
OPTIMAL CONTROL/ DUAL APPROACH
FOR THE NUMERICAL SOLUTION OF A DAM PROBLEM

J. Haslinger, K.-H. Hoffmann and R.A.E. Mäkinen

Abstract. A dam problem is formulated as a state constrained optimal shape design
problem. The primal and dual variational formulations of the state problem are used.
Numerical examples are given.

1. Introduction

Let us assume a dam made from a nonhomogeneousmaterial, separating two water levels
of the height y1, y2, respectively. The aim is to find a curve ϕ, separating the wet and
dry part of the dam and the velocity field of the water given by the vector k(−ux,−uy),
where u is the so-called piezometric head satisfying:

(1.1)





∇ · (k∇u) = 0 in Ω(ϕ),

u = y1 on Γ1,

u = y2 on Γ2,

u = y on Γ(ϕ) ∪ Γσ(ϕ),

k
∂u

∂ν
= 0 on Γ(ϕ) ∪ Γ0,

k
∂u

∂ν
≤ 0 on Γσ(ϕ).

The partition of the boundary ∂Ω(ϕ) into corresponding parts follows from Figure 1.

The function k is a permeability coefficient, y = ϕ(x) is the free boundary, one of
the unknowns of the problem. The dam problem has been extensively studied by many
authors. If the separating walls are vertical and the dam is made from homogeneous

material, then using the so-called Baiocchi transformation the problem can be converted
into a variational inequality solved on a fixed domain Ω̂. The free boundary is then a curve
separating the coincidence and the non-coincidence set. Using this approach, several
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properties, such as monotonicity and the concavity of ϕ, can be discovered, see [1], [5],
[7]. If Γ1 and Γ2 are no longer vertical, this approach leads to a model, described by
a quasivariational inequality [3]. Also the case of a non-homogeneous dam complicates
this approach [2]. Another approach which can also be used for the numerical solution is
presented in [4].
Here we shall deal with the optimal control approach which can also be used for other

free boundary problems. This approach can be used with success in the case of a non-
homogeneous media, a dam with non-vertical walls, etc. The idea is quite simple. On the
free boundary Γ(ϕ), boundary conditions are overdetermined, so that for a random choice
of ϕ the problem (1.1) is not well posed. We define a new boundary value problem which
will play the role of the state problem with one condition on Γ(ϕ) only and the remaining
boundary condition will be included in a suitable cost functional. This approach has been
used in [6] in the case of a rectangular dam. Here the Dirichlet condition u = y on Γ(ϕ)

was treated by means of the minimization of the cost functional J (ϕ) =
∫
Γ(ϕ)

(u − ϕ)
2 ds.

Authors used some à-priori known properties of the free boundary Γ(ϕ), namely the fact
that ϕ is decreasing and concave. The boundary condition k∂u/∂ν ≤ 0 on Γσ was also
automatically satisfied, because of the fact that the walls are vertical.
For the nonhomogeneous dams however, the parametrization of the free boundary is

not straightforward and assumptions like monotonicity or concavity are no longer true.
Our aim was to define a class of possible candidates for the free boundary as large as
possible, i.e. with the minimum of restrictions on the class of curves, among which the
free boundary can be found. Nevertheless some compactness properties are still required.
In order to get a free boundary of the problem, one has to take into account all physical
conditions defining the problem, especially the condition k∂u/∂n ≤ 0 on Γσ(ϕ), which
is not à-priori satisfied in a general dam problem. If this condition is not taken into
account, the numerical procedure may give a nonphysical solution as will be illustrated
on a model example. This condition on Γσ(ϕ) will be treated as the state constraint.
Contrary to [6], the Neumann condition on Γ(ϕ) will be included in a cost functional J .
This choice of J seems to be useful. Analysing optimality conditions, we deduce that
in many situations a critical point of J (if it exists in a given class of domains) is the
point of the absolute minimum of J (i.e. the solution of the dam problem) and not only a
local minimum. As the cost functional and the state constraint are expressed in terms of
fluxes, the dual variational formulation of the state problem (i.e. the formulation in terms
of the cogradient) is used. Thus the divergence free finite elements have to be used for
the numerical realization. Using them, one can very accurately approximate the required
fluxes. Examples presented in this paper and our computational experiences confirm the
superiority of this approach over the classical primal formulation of the state problem.
Another important advantage of the dual approach is the fact that oscillations of the free
boundary when its piecewise linear approximation is used does not occur.

2. Setting of the problem

Let Ω ⊂ R
2 be a bounded domain, with Lipschitz boundary [10]. Let the dam be

represented by a bounded domain Ω̂ with a Lipschitz boundary ∂Ω̂. By Γ1, Γ2 we denote
a part of ∂Ω̂, which comes in contact with water levels of the height y1, y2, respectively.
Moreover ∂Ω̂ = Γ0∪ Γ̃1∪ Γ̃2∪ Γ̃3, where Γ̃1, Γ̃2 are lateral parts of ∂Ω̂ and Γ0, Γ̃3 are the base
and the top of the dam, respectively (Γ3 possibly empty). Let ϕ : [0, 1] 7→ R

2 be a continuous



curve the graph of which, denoted by Γ(ϕ), lies in Ω̂ and such that ϕ(0) = A, ϕ(1) ∈ Γ̃2 \ Γ2,
where A ∈ Γ1 is the point where the water surface of the height y1 meets Γ1.

Definition 2.1. By Ω(ϕ) we denote a domain bounded by Γ0, Γ1, Γ2, Γ(ϕ) and Γσ(ϕ) being
a part of Γ̃2 between ϕ(1) and B ∈ Γ̃2. Here B is the point where the water surface of
height y2 meets Γ̃2, see Figure 1. The family of all these Ω(ϕ) will be denoted by ˜O.

Figure 1: Geometry of the dam problem

Definition 2.2. By O we denote a subset of ˜O which is compact with respect to the uniform
convergence of boundaries and such that Ω(ϕ) ⊇ Ω̂0, where Ω̂0 is a fixed domain in R

2.

On any Ω(ϕ) ∈ O we assume the state problem:

(P (ϕ)
′)





∇ · (k∇u) = 0 in Ω(ϕ)

u(ϕ) = Φ(ϕ) on Σ(ϕ)

k
∂u

∂ν
(ϕ) = 0 on Γ0,

where Φ(ϕ) ∈ H1
(Ω(ϕ)) is a function, realizing nonhomogeneous Dirichlet boundary condi-

tions on Σ(ϕ) = Γ1 ∪ Γ2 ∪ Γ(ϕ) ∪ Γσ(ϕ).
The weak form of (P (ϕ)

′
) is done by

(P (ϕ))

{
Find u(ϕ) ∈ VΦ(ϕ) such that

(k∇u,∇v)0,Ω(ϕ) = 0 ∀v ∈ V (ϕ),

where

V (ϕ) = {v ∈ H1
(Ω(ϕ)) | v = 0 on Σ(ϕ)}

VΦ(ϕ) = {v ∈ H1
(Ω(ϕ)) | v = Φ(ϕ) on Σ(ϕ)}.



For the following considerations, the dual form of (P (ϕ)) will be introduced. To this end
we define

K0(ϕ) = {µ ∈ (L2
(Ω(ϕ))

2 | (µ,∇v)0,Ω(ϕ) = 0 ∀v ∈ H1
0 (Ω(ϕ))}

K00(ϕ) = {µ ∈ K0(ϕ) | (µ,∇v)0,Ω(ϕ) = 0 ∀v ∈ V (ϕ)}.

It is easy to see that µ ∈ K0(ϕ) iff ∇ · µ = 0 in Ω(ϕ) in the sense of distributions and
µ ∈ K00(ϕ) iff ∇·µ = 0 in Ω(ϕ), µ ·ν = 0 on Γ0, i.e. K0(ϕ) is the set of divergence free vector
fields in Ω(ϕ) and K00(ϕ) is its subset, containing all functions, that have zero normal flux
across Γ0.

