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*Czechoslovak Academy of Sciences, Prague, Czechoslovakia
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Introduction

One often meets elliptic problems in three-dimensional domains Ω which are
generated by the rotation of a bounded plane domain D around an axis. Then
the most suitable approach is to use cylindrical coordinates. If the data of the
problem are axial symmetric, the problem is then reduced to the two-dimensional
domain D.

In the paper [9] some axisymmetric domain optimization problems were solved
numerically using the standard finite element method. In this paper we solve a
similar problem numerically using the dual finite element method. The motivation
for the use of the dual approach is that the cost function is given purely in terms
of the cogradient of the solution. The dual approach allows us to calculate the
cogradient directly. The formulation of the problem with proofs for the existence
of a solution and convergence of approximations, was given by Hlaváček in [8].

In this work the modified definition of the set of admissible designs, presented
in [9], is adopted. Using the techniques developed by Hlaváček and Kř́ıžek in [7]
the implementation of the dual approach can be done in the similar way as in the
case of the standard primal approach.

1. The state problem

We shall consider a class of admissible domains D(α), where

D(α) = {(r, z) | 0 < r < α(z), 0 < z < 1}
1
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and the function α(z) – the design variable – belongs to the following set of ad-
missible functions

Uad = {α ∈ C(1),1([0, 1]) |0 < αmin ≤ α(z) ≤ αmax, |α′(z)| ≤ C1,

|α′′(z)| ≤ C2 a.e. in (0, 1),

∫ 1

0

α2 dz = C3}

with given positive constants αmin, αmax, C1, C2, C3. Here C(1),1([0, 1]) denotes
the space of Lipschitz functions with Lipschitz-continuous derivatives.

Let Γ(α) denote the graph of the function α,

Γ0 = ∂D(α) ∩ {r = 0}, Γ1(α) = ∂D(α) ∩ {z = 0}, Γ2(α) = ∂D(α) ∩ {z = 1}.

Figure 1.1

We shall consider the following boundary value problem

(1.1)



−
3∑
i=1

∂

∂xi

(
Ai(x)

∂u

∂xi

)
= f̂ in Ω(α),

3∑
i=1

Ai
∂u

∂xi
νi = 0 on S1(α) ∪ S2(α),

u = 0 on S(α),

where Ω(α) is generated by rotation of D(α) around the x3-axis, Si(α) by rotation
of Γi(α), i = 1, 2 and S(α) by rotation of Γ(α), (see Figure 1.1), νi are components
of the unit outward normal with respect to ∂Ω(α).

Let Ω̂ be the cylindrical domain generated by rotation of the rectangle D̂ =
(0, δ)× (0, 1), δ > αmax.

Assume that the function f̂ in (1.1) is determined as the restriction to Ω(α) of

an axisymmetric function f̂ ∈ L2(Ω̂).
Assume that the coefficients Ai are restrictions to Ω(α) of axisymmetric func-

tions Ai ∈ L∞(Ω̂), A1 = A2 a.e. and a positive constant a0 exists such that

(1.2) Ai(x) ≥ a0 a.e. in Ω̂.

Let us denote A1 = A2 = ar, A3 = az, f(r, z) = f̂(r cosϑ, r sinϑ, z).
Passing to the cylindrical coordinate system, we obtain the following state prob-

lem:

(1.3)


−1

r

∂

∂r

(
rar

∂y

∂r

)
− ∂

∂z

(
az
∂y

∂z

)
= f in D(α),

az
∂y

∂z
= 0 on Γ1(α) ∪ Γ2(α),

y = 0 on Γ(α).
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Let k ≥ 0 and n be integers. We shall denote by Lmrn(D) the space of measurable
functions u, for which

‖u‖m0,rn,D =

∫
D

|u|mrn dr dz < +∞, m = 1, 2.

