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Abstract: An axisymmetric second order elliptic problem with mixed boundary
conditions is considered. A part of the boundary has to be found so as to minimize
a cost functional, which is given in terms of the cogradient of the solution. The
numerical realization using the dual finite element method is presented in detail.
Numerical examples are given.
keywords: shape optimization, axisymmetric elliptic problem, finite elements
subjclass: 656N99, 656N30, 49A22

INTRODUCTION

One often meets elliptic problems in three-dimensional domains 2 which are
generated by the rotation of a bounded plane domain D around an axis. Then
the most suitable approach is to use cylindrical coordinates. If the data of the
problem are axial symmetric, the problem is then reduced to the two-dimensional
domain D.

In the paper [9] some axisymmetric domain optimization problems were solved
numerically using the standard finite element method. In this paper we solve a
similar problem numerically using the dual finite element method. The motivation
for the use of the dual approach is that the cost function is given purely in terms
of the cogradient of the solution. The dual approach allows us to calculate the
cogradient directly. The formulation of the problem with proofs for the existence
of a solution and convergence of approximations, was given by Hlavacek in [8].

In this work the modified definition of the set of admissible designs, presented
in [9], is adopted. Using the techniques developed by Hlavacek and Kfizek in [7]
the implementation of the dual approach can be done in the similar way as in the
case of the standard primal approach.

1. THE STATE PROBLEM

We shall consider a class of admissible domains D(«), where

D(a):{(r,z)|0<1“<a(z), 0<z<1}



2 IVAN HLAVACEK* AND RAINO MAKINEN**

and the function a(z) — the design variable — belongs to the following set of ad-
missible functions

Uad - {Oé € 0(1)71([07 1]) ’O < Omin S O‘(Z) S Omax ’O/(’Z)’ S Cl’

1
la” (2)| < Cq a.e. in (0,1), / o’ dz = Cs3}
0

with given positive constants amin, @max, C1, Ca2, Cs. Here C(1):1([0,1]) denotes
the space of Lipschitz functions with Lipschitz-continuous derivatives.
Let I'(«) denote the graph of the function «,

Iy =90D(a)N{r =0}, I''(a) =0D(ax) N {z =0}, I'y(ax) = 0D(ex) N {z = 1}.

FIGURE 1.1

We shall consider the following boundary value problem

(0 ou .
> g (Awgr) =7 ma,

(1.1) 3
th%l/z =0 on Sl(Oé) U SQ(O(),

i=1

L u=0 on S(a),
where Q(«) is generated by rotation of D(«) around the zs-axis, S;(«) by rotation
of I';(a), i = 1,2 and S(«) by rotation of I'(«), (see Figure 1.1), v; are components
of the unit outward normal with respect to 9Q(«).

Let 2 be the cylindrical domain generated by rotation of the rectangle D =
(0,0) x (0,1), § > max-

Assume that the function f in (1.1) is determined as the restriction to Q(c) of
an axisymmetric function f € L2().

Assume that the coefficients A; are restrictions to Q(«) of axisymmetric func-

A

tions A; € L*>(€2), A; = Ay a.e. and a positive constant ag exists such that

(1.2) Ai(z) > ag a.e. in Q.

~

Let us denote A; = Ay = a,, A3 =a,, f(r,z) = f(rcosd,rsind, z).
Passing to the cylindrical coordinate system, we obtain the following state prob-

lem:
10 oy 0 dy\ )
—;E (’I"G,Tg) — & (aza) = f 1m D((l/),
1.3
(13) az%:0 on I't (a) U T2 (),

y=0 onI'(a).
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Let k > 0 and n be integers. We shall denote by L7 (D) the space of measurable
functions u, for which

Ullgrn D = ulrodrdz < +oo, m=12.
Brep = | ul™r"drd 1,2

We shall denote by Wzk (D) the weighted Sobolev space with the weight ™ and
the norm

2

llullk.rm D = Z/|Dsu|2r”drdz )
D

|s|<k

where D® denotes any partial derivative of the order s. The same notations will
be used also for vector functions.
The weak formulation of the state problem (1.3) reads

Find y = y(a) € V(a) such that

1.4
(1.4) / ( dy v 5’2/3”) rdrdzZ/ fordrdz Vv eV(a),
e D(a)

“oror " ""0z 0z

where

V(a) = {v € W, (D(@) | yv =0 on T(a)}.