Remark 2.1. Let Γ̃ ⊂ ∂Ω(ϕ) be an open set in ∂Ω(ϕ), µ ∈ K0(ϕ). Then the flux µ · ν
across Γ̃ is defined by

(2.1) 〈µ · ν, v〉 ≡ (µ,∇v)0,Ω(ϕ) ∀v ∈ V0(Γ̃),

where
V0(Γ̃) = {v ∈ H1

(Ω(ϕ)) | v = 0 on ∂Ω(ϕ) \ Γ̃}.

It is easy to see that (2.1) defines a linear continuous functional over the space H (Γ̃) which
is the space of traces of all functions belonging to V0(Γ̃). 〈 , 〉 stands for the corresponding
duality. We say that µ · ν ≤ 0 on Γ̃ iff 〈µ · ν, v〉 ≤ 0 for any v ∈ V0(Γ̃), v ≥ 0 on Γ̃.

By the dual variational formulation of (P (ϕ)) we call the problem

(P ∗
(ϕ))

{
Find λ(ϕ) ∈ K00(ϕ) such that

(k−1λ(ϕ), µ)0,Ω(ϕ) = (∇Φ(ϕ), µ)0,Ω(ϕ) ∀µ ∈ K00(ϕ)

The relation between (P (ϕ)) and (P ∗
(ϕ)) is done by

Lemma 2.1. There exist a unique solution λ(ϕ) of (P ∗
(ϕ)). Moreover

λ(ϕ) = k∇u(ϕ) in Ω(ϕ),

where u(ϕ) is the unique solution of (P (ϕ)).

Let I(λ, ϕ) be the objective functional, defined as follows:

I(λ, ϕ) =
1

2
‖λ · ν‖2− ,Γ(ϕ)

with λ ∈ K0(ϕ), Ω(ϕ) ∈ O and ‖ · ‖− ,Γ(ϕ) denoting the dual norm of the linear functional

λ · ν on Γ(ϕ) (see Remark 2.1).
The optimal control formulation of the dam problem reads as follows:

(P̃)

{
Find Ω(ϕ∗

) ∈ O such that

J (Ω(ϕ∗
)) ≤ J (Ω(ϕ)) ∀Ω(ϕ) ∈ O,

where
J (Ω(ϕ)) = I(λ(ϕ), ϕ) =

1

2
‖λ(ϕ) · ν‖2− ,Γ(ϕ)

with λ(ϕ) ∈ K00(ϕ) being the solution of (P ∗
(ϕ)) and with the additional constraint λ(ϕ) ·

ν ≤ 0 on Γσ(ϕ), provided the one-dimensional measure of Γσ(ϕ) is positive.



Remark 2.2. (P̃) is the optimal control problem in which the condition λ(ϕ) · ν ≤ 0 on
Γσ(ϕ) is considered as the state constraint of (P ∗

(ϕ)).

Remark 2.3. If Γ(ϕ∗
) is a free boundary in (1.1) and Ω(ϕ∗

) ∈ O then J (Ω(ϕ∗
)) = 0, i.e.

Ω(ϕ∗
) realizes the absolute minimum of J on O.

Next we shall prove the existence of at least one absolute minimum of J on O. As we
are interested in zero values of J , the dual norm ‖ · ‖− ,Γ(ϕ) defining J can be replaced by
an equivalent one. To this end let us introduce the set

Kλ
00(ϕ) = {µ ∈ K00(ϕ) | (µ,∇v)0,Ω(ϕ) = 〈λ(ϕ) · ν, v〉 ∀v ∈ V0(ϕ)},

where
V0(ϕ) = {v ∈ H1

(Ω(ϕ)) | v = 0 on Γ1 ∪ Γ2 ∪ Γσ(ϕ)}

and λ(ϕ) ∈ K00(ϕ) is the solution of (P ∗
(ϕ)).

It is easy to see that µ ∈ Kλ
00(ϕ) iff



∇ · µ = 0 in Ω(ϕ)

µ · ν = 0 on Γ0

µ · ν = λ(ϕ) · ν on Γ(ϕ).

Remark 2.4. Using Remark 2.1 we see that the equivalent expression of Kλ
00(ϕ) is

Kλ
00(ϕ) = {µ ∈ K00(ϕ) | (µ,∇v)0,Ω(ϕ) = (λ(ϕ),∇v)0,Ω(ϕ) ∀v ∈ V0(ϕ)}.

Now let us assume the problem

(A∗
(ϕ))

{
Find χ(ϕ) ∈ Kλ

00(ϕ) such that

(χ(ϕ), µ)0,Ω(ϕ) = 0 ∀µ ∈ K0
00(ϕ),

where K0
00(ϕ) corresponds to Kλ

00(ϕ) with λ = 0.
The problem (A∗

(ϕ)) is nothing else than the dual formulation of (A(ϕ)) given by the
following elliptic boundary value problem

(A(ϕ))





∆z(ϕ) = 0 in Ω(ϕ)

z(ϕ) = 0 on Γ1 ∪ Γ2 ∪ Γσ(ϕ)

∂z

∂ν
(ϕ) = 0 on Γ0

∂z

∂ν
(ϕ) = λ(ϕ) · ν =k

∂u

∂ν
(ϕ) on Γ(ϕ)

and χ(ϕ) = ∇z(ϕ) in Ω(ϕ). It is easy to see that ‖λ(ϕ) · ν‖− ,Γ(ϕ) and ‖χ(ϕ)‖0,Ω(ϕ) are
equivalent. Instead of J let us introduce the functional

F (Ω(ϕ)) =
1

2
‖χ(ϕ)‖20,Ω(ϕ)

where χ(ϕ) ∈ Kλ
00(ϕ) is the unique solution of (A∗

(ϕ)) with λ = λ(ϕ) being the solution of
(P ∗

(ϕ)) and such that λ ·ν ≤ 0 on Γσ(ϕ) if the one dimensional measure of Γσ(ϕ) is positive.
As a result, we shall study the problem

(P)

{
Find Ω(ϕ∗

) ∈ O such that

F (Ω(ϕ∗
)) ≤ F (Ω(ϕ)).

Remark 2.5. Let Ω(ϕ̃) ∈ O be such that F (Ω(ϕ̃)) = 0. Then J (Ω(ϕ̃)) = 0, as well.

The main result of this Section is



Theorem 2.1. There exists at least one solution of (P).

Proof will be based on several auxiliary lemmas.

Lemma 2.2. Let Ωn → Ω, Ωn = Ω(ϕn), Ω = Ω(ϕ) ∈ O and let λn ∈ K00(ϕn) be solutions
of (P ∗

(ϕn)). Then there is a subsequence of {λn} and an element λ ∈ K00(ϕ) such that

˜λn ⇀
˜λ in (L2

(Ω̂))
2,

where the symbol ˜ denotes the extension by zero of the corresponding functions from
the domain of their definition on Ω̂. Moreover, λ solves (P ∗

(ϕ)).

Proof: Let λn ∈ K00(ϕn) be the solution of (P ∗
(ϕn)):

(2.2) (k−1λn, µ)0,Ωn
= (∇Φ(ϕn), µ)0,Ωn

∀µ ∈ K00(ϕn).

As Ωn → Ω (⇐⇒ ∂Ωn∂Ω) one can construct Φ(ϕn) ∈ H1
(Ωn) in such a way that

(2.3) ‖Φ(ϕn)‖1,Ωn
≤ c

with a constant c > 0 which does not depend on n. Hence there exists a subsequence of
{Φ(ϕn)} such that

(2.4) Φ̃(ϕn) ⇀ Ψ1 in L2
(Ω̂), ∇̃Φ(ϕn) ⇀ Ψ2 in (L2

(Ω̂))
2.

Moreover, denoting Φ ≡ Ψ1|Ω it is easy to prove that

(2.5) Φ = Φ(ϕ) and ∇Φ = Ψ2|Ω,

i.e. Φ realizes the nonhomogeneous Dirichlet boundary condition on Σ(ϕ). From (2.2) and
(2.3) it follows that {‖λn‖0,Ωn

} is bounded. Hence there is a subsequence of {˜λn} such
that

(2.6) ˜λn ⇀
˜λ in (L2

(Ω̂))
2.

Denote λ ≡ ˜λ|Ω. First we prove that λ ∈ K00(ϕ). Indeed, let v ∈ V (ϕ) be an arbitrary
function. Then there exists a sequence {vj}, vj ∈ C∞

(Ω(ϕ)) ∩ V (ϕ) such that

(2.7) vj → v in H1
(Ω(ϕ))

and also

(2.8) ṽj → ṽ in H1
(Ω̂).

