization problem: {

Find α⋆ ∈ Uad such that

J(Ψ(α⋆)) ≤ J(Ψ(α)) ∀α ∈ Uad,
(P)
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where
J(Ψ(α)) =

∫
Γ2

(Ψ(α)−Ψ0)
2 ds

with Ψ(α) being the solution to (P(α)).
We note that problem (P) is an optimal control problem with control in coefficients. No variable

domains are involved in the problem.

4 Numerical realization
Instead of the original infinite dimensional optimal control problem (P) we shall solve numeri-
cally an approximate mathematical programming problem. Therefore we shall discretize both the
admissible set of controls and the state problem.

Let Uad
n be a discretization of Uad by Bezier functions

αn(x1) =

n−1∑
i=0

ai+1

(
n
i

)
(1− x1)

n−ixi
1, (4)

where a = (a1, ..., an)
T ∈ U . Here U ⊂ Rn is chosen in such a way that a ∈ U ⇐⇒ αn ∈ Uad

n .
Thus, the parameter vector to be optimized is a.

Let Ω = ∪eΩe be a partition of the rectangular domain Ω into rectangular elements. We define
the following finite element spaces

Vh = {vh ∈ V | vh|Ωe
∈ Q1 ∀Ωe ∈ Th, vh|Γ1

= 0},
Vgh = {vh ∈ V | vh|Ωe

∈ Q1 ∀Ωe ∈ Th, vh|Γ1
= π−1}.

The state problem (P(α)) is approximated using streamline upwind Petrov–Galerkin (SUPG)
method [1]

Find Ψh := Ψh(a) ∈ Vgh such that∫
Ω

(A∇Ψh · ∇vh + (b ·∇Ψh)vh + cΨhvh) dx+
∑
e

∫
Ωe

τ
(e)
h (b · ∇Ψh + cΨh)b ·∇vh dx = 0 ∀vh ∈ Vh.

(5)
Above τ

(e)
h > 0 is an upwinding parameter depending on the local Peclet number.

Let h be fixed and let {φi} be the set of Lagrangian basis functions of Vh. Then Ψh =
∑N

i=1 qiφi,
where q = (q1, . . . , qN )

T contain the nodal values of Ψh. The matrix formulation of (5) leads to a
system of linear algebraic equations

R(a, q(a)) = 0. (6)

The residual vector R(a, q) is assembled element-by-element in the usual way:

R(a, q) =
∑
ass.

Re(a, q(a))

Re
i (a, q) :=

∫
Ωe

(A∇Ψh · ∇φi + (b(a) · ∇Ψh)φ̃i + c(a)Ψhφ̃i) dx, φ̃i := φi + τ
(e)
h b(a) · ∇φi

(7)

The matrix form of the cost function reads as

J (q(a)) =
∑
e

∫
∂Ωe∩Γ2

(∑
i

qiφi −Ψ0

)2
ds. (8)

Finally, we have the following mathematical programming problem:{
Find a⋆ ∈ U such that
J (q(a⋆)) ≤ J (q(a)) ∀a ∈ U ,

(9)
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where q(a) is the solution of (6).
The set U is compact and the mapping a 7→ J (q(a)) is clearly continuous, therefore there

exist a minimizer a⋆. If the chosen upwing parameter depends smoothly on the coefficients of the
problem, then by the Implicit Function Theorem the mapping a 7→ J (a) is smooth. Therefore
one may utilize standard descent methods to approximate a local minimizer.

To be able to use descent methods requiring exact gradient information for the numerical
solution of (9) we need to perform the algebraic sensitivity analysis on it. The partial derivative
of J at a with respect to ak is given by

∂J (q(a))

∂ak
= −pT

(
∂R(a, q)

∂ak

)
, k = 1, ..., n, (10)

where p := p(a) solves the adjoint equation(
∂R(a, q)

∂q

)T

p = ∇qJ (q) (11)

and ∂R
∂q denotes the partial Jacobian of R(a,y) with respeact to y at (a, q(a)).