The trace operator v : W3 ,.(D(a)) — LZ(I'(«)) is well defined also in the axisym-
metric case — see [5].

Lemma 1.1. The state problem (1.4) has a unique weak solution y(a) for all
a € Ugq.

Proof. There exists a positive constant ¢ such that

(1.5) /D(a) | grad u|* rdr dz > c||u\|ir,D(a)

holds for all u € V(a) and a € Uyq. (For the proof, see [5]-Lemma 3). Using

(1.2) and (1.5) we derive that the problem is V' («)-elliptic and therefore uniquely

solvable for any a € U,q. Then cograd y(«) € [L%(D(a))]z.

2. SETTING OF THE DOMAIN OPTIMIZATION PROBLEM
AND DUAL VARIATIONAL FORMULATION OF THE STATE PROBLEM

We define the Domain Optimization Problem:

(P)

Find o € U,q such that
J(a*,y(a®)) < J(a,y(a)) Va € U,

where y(«) denotes the solution of the state problem (1.4) and

(2.1)

1 .12
Howy(@) =5 [ Jeopradyla) - g rdrds ge [L2D)]
D(a)

2
By @)T

dy = ra_ s Uz
cograd y <a 5. 927
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Since the cost functional is given in terms of the cogradient of the solution, we
shall employ the dual variational formulation of the state problem (1.4). Let us
recall the latter formulation, the derivation of which can be found e.g. in the paper
[7]-Part I, Section 2.

Let us introduce the notation H(a) = [L%(D(oz))]2 and the following bilinear
form in H(a) x H(«)

(q, p)H(a) = / ( )(a;l%"pr + az_lquz) rdr dZ,
D(a

HqHH(a) = (q,Q)H(a)~

It is easy to see that the norms || - ||m() and || - |[o,r,p(a) are equivalent by virtue
of (1.2). Moreover, let us define

ov v
B(a;q,v :/ <qr— -l-qz—) rdrdz,
( ) D(a) or 0z

L(v) = / fordrdz,
D(«)
L. o
Qs(a) = {a € H(a) | Blasa,v) = L(v) v e V(a)}.
The principle of minimum complementary energy then gives

(2.2) q(a) = argmin S(t)
teQs (o)

if and only if q(«) = cograd y(«).
We assume that

(2.3) /0 tf(t,z)dt € L3,.(D).
Then the following vector field
1" *
(2.4) A= (—;/ t f(t,z)dt, O)
0

belongs to the set Q(a) for any a € UY,, where

Uga = {a € COH([0,1]) | amin < a(2) < ctmax}-
Defining the subspace

Q(a) = {a € H(a) | Blasa,v) =0 Yo € V(a)},

we may write Q (o) = A+ Q(«). Substituting q =A+p, p € Q(a) into (2.2), we
obtain that

(2.5) p(a) = argmin{S(t) + (A, t)sz(o }
teQ(a)
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if and only if p(a) = cograd y(a) — A. The sufficient and necessary condition for
the minimizer p(a) € Q(«) is

(2'6) (p(a)?t)H(a) = _<’\7t)H(a) vt e Q(a)

The latter minimum problem has a unique solution p(«) for any «a € Uygq.
The Domain Optimization Problem (IP) is replaced by the following Equivalent
Domain Optimization Problem:

e Find o € U,q such that
(F") J* (", q(a®)) < J*(a,q(a)) Va € Uga,
where
. 1
(2.7) JH(eq) = 5 /( ) la—gl®rdrdz,  q(a) =X+ p(a),
D(«

A is defined by the formula (2.4) and p(«) is the solution of (2.6).

3. APPROXIMATION BY FINITE ELEMENTS

In the present Section we propose an approximate solution of the domain opti-
mization problem (P*), making use of piecewise linear design variable and quadri-
lateral finite elements with bilinear shape functions for solving the state problem.