Moreover, dist (supp vj ,Σ(ϕ)) > 0 ∀j. Consequently,

(2.9) vj |Ωn
∈ V (ϕn)



for n large enough. Let j be fixed and n such that (2.9) holds. Then

(λn,∇vj)0,Ωn
= 0.

Taking into account (2.6) and the fact that Ωn → Ω we see

(2.10) 0 = (λn,∇vj)0,Ωn
= (

˜λnIn,∇ṽj)0,Ω̂ −→
n→∞

(
˜λI,∇ṽj)0,Ω̂ = (λ,∇ṽj)0,Ω,

where In, I are characteristic functions of Ω(ϕn), Ω(ϕ), respectively. Letting j → ∞ in
(2.10) and using (2.8) we finally obtain

(λ,∇v)0,Ω = 0,

i.e. λ ∈ K00(ϕ). It remains to show that λ solves (P ∗
(ϕ)). Let µ ∈ K00(ϕ) be given and

µ̂ ∈ K00(Ω̂) such that µ = µ̂|Ω(ϕ).
0 As µ̂|Ω(ϕn) ∈ K00(ϕn) for any n, we have

(2.11) (k−1λ(ϕn), µ̂)0,Ωn
= (∇Φ(ϕn), µ̂)0,Ωn

.

As before, we write (2.11) in the form

(k−1 ˜λ(ϕn), Inµ̂)0,Ω̂ = (∇̃Φ(ϕn), Inµ̂)0,Ω̂.

Letting n→ ∞ we obtain

(k−1λ, µ)0,Ω = (k−1 ˜λI, µ̂)0,Ω̂ = (Ψ2, µ̂)0,Ω̂ = (∇Φ(ϕ), µ)Ω,

making use of (2.4)–(2.6). Consequently, λ is a solution of (P ∗
(ϕ)).

Lemma 2.3. Let Ωn → Ω, Ωn = Ω(ϕn), Ω = Ω(ϕ) ∈ O, λn ∈ K00(ϕn) be solutions of
(P ∗

(ϕn)) and χn ∈ Kλn

00 (ϕn) solutions of (A∗
(ϕn)). Let

(2.12) ˜λn ⇀
˜λ in (L2

(Ω̂))
2.

Then there is a subsequence of {χn} and an element χ ∈ Kλ
00(ϕ) such that

(2.13) χ̃n ⇀ χ̃ in (L2
(Ω̂))

2.

Moreover, χ solves (A∗
(ϕ)).

Proof: Let χn ∈ Kλn

00 (ϕn) solve (A∗
(ϕn)). Then χn = ∇zn in Ωn, where zn ∈ V0(ϕn) solves

(A(ϕn))
(∇zn,∇v)0,Ωn

= 〈λ(ϕn) · ν, v〉 = 〈k
∂u

∂ν
(ϕn), v〉

= (k∇un,∇v)0,Ωn
∀v ∈ V0(ϕn),

=It is easy to prove that any function µ ∈ Kϕ can be abtained as the restriction of a function µ ∈ K.



where (A(ϕn)) is the weak formulation of (A(ϕ)), introduced in Remark 2.4. It is easy to
see that {‖zn‖1,Ωn

} and {‖un‖1,Ωn
} are bounded. Hence

(2.14)

{
ũn ⇀ U, z̃n ⇀ Z in L2

(Ω̂)

∇̃un ⇀ Ψ1, ∇̃zn ⇀ Ψ2 in (L2
(Ω̂))

2.

(Let us recall that the symbol ˜ stands for the extension by zero on Ω̂). Repeating the
standard process one can prove that setting

u ≡ U |Ω(ϕ), z ≡ Z|Ω(ϕ)

we have

∇u = Ψ1|Ω(ϕ), ∇z = Ψ2|Ω(ϕ)

and u, z are solutions of (P (ϕ)), (A(ϕ)), respectively. Comparing (2.12) and (2.13) with
(2.14) we see that

˜λ = Ψ1, χ̃ = Ψ2.

Therefore χ ≡ χ̃|Ω(ϕ) = ∇z(ϕ) ∈ Kλ
00(ϕ) and χ solves (A∗

(ϕ)).

Lemma 2.4. Let Ωn → Ω, Ωn = Ω(ϕn), Ω = Ω(ϕ) ∈ O and one dimensional measure of
Γσ(ϕ) be positive. Let λn ∈ K0(ϕn) be such that λn · ν ≤ 0 on Γσ(ϕn) and

˜λn ⇀
˜λ in (L2

(Ω̂))
2.

Then ˜λ · ν ≤ 0 on Γσ(ϕ).

Proof: Let λn ∈ K0(ϕn) be such that λn · ν ≤ 0 on Γσ(ϕn). This means (see Remark 2.1):

(2.15) 〈λn · ν, v〉 = (λn,∇v)0,Ωn
≤ 0 ∀v ∈ V0(Γσ(ϕn)), v ≥ 0 on Γσ(ϕn)

where

V0(Γσ(ϕn)) = {v ∈ H1
(Ω(ϕn)) | v = 0 on ∂Ω(ϕn) \ Γ̄σ(ϕn)}.

Let v ∈ V0(Γσ(ϕ)), v ≥ 0 on Γσ(ϕ) be given. Then one can find a sequence {vj}, vj ∈
C∞

(Ω(ϕ)), dist (supp vj , ∂Ω(ϕ) \ Γ̄σ(ϕ)) > 0, vj ≥ 0 on Γσ(ϕ) and such that vj → v in
H1

(Ω(ϕ)). It is readily seen that ṽj |Ωn
∈ V0(Γσ(ϕn)), for n large enough. Inserting vj into

(2.15) we have

0 ≥ (λn,∇vj)0,Ωn
= (

˜λnIn,∇vj)0,Ω̂ −→
n→∞

(
˜λI,∇vj)0,Ω̂ = (λ,∇vj)0,Ω

Finally, letting j → ∞ we arrive at

(λ,∇v) ≤ 0 ∀v ∈ V0(Γσ(ϕ)), v ≥ 0 on Γσ(ϕ),

i.e. λ · ν ≤ 0 on Γσ(ϕ).



Proof of Theorem 2.1: Let {Ω(ϕn)}, Ω(ϕn) ∈ O be a minimizing sequence of (P):

q = inf
O
F (Ω(ϕ)) = lim

n→∞
F (Ω(ϕn)).

We may assume that
Ω(ϕn) → Ω(ϕ∗

) ∈ O.

Let λn, χn be solutions of (P ∗
(ϕn)), (A∗

(ϕn)), respectively. Taking into account Lem-
mas 2.2 and 2.3, we see that there exist functions λ∗ ∈ K00(Ω(ϕ∗

)), χ∗ ∈ Kλ∗

00 (Ω(ϕ∗
)) being

solutions of (P ∗
(ϕ∗

)), (A∗
(ϕ∗

)), respectively and

χ̃n ⇀ χ̃∗ in (L2
(Ω̂))

2.

From this and the fact that

F (Ω(ϕn)) =
1

2
‖χ(ϕn)‖20,Ωn

=
1

2
‖χ̃(ϕn)‖2

0,Ω̂

we obtain

q = lim inf
n→∞

F (Ω(ϕn)) ≥
1

2
‖χ̃∗‖2

0,Ω̂
=

1

2
‖χ∗‖20,Ω(ϕ∗) = F (Ω(ϕ∗

)).

Moreover, if the one dimensional measure of Γσ(ϕ∗
) is positive then λ∗ · ν ≤ 0 on Γσ(ϕ∗

)

as follows from Lemma 2.4. Thus Ω(ϕ∗
) is a solution of (P).

