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Abstract. The electric field integral equation (EFIE) is an efficient boundary element method
to simulate scattering of time-harmonic EM fields from metallic bodies. However, the pure
EFIE can not be used to simulate electromagnetically large objects. Instead the multilevel fast
multipole algorithm (MLFMA) must be used. In this paper an efficient method for comput-
ing the action of shape-differentiated electric field integral equation system matrix to a vector
is derived exploiting MLFMA. The proposed method is used in conjunction with the adjoint-
variable method to compute the gradient of an arbitrary objective function depending on the
parameterized shape of a metallic scatterer.
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1 INTRODUCTION

Geometric (shape) optimization of high-performance antennas, such as those in hand-held
mobile devices, is an important part of their design process [1]. Such optimization requires
multiple simulations of the device for various geometric configurations, and therefore the joint
effect of efficiencies of the simulation and optimization algorithms is quadratic on the time
spent optimizing the device. Hence it is important that the underlying simulation algorithm is
efficient and that the optimization process converges with as few iterations as possible.

Optimization methods can be generally classified into two categories based on whether they
use gradient information or not. The main advantages of gradient-based optimization meth-
ods over non-gradient ones are that they typically converge with fewer evaluations of the cost
function, and that the obtained design can be guaranteed to be a local optimum.

Applying difference formulas to the objective function is the most generic method to ap-
proximate the gradient. The shortcomings of this approach are that one must compute M+1
full system solutions, where M is the number of design variables, and the accuracy of the finite
difference is sensitive to the step length.

The adjoint variable method (AVM) eases the computational burden of naive appliance of
finite differences to the objective function by, roughly speaking, transferring the differentiation
to the system matrix level. The system matrix can be differentiated using numerous methods
such as the automatic differentiation (AD) [2, 3] or analytically by hand [4]. In the AVM, at most
two large linear systems need to be solved: the state and the adjoint equations. Furthermore,
being a purely algebraic method, the AVM applies to arbitrary objective functions.

The electric field integral equation is a widely used and efficient boundary element method
to simulate scattering of time-harmonic electromagnetic fields from highly conducting metallic
bodies or surfaces. Moreover, it is the de-facto method to compute electric characteristics of
such antennas. However, being a boundary element method, its discretization results in a fully
populated matrix which is a significant drawback if the model to be simulated is large. This
obstacle can be overcome by utilizing the so called fast multipole methods.

In this work we present how the shape derivative of electrically large metallic structures
can be computed efficiently with the multilevel fast multipole algorithm (MLFMA) using the
adjoint variable method. At first sight the differentiation the system matrix seems impossible
as it is not assembled and stored in the traditional way. However, we demonstrate that it is not
a problem and discuss the implementational details on how a regular solver code needs to be
changed to have it compute the shape derivatives.

2 STATE PROBLEM

Let us consider a 3D antenna structure in a free space and let us assume that the antenna
structure can be modelled with open, possibly non-connected, metallic surface. We use the
time-factor e−iωt.

By denoting the surface of the antenna with Γ, and the primary exciting fieldEp, the electric
field integral equation (EFIE) for the problem reads[

− iωµ(SJ)(r) + 1

iωϵ
∇ (S∇Γ · J) (r)

]
tan

=
[
Ep(r)

]
tan
, (1)

where J = n×H is the unknown electric surface current, ∇Γ· is the surface divergence on Γ,
and S is the single layer potential operator

(SJ)(r) =
∫
Γ

G(r − r′)J(r′) dσr′ . (2)
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The Green’s function G(r) = eik|r|/(4π|r|) is the fundamental solution to the Helmholtz equa-
tion with the free space wave number k = ω

√
ϵµ, where ϵ and µ are the permittivity and

permeability of the medium where the antenna is embedded in.
The state problem (1) is discretized using the method of moments (MoM) which is the

Galerkin method applied to (1). Let V (Γ) be a space of vector-valued functions spanned by
basis functions ψn, n = 1, ..., N defined on the triangulated surface Γ.

The approximate state problem then reads as follows:

Find J ∈ V (Γ) : aΓ(u,J) = bΓ(u) ∀u ∈ V (Γ). (3)

Here the bilinear form aΓ(·, ·) and the linear form bΓ(·) are given by

aΓ(u,J) = −iωµ

∫
Γ

u(r) · (SJ)(r) dσ − 1

iωε

∫
Γ

∇Γ · u(r)(S∇Γ · J)(r) dσ

bΓ(u) =

∫
Γ

u ·Ep dσ.

To construct V (Γ) we utilize Rao–Wilton–Glisson (RWG) [5] functions without edge length
scaling. Those functions are surface-divergence conforming and omitting the edge length scal-
ing makes them coincide with the lowest order Raviart–Thomas basis functions. Denoting the
RWG basis functions with ψn, n = 1, . . . , N , the problem (3) has an algebraic representation

Ax = b, (4)

where the entries of the matrix A and the excitation vector b are given by Amn = aΓ(ψ
m,ψn)

and bm = bΓ(ψ
m).