5 Numerical examples
Next we present two numerical examples related to two different values of the rotational dispersion
coefficient DR. Due to symmetry, the actual computational domain consist of only half of the
domain Ω corresponding to angles 0 < ϕ < π

2 . The finite element mesh contains 4800 rectangular
bilinear elements. The mesh is refined near ϕ = 0 in order to capture high gradients of fibre
orientation angle. The function characterizing the height of the contraction is discretized by a
Bezier function with 40 control points. The parameters defining the set Uad are

α̂(x1) = 0.1− 0.33x1 + 0.345x2
1 − 0.105x3

1,
ˆ̂α(x1) = 0.1(1− x1) + 0.01x1, c = 10.

The target distribution is Ψ0(ϕ) ≡ π−1. Other geometrical and physical parameters have (dimen-
sionless) values u(x1) = 0.1/α(x1), DT = 0.00001,

The numerical results were computed using a finite element analysis (and optimization) package
“Numerrin 2.0” [5]. In this software package, the partial derivatives in (11) and the right-hand side
of (10) are obtained using automatic differentation technique ([4]) applied on the local (element)
contributions in (7), (8). In this way, the natural sparsity of the problem will be taken into
account and rather simple implementation of the automatic differentiation technique is adequate.
For further details, see [6], [11]. The optimization module of Numerrin 2.0 uses an implementation
of the sequential quadratic programming (SQP) method (see e.g. [2]) to find a local minimum
for problem (9). In the implementation, the QP subproblem is solved using the method due to
Goldfarb and Idnani [3].

We first solved the optimization problem for DR = 5. The initial guess was equal to the
traditional linearly tapered design ˆ̂α. After 25 iterations, the value of the cost function was reduced
from 0.552×100 to 0.827×10−3. The final geometry of the contraction is shown in Figure 2 together
with the initial and final orientation distributions at the outlet. Also, the constraint functions α̂,
ˆ̂α and the target distribution Ψ0 are shown in Figure 2.

Contour plots of the initial and final orientation distributions in the whole computational
domain are shown in Figure 3. The horizontal direction is the machine direction (flow direction),
and the vertical one is the propability axis.

The same problem was then solved for DR = 0.5. The initial guess was again equal to the
linearly tapered design. After 21 iterations, the value of the cost function was reduced from
0.268 × 101 to 0.888 × 10−1. The final geometry of the contraction is shown in Figure 4 together
with the initial and final orientation distributions at the outlet. Contour plots of the initial and
final orientation distributions in the whole computational domain are shown in Figure 5.
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Figure 2: Initial/final heights (left) and propablity distributions (right) at the end of the contraction

Figure 3: Contour plot of Ψh corresponding to the initial and the final contraction shape

There is no guarrantee that the cost function is unimodal, so the computed optimums are
possibly only local ones. However, we took several random initial guesses and ended up to same
results. Thus, there are good chances that the final designs really represent global optima.

One can see that the optimum design is quite far from the traditional linearly tapered design.
Two questions immediately rises: Does the computed optimum design correspond practically re-
alizable design? Can we alternatively interpret the variations of height of the contraction as the
insertion of effectively similar vanes in the traditional design? These questions will be studied in
future research projects.

6 Conclusions
In this study, the orientation distribution of fibres in a turbulent suspension passing through a
planar contraction was optimized by controlling the shape of the contraction. The fibre orientation
distribution was modeled using diffusion–convection type partial differential equation. For fluid
flow a very simple model was used that allowed us to eliminate flow field from the optimization
problem.

The rigorous mathematical analysis of the existence of solution to (P) and the convergence of
approximate solutions will be done in a forthcoming paper. In the near future, our aim is to replace
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Figure 4: Initial/final heights (left) and propablity distributions (right) at the end of the contraction

Figure 5: Contour plot of Ψh corresponding to the initial and the final contraction shape

the simple one-dimensional ideal flow model with more realistic Navier–Stokes model.
Numerical examples given in this paper show that it is possible to control the fibre orientation

distribution by the contraction shape. In fact, almost random distribution was obtained. The
optimized design is not necessary desired in real industrial applications, but surely this paper
shows that it is possible to control the fibre orientation distribution. By developing more realistic
Navier–Stokes model and formulating more practical target functions and constraits, it is possible
to search also industrially relevant new design.
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