3. Sensitivity analysis and optimality conditions

The aim of the present section is to derive optimality conditions for the problem (P). To
this end it will be convenient to assume the cost functional F (Ω(ϕ)) in its “primal” form,
namely

(3.1) F (Ω(ϕ)) =
1

2
‖z(ϕ)‖21,Ω(ϕ),

where z(ϕ) ∈ V0(ϕ) is the solution of (A(ϕ)).
For the sake of simplicity, we shall analyze a homogeneous case only, with k ≡ 1.
Let Ω(ϕ) ∈ O be given, Ft : R

2 → R
2 a mapping of the form

Ft = id + tV ⇐⇒ Ft(x1, x2) = (x1, x2) + t(V1(x1, x2),V2(x1, x2)), t ≥ 0

such that Ωt(ϕt) ≡ Ft(Ω(ϕ)) belongs toO for t > 0 sufficiently small. Ωt(ϕt) is a deformation
of Ω(ϕ) defined by means of the mapping Ft.
Let ut(ϕt), zt(ϕt) be solutions of corresponding boundary value problems, defined on

Ωt:
0

(P (ϕt)t)

{
Find ut(ϕt) ∈ VΦ(ϕt) such that

(∇ut(ϕt),∇v)0,Ωt
= 0 v ∈ V (ϕt)

=We set ϕ ≡ ϕ, Pϕ ≡ Pϕ, Aϕ ≡ Aϕ, ...



and

(A(ϕt)t)

{
Find zt(ϕt) ∈ V0(ϕt) such that

(∇zt,∇v)0,Ωt
= (∇ut(ϕt),∇v)0,Ωt

∀v ∈ V0(ϕt),

respectively, where

V (ϕt) = {v ∈ H1
(Ωt(ϕt)) | v = 0 on Σ(ϕt) = Γ1 ∪ Γ2 ∪ Γ(ϕt) ∪ Γσ(ϕt)},

VΦ(ϕt) = {v ∈ H1
(Ωt(ϕt)) | v = Φ(ϕt) on Σ(ϕt)},

V0(ϕt) = {v ∈ H1
(Ωt(ϕt)) | v = 0 on Γ1 ∪ Γ2 ∪ Γσ(ϕt)}.

Denote by ut ≡ ut ◦ Ft, z
t ≡ zt ◦ Ft, Φ

t ≡ Φ(ϕt) ◦ Ft functions defined on Ω(ϕ) (u0 ≡
u(ϕ), z0 ≡ z(ϕ), Φ

0 ≡ Φ(ϕ)). Using Fubini’s theorem in (P (ϕt)t), (A(ϕt)t) we see that
ut, zt are solutions of

(P (ϕ)
t)

{
Find ut ∈ VΦt (ϕ) such that

(A(t)∇ut,∇v)0,Ω(ϕ) = 0 ∀v ∈ V (ϕ)

and

(A(ϕ)
t)

{
Find zt ∈ V0(ϕ) such that

(A(t)∇zt,∇v)0,Ω(ϕ) = (A(t)∇ut,∇v)0,Ω(ϕ) ∀v ∈ V0(ϕ),

respectively, where the differential operator A(t) is done by the expression

A(t) = (DFt)
−1

(DFt)
TIt,

with DFt denoting the Jacobian of Ft, It = det(DFt). Let

u̇ = lim
t→0+

ut − u0

t
, ż = lim

t→0+

zt − z0

t
, Φ̇ = lim

t→0+

Φ
t − Φ

0

t

be the material derivatives of u(ϕ), z(ϕ), Φ(ϕ) respectively (limits are considered in
H1

(Ω(ϕ))-norm). Differentiating (P (ϕ)
t
), (A(ϕ)

t
) with respect to t at t = 0+ we see that

u̇ ∈ H1
(Ω(ϕ)), ż ∈ V0(ϕ) are solutions of

( ˙P (ϕ))

{
(∇u̇,∇v)0,Ω(ϕ) = −(A∇u(ϕ),∇v)0,Ω(ϕ) ∀v ∈ V (ϕ)

u̇ = Φ̇ on Σ(ϕ)

and

( ˙A(ϕ))

{
(∇ż,∇v)0,Ω(ϕ) = (A∇u(ϕ),∇v)0,Ω(ϕ)

+ (∇u̇,∇v)0,Ω(ϕ) − (A∇z(ϕ),∇v)0,Ω(ϕ) ∀v ∈ V0(ϕ),

respectively, with
A = divV id− (DV)

T −DV, V = (V1,V2),

where

DV =

(
∂Vi

∂xj

)2

i,j=1

and “id” denotes the identity matrix.
Let

F (Ωt(ϕt)) =
1

2
‖∇zt‖1,Ωt(ϕt) =

1

2
(A(t)∇zt,∇zt)0,Ω(ϕ),

where zt solves (A(ϕ)
t
) and denote ˙F (0) ≡ d

dt
F (Ωt(ϕt))|t=0.



Lemma 3.1. It holds that:

˙F (0) = −
1

2
(A∇z(ϕ),∇z(ϕ))0,Ω(ϕ)(3.2)

+ (A∇u(ϕ),∇z(ϕ))0,Ω(ϕ) + (∇Φ̇,∇z(ϕ))0,Ω(ϕ),

where u(ϕ), z(ϕ) are solutions of (P (ϕ)), (A(ϕ)), respectively.

Proof: A direct calculation yields:

˙F (0) =
1

2
(A∇z(ϕ),∇z(ϕ))0,Ω(ϕ) + (∇ż,∇z(ϕ))0,Ω(ϕ)(3.3)

= −
1

2
(A∇z(ϕ),∇z(ϕ))0,Ω(ϕ)

+ (A∇u(ϕ),∇z(ϕ))0,Ω(ϕ) + (∇u̇,∇z)0,Ω(ϕ)

using the definition of (
˙A(ϕ)) with v := z(ϕ). The function u̇ being the solution of (

˙P (ϕ))

can be split and written as u̇ = ũ + Φ̇, where ũ = 0 on Σ(ϕ). Thus

(∇u̇,∇z)0,Ω(ϕ) = (∇ũ,∇z)0,Ω(ϕ) + (∇Φ̇,∇z(ϕ))0,Ω(ϕ)

= (∇Φ̇,∇z(ϕ))0,Ω(ϕ)

taking into account the definition of (A(ϕ)). From this and (3.3), the assertion follows.

Next we shall suppose that the solutions of (A(ϕ)) and (P (ϕ)) are smooth enough. As
an easy exercise, one can prove

Lemma 3.2. Let f, g be sufficiently smooth. Then

(3.4) (A∇f,∇g)0,Ω(ϕ) = ((V · ∇g),∆f )0,Ω(ϕ) + ((V · ∇f ),∆g)0,Ω(ϕ)

+

∫

∂Ω(ϕ)

(
V1

∂g

∂x2

∂f

∂s
− V2

∂g

∂x1

∂f

∂s

)
ds−

∫

∂Ω(ϕ)

(V · ∇g)
∂f

∂ν
ds.

Evaluating integrals in (3.2), making use of (3.4) and the fact that ∆u(ϕ) = ∆z(ϕ) = 0

in Ω(ϕ), we obtain the following expression for ˙F (0), containing integrals on ∂Ω(ϕ) only.

Lemma 3.3. It holds that:

(3.5) ˙F (0) = −
1

2

∫

∂Ω(ϕ)

V1
∂z

∂x2

∂z

∂s
ds +

1

2

∫

∂Ω(ϕ)

V2
∂z

∂x1

∂z

∂s
ds

+
1

2

∫

∂Ω(ϕ)

(V · ∇z)
∂z

∂ν
ds +

∫

Ω(ϕ)

V1
∂z

∂x2

∂u

∂s
ds

−

∫

∂Ω(ϕ)

V2
∂z

∂x1

∂u

∂s
ds−

∫

∂Ω(ϕ)

(V · ∇z)
∂u

∂ν
ds +

∫

∂Ω(ϕ)

V2
∂z

∂ν
ds.

Definition 3.1. We say that Ω(ϕ̄) ∈ O is a stationary point of F iff

˙F (0) =
d

dt
F (Ωt(ϕ̄t))|t=0 = 0, Ωt(ϕ̄t) = Ft(Ω(ϕ̄))



holds for any vector field V = (V1,V2) with suppVi ⊂ Ω̂, i = 1, 2.