3 ALGEBRAIC SHAPE SENSITIVITY ANALYSIS

In this section we describe a generic framework for shape derivatives of objective functions
that depend on the shape and the surface current solution of the scatterer. See [6, 7, 3] for further
details.

Let us suppose that Γ is a surface tessellated with planar triangles whose vertices are denoted
by (pl)

L
l=1. Letα ∈ RM be a vector of parameters and (ϕm)

M
m=1 be a family of functions so that

Fα : R3 → R3, Fα(r) = r+
∑

m αmϕm(r) is a sufficiently smooth map whenever |α| is small
enough. We can now identify a deformed configuration of Γ, namely Γα = Fα(Γ), with the
parameter vector α. Note that Fα need not to be linear with respect to α as for the sensitivity
analysis only the linearized mapping is needed.

We consider linear combination of deformation maps that are obtained by varying the ver-
tices of the original triangulated surface, i.e. ϕm(r) =

∑L
l=1 τ lmλl(r), where λl are the piece-

wise linear and continuous functions satisfying λl(pk) = δlk.
Let a real valued objective functional J : RM × CN → R : (α,x) 7→ J(α,x) depending

on the shape-parameters α and the degrees of freedom of the discrete surface current Jα =∑
n x

nψn be given. In practical applications it is common that b does not depend on α, e.g.,
when the system is excited with the voltage-gap feed and the geometry around the feed port
remains unchanged. Thus, we restrict to the following abstract optimization problem:

minimize
α∈RM , xα∈CN

J(α,xα) (5)
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subject to
Aαxα = b. (6)

Employing the classical adjoint variable method [6] we find that the derivatives d
dαm

J are
given by

dJ

dαm

=
∂J

∂αm

−ℜ
{
γ⊤∂Aα

∂αm

xα

}
(7)

where γ is the solution of the adjoint equation

Aαγ = ∇xJ. (8)

Above we have used the fact that from the symmetry of aΓ(·, ·) it follows that the system matrix
is symmetric (but not Hermitian), i.e. A⊤

α = Aα. The complex gradient ∇xJ is defined by
∇xJ = (∇ℜx + i∇ℑx)J, where the operators ∇ℜx and ∇ℑx are the gradients with respect to
real and imaginary part of x, respectively.

Looking at equations (7)–(8) we find that in order to compute the gradient of J with respect
to the shape-parameters, one needs to compute the partial derivatives ∂

∂αm
J , the matrix-vector

products with the differentiated system matrix ∂Aα

∂αm
xα, the solution vector xα, and the solu-

tion γ of the adjoint equation. The system matrices of the state and the adjoint equations are
identical. Thus no new solver needs to be implemented to solve the adjoint equation (8). The
derivatives ∂Aα

∂αm
can be computed analytically [4], with a difference formula or with automatic

differentiation [3, 8].
The drawback, however, of MoM-EFIE formulation for the Maxwell system is that the coef-

ficient matrix A is a full matrix. This is opposite to e.g., the finite element case where the matrix
is sparse. The time and storage complexity to solve equations (6), (8) is O(N3) and O(N2),
respectively. Also the time complexity of the evaluation of the last term in (7) is O(N2).

For the simulation and optimization of electromagnetically large objects, one needs to em-
ploy more advanced method as the multilevel fast multipole method. In the next section we will
shortly describe the idea of MLFMA and show how the sensitivity analysis can be augmented
to any existing MLFMA implementation.

4 FAST MATRIX-VECTOR PRODUCT AND ITS GEOMETRIC SENSITIVITY

Instead of applying standard Gaussian elimination to the (possibly very large) linear sys-
tem (6), we consider iterative Krylov subspace methods like GMRES. Instead of manipulating
stored matrix elements, Krylov subspace methods only need results of matrix-vector products,
i.e. given a vector z, compute y = Az. Of course, in order to be of practical interest, ei-
ther the number of iterations (i.e. the number of matrix-vector products) and/or the cost of a
matrix-vector product must be sufficiently small.