We shall denote by W k
2,rn(D) the weighted Sobolev space with the weight rn and

the norm

‖u‖k,rn,D =

∑
|s|≤k

∫
D

|Dsu|2 rn dr dz

 1
2

,

where Ds denotes any partial derivative of the order s. The same notations will
be used also for vector functions.

The weak formulation of the state problem (1.3) reads

(1.4)


Find y = y(α) ∈ V (α) such that∫
D(α)

(
ar
∂y

∂r

∂v

∂r
+ az

∂y

∂z

∂v

∂z

)
r dr dz =

∫
D(α)

fv r dr dz ∀v ∈ V (α),

where
V (α) = {v ∈W 1

2,r(D(α)) | γv = 0 on Γ(α)}.

The trace operator γ : W 1
2,r(D(α))→ L2

r(Γ(α)) is well defined also in the axisym-
metric case – see [5].

Lemma 1.1. The state problem (1.4) has a unique weak solution y(α) for all
α ∈ Uad.

Proof. There exists a positive constant c such that

(1.5)

∫
D(α)

| gradu|2 r dr dz ≥ c‖u‖21,r,D(α)

holds for all u ∈ V (α) and α ∈ Uad. (For the proof, see [5]–Lemma 3). Using
(1.2) and (1.5) we derive that the problem is V (α)-elliptic and therefore uniquely

solvable for any α ∈ Uad. Then cograd y(α) ∈
[
L2
r(D(α))

]2
.

2. Setting of the domain optimization problem
and dual variational formulation of the state problem

We define the Domain Optimization Problem:

(P)

{
Find α∗ ∈ Uad such that

J(α∗, y(α∗)) ≤ J(α, y(α)) ∀α ∈ Uad,

where y(α) denotes the solution of the state problem (1.4) and

J(α, y(α)) =
1

2

∫
D(α)

| cograd y(α)− g|2 r dr dz, g ∈
[
L2
r(D̂)

]2
,

(2.1)

cograd y =

(
ar
∂y

∂r
, az

∂y

∂z

)T

.
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Since the cost functional is given in terms of the cogradient of the solution, we
shall employ the dual variational formulation of the state problem (1.4). Let us
recall the latter formulation, the derivation of which can be found e.g. in the paper
[7]–Part I, Section 2.

Let us introduce the notation H(α) =
[
L2
r(D(α))

]2
and the following bilinear

form in H(α)×H(α)

(q,p)H(α) =

∫
D(α)

(a−1
r qrpr + a−1

z qzpz) r dr dz,

‖q‖H(α) =
√

(q,q)H(α).

It is easy to see that the norms ‖ · ‖H(α) and ‖ · ‖0,r,D(α) are equivalent by virtue
of (1.2). Moreover, let us define

B(α;q, v) =

∫
D(α)

(
qr
∂v

∂r
+ qz

∂v

∂z

)
r dr dz,

L(v) =

∫
D(α)

fv r dr dz,

S(q) =
1

2
‖q‖2H(α),

Qf (α) = {q ∈ H(α) | B(α;q, v) = L(v) ∀v ∈ V (α)}.

The principle of minimum complementary energy then gives

(2.2) q(α) = argmin
t∈Qf (α)

S(t)

if and only if q(α) = cograd y(α).
We assume that

(2.3)

∫ r

0

t f(t, z) dt ∈ L2
1/r(D̂).

Then the following vector field

(2.4) λλλ =

(
−1

r

∫ r

0

t f(t, z) dt, 0

)T

belongs to the set Qf (α) for any α ∈ U0
ad, where

U0
ad = {α ∈ C(0),1([0, 1]) | αmin ≤ α(z) ≤ αmax}.