Let Ω(ϕ̄) be a stationary point of F . Taking V = (V1,V2) such that suppVi ⊂ Ω̂, i = 1, 2
only integrals on Γ(ϕ̄) appear in (3.5). As ∂u/∂ν = ∂z/∂ν on Γ(ϕ̄), (3.5) leads to the
following relations on Γ(ϕ̄):

∂z

∂x2

∂z

∂s
+
∂z

∂x1

∂z

∂ν
= 2

∂z

∂x2

∂u

∂s
(3.6)

∂z

∂x1

∂z

∂s
−

∂z

∂x2

∂z

∂ν
= 2

∂z

∂x1

∂u

∂s
− 2

∂z

∂ν
.(3.7)

A direct calculation shows that the left hand side of (3.6) and (3.7) is equal to |∇z|2ν1,
−|∇z|2ν2, respectively, i.e.

|∇z|2ν1 = 2
∂z

∂x2

∂u

∂s
(3.8)

− |∇z|2ν2 = 2
∂z

∂x1

∂u

∂s
− 2

∂z

∂ν
(3.9)

on Γ(ϕ̄).
Let us assume the simplest case, when Γ(ϕ̄) is done by a function ϕ̄ = ϕ̄(x1). Then

ν = (ν1, ν2) =

(
−ϕ̄′

√
1 + (ϕ̄′)2

,
1√

1 + (ϕ̄′)2

)
,

s = (−ν2, ν1) and

(3.10)
∂u

∂s
= −

ϕ̄′

√
1 + (ϕ̄′)2

on Γ(ϕ̄),

using the fact that u(x, ϕ̄(x)) = ϕ̄(x) on Γ(ϕ̄). Now, as a deformation field we use a vector
V, the first component of which is identically equal to zero in Ω(ϕ̄) so that Γ(ϕ̄t) is given
by the function

ϕ̄t(x1) = ϕ̄(x1) + tV2(x1, ϕ̄(x1)), t ≥ 0.

Replacing ∂u/∂s in (3.8) by (3.10), we finally obtain

(3.11) |∇z(ϕ̄)|2 = 2
∂z(ϕ̄)

∂x2
on Γ(ϕ̄).

Consequently ∂z(ϕ̄)/∂x2 ≥ 0 on Γ(ϕ̄). Next we shall suppose that there is no point
(x1, ϕ̄(x1)) lying in Ω(ϕ̄), in which ϕ̄′

(x1) = ±∞. From this and the Hopf maximum
principle, the maximum of z(ϕ̄) is attained on Γ(ϕ̄). We shall show that only the function
z(ϕ̄) ≡ 0 on Γ(ϕ̄) (and consequently z(ϕ̄) ≡ 0 in Ω(ϕ̄)) satisfies (3.11). Indeed, let x∗ ∈ Γ(ϕ̄)

be such that
z(ϕ̄)(x∗) = max

x∈Γ(ϕ̄)
z(ϕ̄)(x).



Let us suppose that z(ϕ̄)(x∗) > 0. Thus also ∂z(ϕ̄)(x∗)/∂ν > 0. From (3.11) it follows:

(3.12) |∇z(x∗)|2 =

∣∣∣∣
∂z(ϕ̄)

∂ν
(x∗)

∣∣∣∣
2

= 2
∂z(ϕ̄)

∂x2
(x∗).

On the other hand
∂z(ϕ̄)

∂x2
= ν2

∂z(ϕ̄)

∂ν
+ ν1

∂z

∂s

holds on Γ(ϕ̄). Especially at x = x∗ one has

∂z(ϕ̄)

∂x2
(x∗) =

1√
1 + (ϕ̄′(x∗))2

∂z(ϕ̄)

∂ν
(x∗).

This, together with (3.12) leads to

(3.13)
∂z(ϕ̄)

∂ν
(x∗) =

2√
1 + (ϕ̄′(x∗))2

Let u(ϕ̄) be the solution of (P (ϕ̄)). Then u(ϕ̄) can be split as follows

u(ϕ̄)(x, y) = f (x, y) + y,

where f is harmonic in Ω(ϕ̄), f = 0 on Γ(ϕ̄)∪Γσ(ϕ̄), f = yi−y on Γi, i = 1, 2 and ∂f/∂ν = −1

on Γ0. Hence f > 0 in Ω(ϕ̄) and

(3.14)
∂f

∂ν
≤ 0 on Γ(ϕ̄).

As ∂u(ϕ̄)/∂ν = ∂z(ϕ̄)/∂ν on Γ(ϕ̄), the relation (3.13) yields:

∂u(ϕ̄)

∂ν
(x∗) =

2√
1 + (ϕ̄′(x∗))2

.

On the other hand

∂u(ϕ̄)

∂ν
(x∗) =

∂f

∂ν
(x∗) +

∂y

∂ν
=
∂f

∂ν
+

1√
1 + (ϕ̄′(x∗))2

=
2√

1 + (ϕ̄′(x∗))2

so that
∂f

∂ν
(x∗) =

1√
1 + (ϕ̄′(x∗))2

> 0

which contradicts (3.14).
Thus we have proved:

Theorem 3.1. Let Ω(ϕ̄) ∈ O be a stationary point of F in the sense of definition 3.1. Let
Γ(ϕ̄) be described by a function ϕ̄ = ϕ̄(x1) admitting no vertical tangent at the interior of
Ω̂. Let u(ϕ̄), z(ϕ̄) be solutions of (P (ϕ̄)), (A(ϕ̄)), respectively on Ω(ϕ̄). Then ∂u(ϕ̄)/∂n = 0

on Γ(ϕ̄).

Proof: From the above considerations, it follows that

max
x∈Γ(ϕ̄)

z(ϕ̄)(x) = 0.

Hence z(ϕ̄) = 0 on Γ(ϕ̄) and also in Ω(ϕ̄). As ∂u(ϕ̄)/∂ν = ∂z(ϕ̄)/∂ν on Γ(ϕ̄), we arrive at
the assertion of the Theorem.



4. Approximation of (P)

The present section deals with the approximation of (P) when the divergence free finite
elements are used for the realization of (P ∗

(ϕ)) and (A∗
(ϕ)). For the sake of simplicity, we

shall assume that Ω̂ is polygonal and Γ(ϕ) is approximated by piecewise linear functions.
More precisely, let Dh : 0 = d0 < d1 < ... < dn(h) = 1 be a partition of [0, 1], the norm of
which tends to zero when h→ 0+ and

Ph
1 = {ϕh : [0, 1] → R

2 |ϕh(0) = A, ϕh(1) ∈ Γ̃2 \ Γ2,

ϕh|di−di
is linear and the graph Γ(ϕh) lies in Ω̂}.

Let
Oh = {Ω(ϕh) ∈ O | ϕh ∈ Ph

1 }.

Any Ω(ϕh) ∈ Oh is a domain with the polygonal boundary ∂Ω(ϕh). Let {T (h, ϕh)} be a
family of triangulations of Ω(ϕh) ∈ Oh satisfying the usual requirements for the mutual
position of elements belonging to T (h, ϕh). Moreover, we shall assume that

A1. for any h > 0 fixed, the triangulation T (h, ϕh) depends continuously on ϕh ∈ P 1
h ,

i.e. the position of nodes of T (h, ϕh) depends continuously on changes of ϕh ∈ Ph
1 ;

A2. for any h > 0 fixed, the triangulations T (h, ϕh) are “topologically” equivalent, i.e.
the neighbours of any node of T (h, ϕh) remain the same for any ϕh ∈ Ph

1 ;
A3. the family {T (h, ϕh)}, h > 0, ϕh ∈ Ph

1 is uniformly regular in the following sense:
∃ϑ0 > 0 such that ϑ(h, ϕh) ≥ ϑ0 for any h > 0 and for any Ω(ϕh) ∈ Oh, where
ϑ(h, ϕh) is the minimum interior angle of elements, belonging to T (h, ϕh).

The domain Ω(ϕh) with a given triangulation T (h, ϕh) ∈ {T (h, ϕh)} satisfying A1–A3 will
be denoted by Ωh.
With any T (h, ϕh), finite dimensional subspaces Kh

00(ϕh), K
0h
00 (ϕh) of K00(ϕh), K

0
00(ϕh),

respectively will be associated:

Kh
00(ϕh) ⊂ K00(ϕh), dimKh

00(ϕh) = m1(h) → ∞ if h→ 0+;

K0h
00 (ϕh) ⊂ K0

00(ϕh), dimK0h
00 (ϕh) = m2(h) → ∞ if h→ 0 + .

