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Abstract. The solution of a multiobjective multidisci-

plinary design optimization (MDO) using a genetic algo-

rithm (GA) is considered. The objective functions in the

optimization problem measure the aerodynamic feasibil-

ity based on the drag and lift coefficients and the elec-

tromagnetic feasibility based on the backscatter of the

two-dimensional airfoil designs. The flow and backscat-

ter are modeled by the thin-layer Navier–Stokes equa-

tions and the time-harmonic Maxwell equations, respec-

tively. Numerical experiments illustrate the above evolu-

tionary methodology on a parallel computer.

1 INTRODUCTION

Optimal shape design problems have been actively stud-

ied during the last decades; see [6], [9], [14], for ex-

ample. Traditionally the design has been optimized with

respect to only one discipline such as aerodynamics or

electromagnetics. Although, it would be often highly de-

sirable to consider multidisciplinary problems, that is,

to consider several disciplines at once. Here, we solve

a multidisciplinary problem in which one airfoil should

have good aerodynamical and electromagnetic proper-

ties. More precisely, the drag and the electromagnetic

backscatter of the airfoil is minimized while the lift is re-

quired to have at least a given minimum value [1], [11],

[12].

The considered problem is also multiobjective opti-

mization problem, since there is two objective functions,

namely, the drag and the backscatter. Thus, the solution

of this optimization problem requires specialized method
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suitable for multiobjective problems; see, for example,

[3]. In this kind of problems, a design is optimal when

it is nondominated or by using another term Pareto opti-

mal. A design is nondominated if no other feasible design

exists which is better with respect to any objective and at

least equally good with respect to all the other objectives.

Usually, in the practical solution of multiobjective

problems, the task is to find several Pareto optimal solu-

tions. This can be computationally a very laborious task.

Genetic algorithms (GA) can be adapted to this kind of

problems and they are naturally parallel. Thus, GAs can

be used efficiently in parallel computers which can offer

the required computing power. In this paper, we consider

the solution of multiobjective optimization problem us-

ing a GA in a parallel computer.

In [1], [12], the flow is modeled by the incompress-

ible potential flow. The Euler equations are used in [11]

which is one of the test cases in the Ingenet project. Here,

we have chosen to use the Reynolds-averaged thin-layer

Navier–Stokes equations. Also, we are continuing the de-

velopment of genetic algorithms for optimal shape design

problems; see [10], [11], [12], [15], for example.

The following section describes GAs with modifi-

cations for the problem under consideration. Then, the

CFD and CEM solvers are shortly introduced and the ac-

tual multiobjective multidisciplinary optimization prob-

lem for the airfoil design is given. Lastly, we present the

numerical results with some concluding remarks.

2 MULTIOBJECTIVE OPTIMIZATION
WITH GENETIC ALGORITHM

Genetic algorithms (GAs) are stochastic processes mim-

icking the natural selection based on the Darwin’s prin-

ciple of survival of the fittest. A GA evolves from a gen-

c
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eration to another and each population is a set of solution

candidates. The fitness function tells how good individual

is. The selection of parents is performed so that more fit

individuals are more likely to be chosen. The offsprings

are formed from the parents by using the random oper-

ations of crossover and mutation. For more detailed de-

scription of the operations involved see [5], for example.

Without any gradient information, GAs can explore

the search space in parallel with the population of indi-

viduals and exchange the beneficial information through

crossover. GAs are shown to be robust adaptive opti-

mization methods with inherent parallelism for problems

where the traditional methods can fail, for example, when

searching for a neighborhood of a global minimum [5].

For multiobjective optimization problems, it is neces-

sary to make some modifications to the basic GA. Our

algorithm is based on the Nondominated Sorting GA

(NSGA) [16]. For general discussion on GAs for multi-

objective optimization, see [4] and references therein. In

the following, we describe the basic ideas of the NSGA

and the modifications. The fitness values are computed

using the following procedure in the NSGA and the mod-

ified algorithm:

Algorithm 1 Nondominated sorting

Choose a large dummy fitness value F;

Repeat

Find the nondominated individuals among

the individuals whose fitness values are not set;

Set the fitness value of individuals found in

previous step to F;

Decrease the dummy fitness value F;

Until (fitness values of all individuals are set).