Defining the subspace

Q(α) = {q ∈ H(α) | B(α;q, v) = 0 ∀v ∈ V (α)},

we may write Qf (α) = λλλ+Q(α). Substituting q = λλλ+ p, p ∈ Q(α) into (2.2), we
obtain that

(2.5) p(α) = argmin
t∈Q(α)

{S(t) + (λλλ, t)H(α)}
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if and only if p(α) = cograd y(α) − λλλ. The sufficient and necessary condition for
the minimizer p(α) ∈ Q(α) is

(2.6) (p(α), t)H(α) = −(λλλ, t)H(α) ∀t ∈ Q(α).

The latter minimum problem has a unique solution p(α) for any α ∈ Uad.
The Domain Optimization Problem (P) is replaced by the following Equivalent

Domain Optimization Problem:

(P∗)

{
Find α∗ ∈ Uad such that

J∗(α∗,q(α∗)) ≤ J∗(α,q(α)) ∀α ∈ Uad,

where

(2.7) J∗(α,q) =
1

2

∫
D(α)

|q− g|2 r dr dz, q(α) = λλλ+ p(α),

λλλ is defined by the formula (2.4) and p(α) is the solution of (2.6).

3. Approximation by finite elements

In the present Section we propose an approximate solution of the domain opti-
mization problem (P∗), making use of piecewise linear design variable and quadri-
lateral finite elements with bilinear shape functions for solving the state problem.

Let N be a positive integer and h = 1
N . We denote by ∆j , j = 1, 2, ..., N, the

subintervals [(j − 1)h, jh] and introduce the set

Uhad = {αh ∈ C(0),1([0, 1]) |0 < αmin ≤ αh(z) ≤ αmax,

αh|∆j
∈ P1(∆j) ∀∆j , j = 1, 2, ..., N,

|α′h| ≤ C1, |δ2
hαh| ≤ C2,

∫ 1

0

α2
h dz = C3},

where C(0),1([0, 1]) denotes the set of Lipschitz-functions, P1(∆j) is the set of
linear functions defined on ∆j and δ2

hαh denotes the second difference

(3.1) δ2
hαh(jh) =

1

h2

[
αh((j + 1)h)− 2αh(jh) + αh((j − 1)h)

]
, j = 1, ..., N − 1.

Let Dh = D(αh) denote the domain bounded by the graph Γh = Γ(αh) of the
function αh ∈ Uhad. The polygonal domain Dh will be carved into quadrilaterals
K in the following way. We choose α0 ∈ (0, αmin) and introduce a uniform mesh
on the rectangle R = [0, α0]× [0, 1], independent of αh, if h is fixed.

In the remaining partDh\R let the nodal points divide the segments [α0, αh(jh)],
j = 1, 2, ..., N , into N ′ equal segments, where

N ′ = 1 + b(αmax − α0)Nc

and the brackets b c denote the integer part of the number inside. Consequently,
one obtains a regular family {Th(αh)}, h→ 0, αh ∈ Uhad, of meshes (cf. [1]).

In what follows, we shall assume in addition that

(3.2) f(·, z)|D̂\R ∈ C([α0, δ]), ar(·, z)|D̂\R, az(·, z)|D̂\R ∈ C
1([α0, δ])
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for almost all z ∈ (0, 1).
We define the approximate state problem

(3.3)

{
Find ph(αh) ∈ Sh such that

(ph(αh), th)H(αh) = −(λλλ, th)H(αh) ∀th ∈ Sh,

where Sh ⊂ Q(α) is a finite dimensional subspace.
The equilibrium condition in the definition of Q(α) implies that standard finite

elements cannot be directly utilized. Therefore we use the method proposed in
the paper [7].

We introduce the spaces

X(α) = W 1
2,r(D(α)) ∩ L2

1/r(D(α))

and
Y (α) = W 1

2,r3(D(α)) ∩ L2
r(D(α))

with the norms

‖ϕ‖X(α) =

(∫
D(α)

((ϕ
r

)2

+ | gradϕ|2
)
r dr dz

) 1
2

and

‖v‖Y (α) =

(∫
D(α)

(
v2 + | grad v|2 r2

)
r dr dz

) 1
2

respectively. The operator

(3.4) curlϕ =

(
∂ϕ

∂z
, −ϕ

r
− ∂ϕ

∂r

)T

is then well-defined on the subspace

(3.5) W (α) = {ϕ ∈ X(α) | γϕ = 0 on Γ1(α) ∪ Γ2(α)}.