The idea of MLFMA is the fast evaluation of the matrix product y = Az. It is based on the
division of the matrix into “near” and “far” terms,

A = Anear +Afar. (9)

The entries Apq
near of the sparse matrix Anear dealing with near interactions is evaluated in

the standard way and stored. The entries Apq
far corresponding to far interactions are evaluated

approximately but not stored.
The MLFMA applied to EFIE is based on the following approximation [9, 10]. Let us

consider the computation of the far terms Apq
far in (9). Let Q1 and Q2 be two cubes such that
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supp(ψp) ⊂ Q1, supp(ψq) ⊂ Q2, and the distance D of the centers of Q1 and Q2 is large
enough. We make the following approximation

Apq
far = aΓ(ψ

p,ψq) ≈ ik

∫
Γ

ψp(r) ·
∫
S2

eikk̂·rF∞
ψq(k̂)TL(D, k̂) dk̂ dσr, (10)

which can be made arbitrarily good by taking L → ∞. Here k̂ = (cosϕ sin θ, sinϕ cos θ, cos θ),
ϕ ∈ [0, 2π], θ ∈ [0, π],

∫
S2 dk̂ denotes the integration over the surface of a three-dimensional

unit ball,

F∞
Φ (k̂) =

−k

ωε0

∫
Γ

e−ikk̂·r′k̂ × k̂ × Φ(r′)dσr′ . (11)

is the far-field pattern from the surface current Φ, and

TL(D, k̂) =
ik

4π

L∑
n=0

in(2n+ 1)h(1)
n (k|D|)Pn

(
D

|D|
· k̂

)
, (12)

is the Rokhlin translation function [11] given in terms of terms of spherical Hankel functions
h
(1)
n and Legendre polynomials Pn.

The matrix Anear is a sparse one and the product Anearz can be evaluated in O(N) time.
Now, organizing the computations for Apq

far in a hierarchical way, one can obtain an O(N log2 N)
algorithm to compute Afarz. We refer to [9, 10, 12] for the algorithmic details.

As seen from (7), it is not mandatory to construct the differentiated system matrices ∂Aα

∂αm

to obtain sensitivities of J . Instead, it suffices to calculate the matrix-vector products ∂Aα

∂αm
xα.

It should be also noted that the derivatives of the near field interactions parts of the system
matrix ∂[Anearxα]/∂αm can be computed in the assembly loop in the usual element by element
manner as discussed in [4].

Rewriting the formula for the far interactions (10) in the perturbed geometry Γα

aΓα(ψ
p
α,ψ

q
α) ≈ − ik2

ωε

∫
S2

TL(D, k̂)

∫
Γα

ψp
α(r)e

ikk̂·r ·
∫
Γα

e−ikk̂·r′k̂×k̂×ψq
α(r

′)dσr′ dσr dk̂, (13)

we see that only aggregation and disaggregation (i.e. integrations with respect to r and r′)
depend upon small perturbations of the geometry. Thus, in order to compute the approximations
of the derivatives ∂aΓα(ψ

p
α,ψ

q
α)/∂αm we need to differentiate the expressions

I1(ψ
p
α,Γα):=

∫
Γα

ψp
α(r)e

ikk̂·rdσr and I2(ψ
q
α,Γα):=

∫
Γα

k̂×k̂×ψq
α(r

′)e−ikk̂·r′dσr′ . (14)

The derivatives ∂I1
∂αm

and ∂I2
∂αm

can be evaluated with any method that gives the desired accu-
racy, but due to simplicity of the above formulas we consider the change of variables approach
taken in [4] and calculate the derivatives analytically.

The derivatives are evaluated analytically by representing the basis functions on Γα as mapped
basis functions of Γ. To that end we utilize the contravariant Piola transformation that reads

ψp 7→ 1

detF ′
α

F ′
αψ

p ◦ F−1
α . (15)

It holds that this mapping tends to identity as α→ 0 and that it is bijective as V (Γ) → V (Γα).
Thus, for each RWG function ψp

α there is such an RWG function ψp that

ψp
α =

1

detF ′
α

F ′
αψ

p ◦ F−1
α . (16)
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Here F ′
α is the jacobian matrix of Fα given by

F ′
α(r) = I+

∑
m

αm

∑
l

τ lm(∇Γλl(r))
T . (17)

As ∇Γλl is piecewise constant, the matrix function F ′
α is piecewise constant too.

Performing the change of variables we get∫
Γα

ψp
α(r)e

ikk̂·rdσr =

∫
Γ

F ′
α(r)ψ

p(r)

detF ′
α

eikk̂·Fα(r) detF ′
αdσr. (18)

Note that the determinant detF ′
α cancels out in (18).

Finally, the derivative of I1 is given by

∂I1
∂αm

∣∣∣∣
αm=0

=

∫
Γ

∂

∂αm

[
F ′
α(r)ψ

p(r)eikk̂·Fα(r)
]
αm=0

dσr

=
∑
l

∫
Γ

[
τ lm∇Γλl(r) ·ψp(r) +ψp(r)λl(r)ikk̂ · τ lm

]
eikk̂·rdσr. (19)

Similarly,

∂I2
∂αm

∣∣∣∣
αm=0

=
∑
l

∫
Γ

k̂ × k̂ ×
[
τ lm∇Γλl(r) ·ψq(r) +ψq(r)λl(r)ikk̂ · τ lm

]
e−ikk̂·rdσr (20)

Applying the product rule of differentiation to (13) we see that instead of just taking the ϕ and
θ components of the far field pattern arising from ψq through the MLFMA procedure, also for
the expression ∂I2

∂αm

∣∣
αm=0

the far-field pattern must be computed and translated. However, the
action of the differentiated system matrix needs to be calculated only once per shape-parameter.
Thus, the extra work is negligible when considering shape optimization problems where the
state equation is solved iteratively.