Our modified algorithm employs the tournament se-

lection, unlike the NSGA which uses the roulette wheel

selection. For each tournament, a fixed number of indi-

viduals are selected randomly. The individual which has

the highest fitness value wins the tournament, that is, it is

selected to be a parent in the breeding.

Unfortunately, if there were no modifications to the

previous tournament selection, the population would usu-

ally converge towards one point on the set of Pareto op-

timal solutions whereas the aim was to obtain several

points from the Pareto set. In our modified algorithm,

the diversity of the population is preserved using the so–

called tournament slot sharing which was introduced in

[11]. For this purpose, let us define the sharing function
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where the parameter n is the size of population.

An elitist mechanism is added to our algorithm since

it guarantees the cost function values to decrease mono-

tonically from one generation to the next. Also, it usu-

ally accelerates the convergence. This is implemented by

copying from the old population to the new population all

the individuals which would be nondominated in the new

population. As a coding, we have used the floating point

coding [13]. The crossover is made using one crossover

site and a special mutation considered in [11] is utilized.

Thus, we are ready to present the modified algorithm:

Algorithm 2 The modified NSGA

Initialize population;

Compute object functions [in parallel];

Do generation:=2,number of generations

Compute fitness values using nondominated sorting;

Compute probabilities for each individual to

enter tournament;

Repeat

Select two parents;

Form two childrens using crossover;

Until (new population is full);

Perform mutations;

Compute object functions [in parallel];

Copy individuals from old population according

to elitism;

End do.

3 CFD AND CEM SOLVERS

The flow is modeled by the two-dimensional Reynolds-

averaged thin-layer Navier–Stokes equations. The dis-

cretization is made using the finite volume method. The

steady state solution is obtained by an implicit pseudo-

time integration. The convergence is accelerated using a

multigrid algorithm. The flow solver is called FINFLOW

[8].

The wave scattering is modeled by the time-harmonic

two-dimensional Maxwell equations, which can be re-

duced to the Helmholtz equation with the Sommerfeld
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radiation condition. For the discretization made using

the linear finite elements the domain is truncated and

a second-order absorbing boundary condition is posed

on the artificial far-field boundary. A fictitious domain

method is used to solve the arising system of linear equa-

tions [7], [12].

4 DRAG AND BACKSCATTER
REDUCTION

In this multiobjective multidisciplinary design optimiza-

tion problem, we minimize the drag coefficient and the

amplitude of the backscattered wave while the lift coeffi-

cient must not be less than a given value.

Let U
ad

be the set of design variable vectors � in Rn

which define the shapes of geometrically admissible air-

foils. The set of the physically admissible designs is de-

fined by

U

�

ad

=

�

� 2 U

ad

j C

l

(�) � C

min

l

	

,

whereC
l

= C

l

(�) is the lift coefficient and Cmin

l

is the

lower bound for the lift coefficient.

This problem can be formulated as a multiobjective

minimization problem

min

�2U

�

ad

fC

d

(�), J(�)g, (1)

where C
d

(�) is the drag coefficient and J(�) measures

the amplitude of backscattered electromagnetical wave.

The function J is defined by the integral

J(�) =

Z

�

jw

1

(�)j

2

ds, (2)

where � is the sector where the backscatter is minimized

and w
1

is the far field pattern of the scattered electro-

magnetic wave.

The nonlinear lift constraint is taken into account by

adding a quadratic penalty function to both object func-

tions. Let " be a small positive penalty parameter. Then,

the penalized object functions are
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Now the penalized multiobjective minimization problem

reads

min

�2U

ad

fC

"

d

(�), J

"

(�)g. (3)

5 NUMERICAL RESULTS

The airfoil shape is parametrized using two Bezier curves

with each curve having nine control points [2]. There is

one curve for the extrados and another one for the intra-

dos. The control points on the leading and trailing edges

are fixed and the other control points are moving in the

y–direction. The first two design variables are the y–

coordinates of the Bezier control points directly above

and below the leading edge. The next 12 design variables

are the sums and the differences of the y–coordinates of

the corresponding control points from upper and lower

sides of airfoil. The angle of attack is the 15th design

variable. By choosing the design variables this way, the

geometrically feasible designs can be defined using box

constraints. The two Bezier curves for the NACA64A410

airfoil are shown in Figure 1.