Remark 4.1. In practice, functions belonging to Kh
00(ϕh), K

0h
00 (ϕh) are piecewise polyno-

mial on T (h, ϕh) (see next section).

Moreover, we shall assume families of {K0
00(ϕh)}, {K0h

00 (ϕh)} having the following ap-
proximating properties:

A4. for any µ ∈ K00(ϕ), K0
00(ϕ), respectively, Ω(ϕ) ∈ O and any sequence {Ωh}, Ωh ∈ Oh

such that Ωh → Ω there is a sequence {µh}, µh ∈ Kh
00(ϕh), K

0h
00 (ϕh) respectively,

such that µ̃h → µ̃ in (L2
(Ω̂))

2, where the symbol ˜ denotes the extension by zero
on Ω̂.

The approximations of (P ∗
(ϕ)), (A∗

(ϕ)) are defined as follows:

(P ∗
h (ϕh))

{
Find λh(ϕh) ∈ Kh

00(ϕh) such that

(k−1λh(ϕh), µh)0,Ωh
= (∇Φh(ϕh), µh)0,Ωh

∀µ ∈ Kh
00(ϕh)



and

(A∗
h(ϕh))

{
Find χh(ϕh) ∈ Kλh,h

00 (ϕh) such that

(χh(ϕh), µh)0,Ωh
= 0 ∀µh ∈ K0h

00 (ϕh).

Here Φh(ϕh) is a function fromH1
(Ω(ϕh)) realizing the nonhomogeneous Dirichlet boundary

conditions on Σ(ϕh) and

Kλh,h
00 (ϕh) = {µh ∈ Kh

00(ϕh) | µh · ν = λh · ν on Γ(ϕh), where λh ∈ K0h
00 (ϕh)}.

Finally, denote by Fh,ε(Ωh) the cost functional defined by

Fh,ε(Ωh) =
1

2
‖χh(ϕh)‖

2
0,Ωh

+
1

2ε

∫

Γσ(ϕh)

(
[λh · ν]+

)2
ds,

where λh, χh are solutions of (P ∗
h (ϕh)), (A

∗
h(ϕh)), respectively, ε > 0 is a penalty parameter

and [·]+ stands for the positive part of a real number.
Let h, ε > 0 be given. By the approximation of (P) we call the problem

(Phε)

{
Find Ω

∗
hε ∈ Oh such that

Fhε(Ω
∗
hε) ≤ Fhε(Ωh) ∀Ωh ∈ Oh.

Remark 4.2. The state constraint λ(ϕ) · ν ≤ 0 on Γσ(ϕ) appearing in the continuous case
is treated by means of the penalty approach in the discrete case.

It is not difficult to prove:

Theorem 4.1. Let A1–A2 be satisfied. Then there exists a solution of (Phε) for any h, ε > 0.

Next we shall study the relationship between the continuous case and its discretization.
For the sake of simplicity, the state constraint λ(ϕ) · ν ≤ 0 on Γσ(ϕ) will be omitted. The
failure of this constraint can be justified in cases when the dam is such that ν2 ≤ 0 along
Γ̃2 (especially when the outflow part of the dam is vertical). In such a case, the condition
λ(ϕ) · ν ≤ 0 is the consequence of the maximum principle. When the condition λ(ϕ) · ν ≤ 0

on Γσ(ϕ) is omitted, the discrete cost functional takes a simpler form, namely:

Fh(Ωh) =
1

2
‖χh(ϕh)‖

2
0,Ωh

and the approximation of (P) reads as follows:

(Ph)

{
Find Ωh

∗ ∈ Oh such that

Fh(Ωh
∗
) ≤ Fh(Ωh) ∀Ωh ∈ Oh.

Remark 4.3. In practical applications however it is recommended to use the penalized form
Fhε forcing the solution Ωh

∗ to be physically admissible (let us recall that no assumptions,
concerning the monotonicity of Γ(ϕ) are included into the definition of O). The automatic
satisfaction of the condition λ(ϕ) · ν ≤ 0 on Γσ(ϕ) as a consequence of the maximum
principle does not imply the same for λh(ϕh) · ν on Γσ(ϕh), in general.

Next we shall study the relation between (P) and (Ph) for h → 0+. First of all we start
with several lemmas.



Lemma 4.1. Let Ωh → Ω(ϕ), Ωh ∈ Oh, Ω(ϕ) ∈ O. Let {µh}, µh ∈ Kh
00(ϕh), K

0h
00 (ϕh),

respectively be such that
µ̃h ⇀ µ̃ in (L2

(Ω̂))
2.

Then µ ≡ µ̃|Ω(ϕ) belongs to K00(ϕ), K0
00(ϕ), respectively.

Proof: is contained in the proof of Lemma 2.2.

Lemma 4.2. Let Ωh → Ω(ϕ), Ωh ∈ Oh, Ω(ϕ) ∈ O. Let {λh}, {µh}, λh ∈ Kh
00(ϕh), µh ∈

Kλh,h
00 (ϕh) be such that

˜λh ⇀
˜λ in (L2

(Ω̂))
2,(4.1)

µ̃h ⇀ µ̃ in (L2
(Ω̂))

2.(4.2)

Then µ ≡ µ̃|Ω(ϕ) ∈ Kλ
00(ϕ), where λ ≡ ˜λ|Ω(ϕ)

Proof: Let µh ∈ Kλh,h
00 (ϕh), i.e.

(4.3) (µh,∇v)0,Ωh
= (λh,∇v)0,Ωh

holds for any v ∈ V0(ϕh) = {v ∈ H1
(Ω(ϕh)) | v = 0 on Γ1 ∪ Γ2 ∪ Γσ(ϕh)}. Let v ∈ V0(ϕ) be

given and v̂ ∈ H1
(Ω̂) its extension such that v̂ = 0 on ∂Ω̂ \ Γ̄0. Then v̂|Ωh

∈ V0(ϕh) for any
Ωh ∈ Oh and it can be inserted into (4.3), written equivalently in the form

(µ̃hIh,∇v̂)0,Ω̂ = (
˜λhIh,∇v̂)0,Ω̂,

where Ih is the characteristic function of Ωh. Passing to the limit with h→ 0+ and taking
into account (4.1), (4.2) we arrive at

(µ̃,∇v)0,Ω(ϕ) = (
˜λ,∇v)0,Ω(ϕ),

i.e. µ ≡ ˜|Ω(ϕ) ∈ Kλ
00(ϕ).

Lemma 4.3. Let Ωh → Ω(ϕ), Ωh ∈ Oh, Ω(ϕ) ∈ O, λh(ϕh) ∈ Kh
00(ϕh), χh(ϕh) ∈ Kλh,h

00 (ϕh)

be solutions of (P ∗
h (ϕh)), (A∗

h(ϕh)), respectively. Moreover, let A4 be satisfied. Then there
exist subsequences of {λh(ϕh)} and {χh(ϕh)} such that

˜λh(ϕh) ⇀
˜λ in (L2

(Ω̂))
2(4.4)

µ̃h(ϕh) ⇀ µ̃ in (L2
(Ω̂))

2.(4.5)

Moreover, λ(ϕ) ≡ ˜λ|Ω(ϕ), χ(ϕ) ≡ χ̃|Ω(ϕ) are solutions of (P ∗
(ϕ)), (A∗

(ϕ)), respectively.

Proof: Let λh(ϕh) ∈ Kh
00(ϕh) be a solution of (P ∗

h (ϕh)):

(4.6) (k−1λh(ϕh), µh)0,Ωh
= (∇Φh(ϕh), µh)0,Ωh

∀µh ∈ Kh
00(ϕh).

Arguing in the same way as in Lemma 2.2, one can assume that the sequence {‖Φh(ϕh)‖1,Ωh
}

is bounded and
Φ̃h(ϕh) ⇀ Ψ1, ∇̃Φh(ϕh) ⇀ Ψ2 in(L2

(Ω̂))
2.