The time spent in the MLFMA accelerated part of the matrix vector product is small com-
pared to the solution time of the state equation and the adjoint equation and, furthermore, it
scales as O(K log2 K), where K is the number of edges which undergo geometric perturbation.

For more details and a numerical example, we refer to [13].

5 CONCLUSION

We considered an efficient approach to accelerate the matrix-vector product involving shape
differentiated system matrix with the fast multipole method. We showed that the analytical
(algebraic) sensitivity analysis can be done efficiently despite the fact that the full system matrix
is defined only implicitly.

Using this approach, adding algebraic sensitivity analysis capability to simulation code re-
quires some relatively minor changes in the code. In the MLFMA part, only the start and the
end of aggregation-translation-disaggregation process must be modified and for the near inter-
action the routine that computes element pair interactions must be modified. Furthermore, a
perturbation vector for each vertex of the mesh and shape-parameter must be provided for the
solver.

ACKNOWLEDGEMENTS

This research was supported by the Academy of Finland, grant #260076.



Juhani Kataja, Seppo Järvenpää and Raino A. E. Mäkinen

REFERENCES

[1] P. Ciais, R. Staraj, G. Kossivias, and C. Luxey, “Design of an internal quad-band antenna
for mobile phones,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 4,
pp. 148–150, 2004.

[2] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. Philadelphia: SIAM, 2nd ed., 2008.

[3] J. I. Toivanen, R. A. E. Mäkinen, S. Järvenpää, P. Ylä-Oijala, and J. Rahola, “Electromag-
netic sensitivity analysis and shape optimization using method of moments and automatic
differentiation,” Antennas Propagation, IEEE Transactions on, vol. 57, no. 1, pp. 168–
175, 2009.

[4] J. Kataja and J. I. Toivanen, “On shape differentiation of discretized electric field integral
equation,” Engineering Analysis with Boundary Elements, vol. 37, no. 9, pp. 1197 – 1203,
2013.

[5] S. Rao, D. Wilton, and A. Glisson, “Electromagnetic Scattering by Surfaces of Arbitrary
Shape,” Antennas and Propagation, IEEE Transactions on, vol. 30, pp. 409–418, May
1982.

[6] J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approxi-
mation, and Computation. Philadelphia: SIAM, 2003.

[7] N. Nikolova, J. Zhu, D. Li, M. Bakr, and J. Bandler, “Sensitivity Analysis of Network
Parameters with Electromagnetic Frequency-Domain Simulators,” Microwave Theory and
Technique, IEEE Transactions on, vol. 54, pp. 670 – 681, Feb. 2006.

[8] J. I. Toivanen and R. A. E. Mäkinen, “Implementation of sparse forward mode auto-
matic differentiation with application to electromagnetic shape optimization,” Optimiza-
tion Methods and Software, vol. 26, no. 4-5, pp. 601–616, 2011.

[9] W. Chew, J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Com-
putational Electromagnetics. Antennas and Propagation Library, Artech House, Incorpo-
rated, 2001.

[10] R. Coifman, V. Rokhlin, and S. Wandzura, “The Fast Multipole Method for the Wave
Equation: A Pedestrian Prescription,” Antennas and Propagation Magazine, IEEE,
vol. 35, no. 3, pp. 7–12, 1993.

[11] V. Rokhlin, “Diagonal Forms of Translation Operators for the Helmholtz Equation in
Three Dimensions,” Applied and Computational Harmonic Analysis, vol. 1, no. 1, pp. 82
– 93, 1993.

[12] S. Järvenpää and P. Ylä-Oijala, “A Global Interpolator With Low Sample Rate for Mul-
tilevel Fast Multipole Algorithm,” Antennas and Propagation, IEEE Transactions on,
vol. 61, no. 3, pp. 1291–1300, 2013.

[13] J. Kataja, S. Järvenpää, J. I. Toivanen, R. A. E. Mäkinen, and P. Ylä-Oijala, “Shape sensi-
tivity analysis and gradient based optimization of large structures using MLFMA,” IEEE
Transactions on Antennas and Propagation, 2014 (submitted).


	INTRODUCTION
	STATE PROBLEM
	ALGEBRAIC SHAPE SENSITIVITY ANALYSIS
	FAST MATRIX-VECTOR PRODUCT AND ITS GEOMETRIC SENSITIVITY
	CONCLUSION