For any α ∈ U0
ad the space Q(α) can be identified with

(3.6) curlW (α) = {q ∈ H(α) | ∃ϕ ∈W (α) such that q = curlϕ}

as curl : W (α) → Q(α) is a one-to-one mapping ([7]–Theorem 4.6). For any
α ∈ U0

ad and any u ∈ X(α) we have the inequalities

1√
3
‖u‖X(α) ≤ ‖

u

r
‖Y (α) ≤

√
3‖u‖X(α).

Thus, if we construct approximations of q ∈ Q(α), we may write

(3.7) q = curlϕ = curl(rψ), ψ ∈ Y0(α) = {v ∈ Y (α) | v = 0 on Γ1(α) ∪ Γ2(α)}

and approximate the function ψ.
Let us define the finite element space

(3.8) Σh = {u ∈ C(D(αh)) | u|K ◦ FK ∈ Q1(K̂) ∀K ∈ Th(αh)},
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where Q1(K̂) denotes the space of bilinear polynomials defined on K̂ and FK ∈
[Q1(K̂)]2, FK : K̂ → K, K̂ = [−1, 1]× [−1, 1].

We shall construct subspaces Sh ⊂ Q(αh). Let us define the set

(3.9) Yh = {uh | uh = rwh, wh ∈ Σh, wh = 0 on Γ1(αh) ∪ Γ2(αh)}

and

(3.10) Sh = curlYh.

It is easy to verify that Yh ⊂W (αh) and then Sh ⊂ Q(αh) follows.

(3.11) qh ∈ Sh =⇒ qh =

(
r
∂wh
∂z

, −2wh − r
∂wh
∂r

)T

, wh ∈ Σh.

Moreover, the normal component qh · ν is continuous across element boundaries.
From the bijectivity of the operator curl and the definition (3.10) it follows that

dimSh = dimYh. Moreover if {ψi}Mi=1 is the basis of Σh then

(3.12) {Φi}Mi=1, Φi = curl(rψi)

is the basis of Sh.
Seeking ph as a linear combination of the basis functions

ph =

M∑
i=1

ciΦi,

and defining the approximate solution of the state problem by

(3.13) (ph, t)H(αh) = −(λλλ, t)H(αh) ∀t ∈ Sh

we get for the unknowns ci a linear system of equations

(3.14)

M∑
i=1

ci(Φi,Φj)H(αh) = −(λλλ,Φj)H(αh), j = 1, ...,M.

Taking into account (3.12), we have

(Φi,Φj)H(αh) = (curl(rψi), curl(rψj))H(αh)

=

∫
D(αh)

[
a−1
r r

∂ψi
∂z

r
∂ψj
∂z

+ a−1
z

(
2ψi + r

∂ψi
∂r

)(
2ψj + r

∂ψj
∂r

)]
r dr dz ≡ kij ,

(λλλ,Φj)H(αh) = (λλλ, curl(rψj))H(αh)

=

∫
D(αh)

[
a−1
r λrr

∂ψj
∂z

+ a−1
z λz

(
−2ψj − r

∂ψj
∂r

)]
r dr dz ≡ fj ,

which can be written in compact matrix form

(3.15) Kc = f.
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Proposition 3.1. Let {αh}, h → 0 be a sequence of αh ∈ Uhad, converging to a
function α in C([0, 1]). Then

(3.16) p0h(αh)→ p0(α) in
[
L2
r(D̂)

]2
for h→ 0,

where p0h(αh) is the solution of (3.13), extended by zero to the domain D̂ \D(αh)

and p0(α) is the solution of (2.6) extended by zero to D̂ \D(α).