Denoting by Φ ≡ Ψ1|Ω(ϕ), one has Ψ2|Ω(ϕ) = ∇Φ and Φ = Φ(ϕ), i.e. Φ realizes the nonho-
mogeneous Dirichlet boundary condition on Σ(ϕ).
From (4.6) it follows that {‖λh(ϕh)‖0,Ωh

} is bounded. Hence there is a function ˜λ ∈
(L2

(Ω̂))
2 such that

˜λh(ϕh) ⇀
˜λ in (L2

(Ω̂))
2.

Let us show that λ ≡ ˜λ|Ω(ϕ) solves (P ∗
(ϕ)). The fact that λ ∈ K00(ϕ) follows from

Lemma 4.1. Let µ ∈ K00(ϕ) be given. Accordingly to A4 there is a sequence {µh}, µh ∈
Kh

00(ϕh) and such that
µ̃h → µ̃ in (L2

(Ω̂)).

Inserting µh into (4.6) and passing to the limit with h→ 0+ we finally obtain:

(k−1λ, µ)0,Ω(ϕ) = (k−1 ˜λ, µ̃)0,Ω̂ = (∇̃Φ(ϕ), µ̃)0,Ω̂ = (∇Φ(ϕ), µ)0,Ω̂

i.e. λ solves (P ∗
(ϕ)). The fact that χ is a solution of (A∗

(ϕ)) can be verified in the same
way.

The question is: if and when the weak convergence in (4.4)–(4.5) can be replaced by
the strong one, which will be needed for establishing the relation between (P) and (Ph).
Let Ω(ϕ) ∈ O be given. Then its variable part Γ(ϕ) can be rectified, i.e. Γ(ϕ) can be

approximated by a sequence {Γ(ϕh)}, where Γ(ϕh) is given by the graph of the piecewise
linear function ϕh, the lagrange interpolation of ϕ. Moreover if Ω(ϕ) ∈ O then Ω(ϕh) ∈ Oh

and the boundaries of Ω(ϕ) and Ω(ϕh) are close even in H1-norm. Then one can construct
functions {Φh(ϕh)} and Φ(ϕ) in such a way that

(4.7) Φ̂h(ϕh) → Φ̂(ϕ) in H1
(Ω̂),

where ̂ denotes the suitable extension of Φh,Φ, respectively, on Ω̂.

Lemma 4.4. Let Ω(ϕ) ∈ O be given and {Ωh(ϕh)}, Ωh(ϕh) ∈ Oh be a sequence with Γ(ϕh)

being the linear interpolation of Γ(ϕ). Under the same assumptions as in Lemma 4.3, the
weak convergence in (4.4)–(4.5) can be replaced by the strong one.

Proof: Substituting µh = λh(ϕh) into (4.6) we have

(k−1 ˜λh(ϕh),
˜λh(ϕh))0,Ω̂ = (∇Φ̂h(ϕh),

˜λh(ϕh))0,Ω̂.

Hence

lim
h→0+

(k−1 ˜λh(ϕh),
˜λh(ϕh))0,Ω̂ = (∇Φ̂h(ϕh),

˜λh(ϕh))0,Ω̂

= (∇Φ̂(ϕ), ˜λ(ϕ))0,Ω̂ = (k−1 ˜λ(ϕ), ˜λ(ϕ))0,Ω̂

taking into account (4.6) and (4.7). From this (4.4) follows.

Let χh(ϕh) ∈ Kλh,h
00 (ϕh) be a solution of (A∗

h(ϕh)):

(4.8) (χh(ϕh), µh)0,Ωh
= 0 ∀µh ∈ K0h

00 (ϕh).



Inserting µh = λh(ϕh) − χh(ϕh) ∈ K0h
00 (ϕh) into (4.8) we obtain:

(χ̃h(ϕh), χ̃h(ϕh))0,Ω̂ = (χ̃h(ϕh),
˜λh(ϕh))0,Ω̂.

Hence

lim
h→0+

‖χ̃h(ϕh)‖
2
0,Ω̂

= (χ̃(ϕ), ˜λ(ϕ))0,Ω̂

= (χ̃(ϕ), χ̃(ϕ))0,Ω̂ = ‖χ̃(ϕ)‖2
0,Ω̂
.

Now we are ready to prove the main result of this section.

Theorem 4.2. Let Ωh
∗

= Ω(ϕ∗
h) be a solution of (Ph) and λh(ϕh

∗
), χh(ϕh

∗
) be solutions of

(P ∗
h (ϕh

∗
)) and (A∗

h(ϕh
∗
)), respectively. Then there exist subsequences of {Ω∗

h}, {λh(ϕh
∗
)},

{χh(ϕh
∗
)} and elements Ω(ϕ∗

) ∈ O, λ(ϕ∗
) ∈ K00(ϕ

∗
), χ(ϕ∗

) ∈ K
λ(ϕ∗)
00 (ϕ∗

) such that

(4.9)

Ω
∗
h → Ω(ϕ∗

)

˜λh(ϕ
∗
h) ⇀

˜λ(ϕ∗
)

χ̃h(ϕh
∗
) ⇀ χ̃(ϕ∗

)

}
in (L2

(Ω̂))
2.

Moreover, Ω(ϕ∗
) is a solution of (P) and λ(ϕ∗

) and χ(ϕ∗
) are solutions of (P ∗

(ϕ∗
)) and

(A∗
(ϕ∗

)) respectively.

Proof: We may already assume that

Ωh
∗ → Ω(ϕ∗

) ∈ O.

According to Lemma 4.3, functions λ(ϕ∗
) and χ(ϕ∗

) from (4.9) are solutions of (P (ϕ∗
))

and (A(ϕ∗
)). From the definition of (Ph) and Fh it follows

(4.10)
1

2
‖χh(ϕh

∗
)‖20,Ωh

∗ ≤
1

2
‖χh(ϕh)‖

2
0,Ωh

∀Ωh ∈ Oh.

Let Ω(ϕ) ∈ O be given and λ(ϕ), χ(ϕ) be corresponding solutions of (P ∗
(ϕ)) and (A∗

(ϕ)),
respectively. Then there exists a sequence {Ωh(ϕh)}, Ωh(ϕh) ∈ Oh satisfying all assump-
tions of Lemma 4.4, especially

˜λh(ϕh) →
˜λ(ϕ) in (L2

(Ω̂))
2,

χ̃h(ϕh) → χ̃(ϕ) in (L2
(Ω̂))

2.

Inserting these Ωh and χh(ϕh) into the right hand side of (4.10) and passing to the limit
in (4.10) with h→ 0+ we arrive at

1

2
‖χ(ϕ∗

)‖20,Ω(ϕ∗) ≤ lim inf
h→0+

1

2
‖χh(ϕh

∗
)‖20,Ωh

∗

≤ lim
h→0+

1

2
‖χh(ϕh)‖

2
0,Ωh

=
1

2
‖χ(ϕ)‖20,Ω(ϕ).

As Ω(ϕ) ∈ O is arbitrary, Ω(ϕ∗
) is a solution of (P).



5. Numerical realization

For the numerical solution of the dual state problem one must construct a divergence-
free finite element space. In two dimensions this can be done by using the so-called stream
function. For any ϕh ∈ Ph

1 the space K00(ϕh) can be identified with

curlW (ϕh) = {µ ∈ (L2
(Ω(ϕh)))

2 | ∃w ∈W (ϕh) such that µ = curlw}.

Here curlw = (∂w/∂y,−∂w/∂x) and

W (ϕh) = {w ∈ H1
(Ω(ϕh)) | w = 0 on Γ0}.

Let Wh(ϕh) ⊂ W (ϕh) be a finite element space of functions over T (h, ϕh). Define the
space of solenoidal finite elements

(5.1) Kh
00(ϕh) = curlWh(ϕh),

which is an internal approximation of K00(ϕh).
From the bijectivity of the operator curl and the definition of (5.1) it follows that

dimKh
00(ϕh) = dimWh(ϕh). Moreover if {ψi}

n
i=1 is the basis of Wh(ϕh) then

(5.2) {Ψi}
n
i=1, Ψi = curlψi

is the basis of Kh
00(ϕh).