Let N be a positive integer and h = % We denote by A, j=1,2,...,N, the
subintervals [(j — 1)h, jh] and introduce the set

U;,Ld = {ah S C(O)’l([()? 1]) |0 < Omin S O!h(Z) S Omaxs
Oéh|Aj - Pl(A]) VA]', j = 1,2,...,N,

1
| < O, [62an| < O, / 02 dz = O3},
0

where C(©):1(]0,1]) denotes the set of Lipschitz-functions, P;(A;) is the set of
linear functions defined on A; and 6%04;1 denotes the second difference

(3.1) Sian(jh) = % lan((j + 1Dh) = 20, (jh) + an((j — Dh)], j=1,..,N—1.
Let Dy = D(ay,) denote the domain bounded by the graph I'y, = I'(ay,) of the
function o, € UM, The polygonal domain Dj, will be carved into quadrilaterals
K in the following way. We choose ag € (0, apmin) and introduce a uniform mesh
on the rectangle R = [0, ap] x [0, 1], independent of ay,, if h is fixed.
In the remaining part Dy \R let the nodal points divide the segments [ag, ap (jh)],
j=1,2,...,N, into N’ equal segments, where

N' =1+ |(&max — @) N|

and the brackets | | denote the integer part of the number inside. Consequently,
one obtains a regular family {7 (ap)}, h — 0, a; € U, of meshes (cf. [1]).
In what follows, we shall assume in addition that

(3'2) f('?z)‘ﬁ\R € C([a075]>7 ar('az)|[)\7z> az('vz)’D\R € Cl([QOaé])
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for almost all z € (0,1).
We define the approximate state problem

Find p"(ay,) € Sp, such that
(3.3) { (an) € Sh

(ph(ah)vth)H(ah) = _()‘7th)H(ah) Vth €Sy,

where S, C Q(«) is a finite dimensional subspace.

The equilibrium condition in the definition of Q(«) implies that standard finite
elements cannot be directly utilized. Therefore we use the method proposed in
the paper [7].

We introduce the spaces

X(a) =W, ,(D(a)) N L, (D())

and
Y (@) = Wy ,s(D(e)) N L(D())

T

©\ 2
||S0||X(a) = (/ ((-) + |gradg0|2) rdrdz)
D(a) r

0]y () = (/ (02 + |gradv\2r2) rdr dz)
D(«)

respectively. The operator

with the norms

D=

and

[N

(90 o Op\'
(3.4) curlw-(E, = E)

is then well-defined on the subspace
(3.5) W(a) ={p € X(a) [v¢ =0 on I'i(a) UTz(a)}.
For any a € U?, the space Q(«) can be identified with
(3.6) curl W(a) = {q € H(a) | 3p € W () such that q = curl p}

as curl : W(a) — Q(«a) is a one-to-one mapping ([7]-Theorem 4.6). For any
a € U2, and any u € X (a) we have the inequalities

1 U
ﬁ”uﬂx(a) < - lhy@ = V3|l x(a)-
Thus, if we construct approximations of q € Q(«), we may write

(3.7) q=curlp = curl(ry), v e€Yy(a)={veY(a)|v=0onTi(a)UTlsy(a)}

and approximate the function .
Let us define the finite element space

(3.8) Yph={ueC(D(ayp)) | ulg o Fk € Ql(f() VK € Tr(an)},
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Where Q1 (K ) denotes the space of bilinear polynomials defined on K and Fg €
Q1 (K )] , Fx K > K, K_[ 1,1] x [-1,1].
We shall construct subspaces S, C Q(ay,). Let us define the set

(3.9) Yy = {up | up = rwp, wp € g, wp =0 on Ty(ap) UT(an)}
and
(3.10) Sh = curl Yh.

It is easy to verify that Y;, C W(ay) and then S, C Q(ay) follows.
9 dwp \ "
(3.11) q" e S, = q" = (rﬂ, —2wy, —rﬂ> . wp € Xp.
z

Moreover, the normal component q” - v is continuous across element boundaries.
From the bijectivity of the operator curl and the definition (3.10) it follows that
dim S}, = dim Y},. Moreover if {1;}}, is the basis of ¥}, then

(3.12) {D,; }Z 1, ®; = curl(ry;)

is the basis of 5},.
Seeking p” as a linear combination of the basis functions

M
= Z Ciq)la

and defining the approximate solution of the state problem by

(3.13) (ph,t)H(ah) = _(A7t>H(ah) vt e Sy,

we get for the unknowns ¢; a linear system of equations

Dﬂ:

(314) C; (I)Z,(I) H(ap) = —(A, q)j)H(ozh)a j = 1, ...,M.