Proof. One can use the same line of thought as in the proof of Proposition 1
of [8]. The only change consists in replacing the triangular finite elements by the
isoparametric ones, defined in (3.8). Hence we also have to derive an error estimate
for the latter.

We use partitions Th(δ) of the rectangle D̂ into quadrilaterals, which create a
regular family of extensions of Th(αh), h→ 0, αh ∈ Uhad, the corresponding spaces
Σh(δ) (extensions of (3.8)) and the interpolation operator

Πh : C(
¯̂
D)→ Σh(δ)

Πhu(aj) = u(aj) at all nodal points aj ∈ Th(δ).

We shall derive that

(3.17) ‖u−Πhu‖Y (δ) ≤ ch‖u‖2,D̂

holds for all u ∈ H2(D̂). In fact, we may write for any quadrilateral K ∈ Th(δ)

|u−Πhu|m,rn,K ≤ δn/2|u−Πhu|m,K ≤ cδn/2h2−m
K ‖u‖2,K ,

where hK = diamK ≤ ch, m = 0, 1 and n any positive integer (cf. [3]–p. 247 for
the inequality). Consequently, we have

‖u−Πhu‖2Y (δ) =
∑

K∈Th(δ)

(
|u−Πhu|21,r3,K + ‖u−Πhu‖20,r,K

)
≤

∑
K∈Th(δ)

ĉ(h2
K + h4

K)‖u‖22,K ≤ ch2‖u‖2
2,D̂

and (3.17) follows.
The rest of the proof is the same as in the above-mentioned proof in [8]. Q.E.D.

For a fixed parameter h, we define the Approximate Domain Optimization
Problem:

(P∗h)

{
Find α∗h ∈ Uhad such that

J∗(α∗h,q
h(α∗h)) ≤ J∗(αh,qh(αh)) ∀αh ∈ Uhad,

where qh(αh) = λλλ+ ph(αh) and ph(αh) is the solution of (3.13).

Proposition 3.2. Let {αh}, h → 0 be a sequence of αh ∈ Uhad, converging to a
function α in C([0, 1]). Then

(3.18) lim
h→0

J∗(αh,q
h(αh)) = J∗(α,q(α)).
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Proof. Let us denote q0h = λλλ+ p0h(αh), q0 = λλλ+ p0(α). Then we have by virtue
of Proposition 3.1

J∗(αh,q
h(αh)) =

1

2

∫
D̂

|q0h − g|2 r dr dz − 1

2

∫
D̂\D(αh)

|λλλ− g|2 r dr dz

→ 1

2

∫
D̂

|q0 − g|2 r dr dz − 1

2

∫
D̂\D(α)

|λλλ− g|2 r dr dz

=
1

2

∫
D(α)

|q(α)− g|2 r dr dz = J∗(α,q(α))

Q.E.D.

Proposition 3.3. The problem (P∗h) has at least one solution for any h = 1/N .

Proof. The function αh ∈ Uhad is completely determined by its nodal values aj =
αh(jh), j = 0, 1, ..., N. Thus αh ∈ Uhad if and only if the vector a = (a0, a1, ..., aN ) ∈
A, where A is a compact subset of RN+1.

By the construction of the finite element mesh Th(αh) and by (3.2) the matrix
K and the vector f in (3.15) depend continuously on the vector a. Also the solution
vector c, which uniquely determines p(αh), depends continuously on c. Then for
extensions we have

βh → αh in C([0, 1]) =⇒ p0h(βh)→ p0h(αh) in H(δ).

Moreover, it is easy to see that

j∗(a) = J∗(αh,λλλ+ ph(αh))

depends continuously on a. Consequently, the minimum is attained in the set A.
Q.E.D.