On Ωh(ϕh) ∈ Oh we define the approximation of the dual state problem as follows:

(Ph(ϕh))

{
λh(ϕh) ∈ Kh

00(ϕh) :

(λh(ϕh), µ)(L(Ω(ϕh))) = (∇Φ, µ)(L(Ω(ϕh))) ∀µ ∈ Kh
00(ϕh).

The approximation of the problem (Phε) is defined as follows:

(P̃hε)

{
Find Ω

∗
hε ∈ Oh such that

Nεh(Ω
∗
hε) ≤ Nεh(Ωh) ∀Ωh ∈ Oh,

where
Nεh(Ωh) =

1

2
‖λh(ϕh) · ν‖

2
0,Γ(ϕh)

+
1

2ε
‖[λh(ϕh) · ν]

+‖20,Γσ
.

Taking into account (5.2), we get a linear system of algebraic equations

n∑

i=1

ci(Ψi,Ψj)(L(Ω(ϕh))) = (∇Φ,Ψj)(L(Ω(ϕh)))

which can be written in a compact matrix form as

(5.3) K(a) c = f(a).

The symbol a denotes the vector of the discrete design variables. Components of this
vector are equal to ϕh(di), i = 1, ..., n(h), ϕh ∈ Ph

1 .
As λh(ϕh) =

∑n
i=1 ciΨi = B(a) c, the cost functional can be written in a matrix form

˜N (a, c) =
1

2

∑

Γe⊂Γ(ϕh)

∫

Γe

(B(a) c · ν)2 ds +
1

2ε

∑

Γe⊂Γσ

∫

Γe

(
[B(a) c · ν]+

)2
ds.

To be able to use efficient optimization algorithms in solving (P̃hε) one must calculate
the gradient of the cost functional ˜N . The following result is standard:



Theorem 5.1. Partial derivatives ∂ ˜N/∂aj are given by

(5.4)
∂ ˜N (a, c(a))

∂aj
=
∂ ˜N (a, c)

∂aj
+ p(a)T

(
∂f(a)

∂aj
−
∂K(a)

∂aj
c(a)

)
,

where c(a) is the solution of (5.3) and p is the solution of the adjoint equation

K(a)p(a) = ∇c
˜N (a, c(a)).

For the construction of Kh
00(ϕh), ϕh ∈ P 1

h we use the spaceWh(ϕh) made from piecewise
linear triangular and piecewise bilinear quadrilateral finite elements. As λh is constant on
element boundaries the cost functional can be written as follows

˜N (a, c) =

∑

Γe⊂Γ(ϕh)∪Γσ

meas(Γ
e
)ρe(λ

e · νe),

where λe ≡ λeh = Bec and

ρe(s) =





1

2
s2, Γ

e ⊂ Γ(ϕh)

1

2
(s+)

2, Γ
e ⊂ Γσ(ϕh).

Then we have
∇c

˜N (a, c) =

∑

Γe

meas(Γ
e
)ρ′e(λ

e · νe)(Be
)
T
νe

and

∂ ˜N (a, c)

∂aj
=

∑

Γe

{
meas(Γ

e
)ρ′e(λ

e · νe)
∂Be

∂aj
c

+
∂ meas(Γ

e
)

∂aj
ρe(λ

e · νe) + meas(Γ
e
)ρ′e(λ

e · νe)λe ·
∂νe

∂aj

}
.

The terms ∂f/∂aj , ∂K/∂aj and ∂Be/∂aj can be calculated using techniques described
in [8].

6. Numerical examples

In this Section we report our experiences in solving the dam problem numerically. In op-
timization we have used a Sequential Quadratic Programming (SQP) algorithm E04VCF
from the NAG-library [9]. In SQP-methods a new approximation for the optimization
parameter a is found from the equation

a(k+1)
= a(k) + ηkb

(k),

where a direction of descent b(k) is found as a solution of a quadratic programming sub-
problem and ηk is the step length obtained via line search.
The state problem and adjoint problem were solved using band-Cholesky method. All

computations were done in double precision using HP 9000/835-computer.
The numerical value of the cost has no physical meaning. Instead we use the ratio R

between the final and the initial cost. In the numerical computations one may expect that
R 6= 0. Thus it may be difficult to say if the result obtained is really a global optimum or
just a local one. Therefore one is recommended to use graphical post-processing to plot
flow vectors, streamlines, etc. to ensure the correct solution.



Example 6.1. In order to make a comparison with published numerical results we first
solve the problem with a rectangular homogeneous dam Ω̂ = (0, L) × (0, y1). As in [6] we
choose L = 1.62, y1 = 3.22 and y2 = 0.84 . In [6] the position of the free boundary on the
right side of the dam was ϕ(L) = 2.089 when 400 elements were used and ϕ(L) = 2.070 with
800 elements. For the coarser mesh R = 0.975 × 10

−5 was reported.
We solved the problem with 72 elements using the dual approach. After 21 SQP-

iterations and 36 CPU-seconds a solution with R = 1.65× 10
−6 was obtained. The position

of the free boundary on the right side of the dam was ϕ(L) = 2.072. The final mesh and
streamlines are shown in Figures 2–3.
In [6] the free boundary was constrained to be concave. Our computations were done

without any additional constraints. However, in the case of primal formulation of the state
problem we could not get a physical solution without assuming the free boundary to be de-
creasing. This is a very common situation when a simple piecewise linear parametrization
for the free boundary is used. More complicated spline approximation would yield much
better results. In the case of dual variational formulation the approximate state solution
is more “physical” and seems to force the boundary to be smoother without additional
restrictions.

Figure 2: Finite element mesh

Example 6.2. We consider a nonhomogeneous dam Ω̂ = (0, 1/2) × (0, 1) with y1 = 1, y2 = 0

and

k(x, y) =

{
1/10, y > 1/2

10, y ≤ 1/2.

This problem was also discussed in [2]. We solved this problem using the dual approach
with 176 finite elements. As the initial guess a completely wet dam was used. After 60
SQP-iterations and 365 CPU-seconds a solution with R = 7.19 × 10

−8 was obtained. The
streamlines are shown in Figure 4. Note that in this example the free boundary is not
given as a graph of a function y = ϕ(x).



Figure 3: Streamlines

Figure 4: Streamlines

Example 6.3. We assume the case of a trapetzoidal dam, the geometry of which is given
in Figure 5, with y1 = 1 and y2 = 0.1 . We shall solve the problem by using the primal and
the dual formulations of the state problem in order to show the superiority of the dual
approach. We demonstrate also an important role of the state constraint ∂u/∂ν ≤ 0 on
Γσ(ϕ). Contrary to previous examples, this condition is not satisfied à priori. The finite
element mesh consists of 90 elements. The number of optimization variables is 13. In all
cases the initial guess of the free boundary corresponds to a completely wet dam.

a) We solve the problem by using the primal formulation of the state problem. The
constraint ∂u/∂ν ≤ 0 on Γσ was applied only on the element lying on the junction of Γ(ϕ)

and Γσ. After 7 SQP-iterations and 25 CPU-seconds a solution with R = 2.565× 10
−4 was

obtained. The equipotential lines of the flow are shown in Figure 6. At the end of the free



boundary some oscillation is visible.

b) We solve the problem by using the dual formulation of the state problem. We do
not include the condition ∂u/∂ν ≤ 0 on Γσ. As the result we got R = 8.124 × 10

−3 but the
solution shown in Figure 7 is clearly unphysical.

c) We solve the problem by using the dual formulation and the penalization of the state
constraint with ε = 10

−2. After 24 SQP-iterations and 82 CPU-seconds a solution with
R = 1.193 × 10

−6 was obtained. The streamlines of the flow are shown in Figure 8.

Figure 5: Geometry of the trapetzoidal dam

Figure 6: Primal formulation of the state problem

Figure 7: Unphysical solution



Figure 8: Dual formulation of the state problem

====7. Conclusions

The numerical calculations indicate that the dual variational formulation is suitable for
the numerical solution of the dam problem. The free boundary obtained is quite smooth
even for rather coarse meshes. In two dimensions the construction of a divergence free
finite element space is easily done with the aid of a stream function. In non-rectangular
geometries it is necessary to include the state constraint to ensure a physical solution.
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R.A.E. Mäkinen, Department of Mathematics, University of Jyväskylä,
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