Figure 1. The Bezier curves for the NACA64A410 airfoil and

their control points.

The airfoils are operating at Mach number M
1

=

0.75 and the Reynolds number is 10

6. The Navier–

Stokes solver uses 192 � 48 C-type grid with 128 grid

points on the surface of airfoil. During the optimization

process, the grid for the Navier–Stokes solver is depend-

ing continuously and smoothly on the design parameters.

For the Helmholtz solver the computational domain is

truncated to be the rectangle [�0.1, 1.1] � [�0.3, 0.3].

The airfoil is 20 wave lengths long and the mesh is

481�241 rectangular mesh with a local fitting on the sur-

face of airfoil. Thus, there is 20 nodes per wave length.

Due to the use of local fitted mesh, the number of nodes

and elements in the mesh might vary during the optimiza-

tion. Hence, the objective function J computed using the

finite element approximation is discontinuous.

The lower limit for the lift coefficient Cmin

l

is set to

be 0.5. The backscatter is measured in the sector � =

[180, 200]

� in (2). The direction of the incident wave is

10

�

. The penalty parameter " is 10�4. The GA param-

eters are shown in Table 1. In the Section 2, the sharing

distance was denoted by �share. The mutation exponent

is related to the mutation and the exact meaning of it is

explained in [11]. In one optimization run, 9600 fitness

function values are computed. The initial population con-

tains the NACA64A410 airfoil and 63 randomly chosen

designs.
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Table 1. The parameters in GA.

Population size 64

Generations 150

Tournament size 3

Sharing distance 0.25

Crossover probability 0.8

Mutation probability 0.2

Mutation exponent 4

The computations are performed on a Sun Ultra En-

terprise 4000 server with eight 250 MHz processors us-

ing the MPI message passing library. The computation

of one solution of the thin-layer Navier–Stokes equations

and the Helmholtz equation required roughly 165 and 45

CPU seconds, respectively. The total wall clock time for

one optimization run was approximately 75 hours.

The cost function values (C

"

d

, J

"

) for the initial de-

sign NACA64A410 are (0.0171, 0.00167). After 150

generations we obtained 15 nondominated designs. These

designs are sorted according to their C"

d

values and

then they are referred using their ordinal number. The

corresponding cost function values for the designs 1,

3, 7 and 11 are (0.0046, 0.00098), (0.0049, 0.00071),

(0.0058, 0.00048) and (0.0071, 0.00046), respectively.

The cost functions and the corresponding airfoils for

these designs are shown in Figure 2.
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Figure 2. Some nondominated designs from the last

generation.

In the remaining figures, we have examined three de-

signs, namely the NACA64A410, and the design 1 and

11 from the nondominated designs in the last generation.

The airfoils for the design 1 and 11 can be seen in Fig-

ure 2. The pressure coefficientsC
p

are shown in Figure 3

and in Figure 4, the radar cross sections (RCSs) are given

in the sector where the backscatter is minimized.

The final generation is probably not fully convergent,

that is, there is still a gap between the nondominated in-

dividuals in the last generation and the set of Pareto op-

timal solutions. Hence, more generations would proba-

bly improve the nondominated designs. Also due to the

elitism mechanism in our GA the number of nondomi-

nated designs should start to grow when the individuals

are reaching the Pareto set. Probably the tuning of the GA

parameters are likely to accelerate the convergence. Un-

fortunately, the tuning is rather difficult, since each GA

run requires extensive computational time.
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Figure 3. The pressure coefficients for some designs.
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Figure 4. The RCSs for some designs.

6 CONCLUSIONS

In our numerical experiment, we were able to obtain sev-

eral nondominated designs. Since gradients are not re-

quired and the cost functions do not have to be contin-

uous, we can use any standard state solvers for shape

optimization with GA. Also, it is easy to obtain a good

speedup in parallel GA optimization with standard se-

quential state solvers. The number of performed cost
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function evaluations was rather high and thus, the opti-

mization was computationally expensive. The GA should

be further developed so that the convergence towards the

set of Pareto optimal solutions would be improved.
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