Theorem 3.1. Let {α∗h}, h → 0, be a sequence of solutions of problem (P∗h).
Then a subsequence {α∗

ĥ
} exists, such that

α∗
ĥ
→ α∗ in C([0, 1]),

where α∗ is a solution of the problem (P∗).
The approximate state solutions qĥ(α∗

ĥ
) converge in accordance with Proposi-

tion 3.1 to the solution q(α∗). Any uniformly convergent subsequence of {α∗h} has
the properties mentioned above.

Proof. Let β ∈ Uad be arbitrarily chosen. There exists a sequence {βh}, h →
0, βh ∈ Uhad, such that βh → β in C([0, 1]) (for the proof – see [9]–Lemma 3.1 and
the Appendix in [5]).

Let us consider the set

U∗ad = {α ∈ C(0),1([0, 1]) | 0 < αmin ≤ α(x) ≤ αmax, |α′(z)| ≤ C1,∫ 1

0

α2 dz = C3}.

Since Uhad ⊂ U∗ad ∀h and U∗ad is compact in C([0, 1]) (cf. Arzelà-Ascoli Theorem),
there exists a subsequence {α∗

ĥ
} ⊂ {α∗h}, such that α∗

ĥ
→ α∗ in C([0, 1]). Using

Lemma 3.2 of [9], we obtain that α∗ ∈ Uad.
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By definition we have

J∗(α∗
ĥ
,qĥ(α∗

ĥ
)) ≤ J∗(βĥ,q

ĥ(βĥ)) ∀ĥ.

Letting ĥ→ 0 and using Proposition 3.2 on both sides, we obtain

J∗(α∗,q(α∗)) ≤ J∗(β,q(β)).

Consequently, α∗ is a solution of (P∗), which is equivalent with (P). The rest of
the Theorem follows from Proposition 3.1.

Corollary 3.1. There exists at least one solution of the problem (P).

Proof. follows from Proposition 3.3 and Theorem 3.1 .

4. Numerical realization

As qh = ph + λλλ =
∑M
i=1 ciΦi + λλλ = Bc + λλλ, the cost functional J∗(αh,qh(αh))

can be written in matrix form

J∗(αj ,q
h(αh)) =

1

2

∑
K∈Th(αh)

∫
K

|Bc + λλλ− g|2 r dr dz

=
1

2

∑
K∈Th(αh)

∫
K̂

|Bc + λλλ− g|2 r |JK | dρ dζ.(4.1)

Here K̂ denotes some fixed reference element ([−1, 1] × [−1, 1], for example) and

|JK | denotes the Jacobian determinant of the coordinate transformation FK : K̂ →
K.

The approximate domain optimization problem (P∗h) is equivalent to the follow-
ing nonlinear programming problem:

(4.2)

{
Find a∗ ∈ A such that

j∗(a∗, c(a∗)) ≤ j∗(a, c(a)) ∀a ∈ A,

where

A = {a ∈ RN+1 |αmin ≤ ai ≤ αmax, i = 0, 1, ..., N ;

− C1h ≤ ai − ai−1 ≤ C1h, i = 1, 2, ..., N ;

− C2h
2 ≤ ai+1 − 2ai + ai−1 ≤ C2h

2, i = 1, 2, ..., N − 1;

h

2
(a2

0 + a2
N ) + h

N−1∑
i=1

a2
i = C3}

The problem (4.2) is nonlinearly constrained. To solve it efficiently on a com-
puter, one must calculate analytic gradients of the cost functional. The following
result is standard:

Lemma 4.1. Partial derivatives ∂j∗(a)/∂aj are given by

(4.3)
∂j∗(a)

∂aj
=
∂j∗(a, c)

∂aj
+ hT

[
∂f

∂aj
−
(
∂K

∂aj

)
c

]
,
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where h is the solution of the adjoint equation

(4.4) Kh = ∇cj∗(a, c).

Proof. See [9], for example.

In our case

(4.5) ∇cj∗(a, c) =
∑
K

∫
K̂

BT(Bc + λλλ− g) r|JK | dρ dζ

and

∂j∗(a, c)

∂aj
=

∑
K∈Th(αh)
K∩R=∅

∫
K̂

[
(B′)

T
(Bc + λλλ− g) r |JK |

+BT(B′c +
∂λr
∂r

r′ − ∂gr
∂r

r′ − ∂gz
∂r

r′) r |JK |

+BT(Bc + λλλ− g) r′ |JK |+ BT(Bc + λλλ− g) r |JK |′
]
dρ dζ.(4.6)

Above we have denoted ( )′ = ∂( )/∂aj . The terms ∂f/∂aj , ∂K/∂aj in (4.3)

and the terms B′, r′, |JK |′ in (4.6) can be calculated using techniques described
in [9] and [10], for example.

5. Numerical examples

In this section we present numerical results of several test cases. In optimization
we have used Sequential Quadratic Programming (SQP) algorithm E04VCF from
the NAG-library. E04VCF is essentially the code NPSOL due to Gill et al. (see
[4]). The state problem (3.15) and the adjoint problem (4.4) were solved iteratively
using the Jacobi-conjugate gradient method. All computations were done in double
precision using a HP 9000/370-workstation.

Example 5.1. In this example we have f = −1, ar = az = 1, αmin = 0.8, αmax =

1.2, C1 = 2, C2 = 10, C3 = 1, g = (r/2, 0)
T

and h = 1/8. In this case the optimal

solution is known to be α∗ ≡ 1. As an initial quess we choose α
(0)
h ∈ Uhad, with

nodal values

a(0) = (0.8, 0.8871, 1.007, 1.1163, 1.1508, 1.1103, 0.995, 0.8751, 0.8)
T
.

The initial cost is J∗(α
(0)
h ) = 7.61 × 10−3. After 13 SQP-iterations and 72

CPU-seconds we obtained α
(13)
h , for which

J∗(α
(13)
h ) = 2.47× 10−11

‖α∗ − α(13)
h ‖∞ = 0.019 .
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Figure 5.1

Example 5.2. Let αmin = 0.8, αmax = 1.2, C1 = 2, C2 = 8, C3 = 1, f =
1, az = 1,

ar =

{ 1
2 , for z < 1

2

1, for z > 1
2

and g =


(r/4,−r/4)

T
, for z <

1

2

(r/4,−r/4)
T
, for z >

1

2
.

We solved the problem with three different h:s. In all cases α
(0)
h ≡ 1 was chosen

as an initial quess.
In the case h = 1/10 after 8 SQP-iterations and 42 CPU-seconds we obtained

α
(8)
1/10 with J∗(α

(8)
1/8) = 9.44 × 10−3. The initial cost was 18.7 × 10−3. Plots of

cogradient fields in the initial and final domains are shown in Figure 5.1.
In the case h = 1/20 after 14 SQP-iterations and 480 CPU-seconds we obtained

α
(14)
1/20 with a cost 9.32 × 10−3. In Figure 5.2 the finite element mesh of the final

domain is shown.

Figure 5.2

In the final case h = 1/40 after 17 SQP-iterations and 46 CPU-minutes we

obtained α
(17)
1/40 with a cost 9.26 × 10−3. In Figure 5.3 the finite element mesh of

the final domain is shown.

Figure 5.3

It is to be noted that in this example even with a coarse mesh fairly good
approximations for the (possibly local) optimum α∗ were obtained as

maxj=0,1,...,10

∣∣∣α(13)
1/10(j · 1

10 )− α(17)
1/40(j · 1

10 )
∣∣∣

maxj=0,1,...,10

∣∣∣α(17)
1/10(j · 1

10 )
∣∣∣ ≈ 3%.
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8. I. Hlaváček, Domain Optimization in 3D-axisymmetric Elliptic Problems by Dual Finite

Element Method (to appear).
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