=1

Taking into account (3.12), we have

(s, @5)n(ay) = (curl(riy), curl(r;))m(an)

= / {a;lr O r % +a;! (2%’ + raw ) (ij + ﬂ)] rdrdz = k;j,
D(an) 0z 0z

()Hq’j)H(ah) = ()\70111“1(7“%))1141(%)

— / {a;l)\rr % +a; '\, (-2% r%)] rdrdz = fj,
D(ap) 0z

which can be written in compact matrix form

(3.15) Kc=f.
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Proposition 3.1. Let {a3}, h — 0 be a sequence of o, € U" g converging to a
function « in C([0,1]). Then

(3.16) p% (an) = p°(@) in [L,%([))} " forh 0,

where p°" () is the solution of (3.13), extended by zero to the domain D\ D(ay)
and p°(«) is the solution of (2.6) extended by zero to D\ D(«).

Proof. One can use the same line of thought as in the proof of Proposition 1
of [8]. The only change consists in replacing the triangular finite elements by the
isoparametric ones, defined in (3.8). Hence we also have to derive an error estimate
for the latter.

We use partitions T, (8) of the rectangle D into quadrilaterals which create a
regular family of extensions of Ty, (o), h — 0, a5, € UR o> the corresponding spaces
Y (6) (extensions of (3.8)) and the interpolation operator

I, : C(D) — Sx(5)
Mpu(a;) =u(a;) at all nodal points a; € Tp(6).

We shall derive that
(3.17) |lu — Mpully ) < ch||u||2’f)
holds for all w € H?(D). In fact, we may write for any quadrilateral K € 7Ty, ()
| — T i < 0™ 2 | — Tptu]pn ie < 6™ 227 |ul|2. ¢,

where h = diamK < ch, m = 0,1 and n any positive integer (cf. [3]-p. 247 for
the inequality). Consequently, we have

o= Tullf i = D (fu—Taul? o g + llu = huld )
KeTr(9)

< Y bk +hiOlull3 ke < ek}
KeTn(9)
and (3.17) follows.

The rest of the proof is the same as in the above-mentioned proof in [8]. Q.E.D.

For a fixed parameter h, we define the Approximate Domain Optimization
Problem:

. Find o}, € U, such that
(F7)

T (ag, 0" (a}) < J*(an,a"(an) Van € UL,

where q"(az,) = A + p" (o) and p”(ay) is the solution of (3.13).

Proposition 3.2. Let {ap}, h — 0 be a sequence of oy, € U(i‘d, converging to a
function a in C([0,1]). Then

(3.18) lim J*(orn, 4" (an)) = J* (e, a(a)).
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Proof. Let us denote q°* = X + p”*(as), q° = A + p°(). Then we have by virtue
of Proposition 3.1

1 1
Tana(n) = [ 1" gl rards -5 [ x-gPrard:
D D\D(ah)
1 1
—>—/ |q0—g]2rdrdz——/ A —gl*rdrdz
2/p 2 Jp\D(a)

1
5/ lat@) ~gPrardz = (a.a(a)
D(«)

Q.ED.
Proposition 3.3. The problem (P}) has at least one solution for any h = 1/N.

Proof. The function oy, € U, is completely determined by its nodal values a; =
an(jh), 3 =0,1,...,N. Thus o, € U, if and only if the vector a = (ag, a1, ...,an) €
A, where A is a compact subset of RV,

By the construction of the finite element mesh 7, (ay,) and by (3.2) the matrix
K and the vector f in (3.15) depend continuously on the vector a. Also the solution
vector ¢, which uniquely determines p(ay,), depends continuously on ¢. Then for
extensions we have

Bn = an i C([0,1)) = p”™(Br) = p”" () in H(9).
Moreover, it is easy to see that
j*(a) = J*(an, A +p"(an))
depends continuously on a. Consequently, the minimum is attained in the set A.
Q.E.D.
Theorem 3.1. Let {a}}, h — 0, be a sequence of solutions of problem (P}).
Then a subsequence {a} } exists, such that

a; —a*  in C([0,1]),

where o* is a solution of the problem (P*).
The approximate state solutions qh(a;fl) converge in accordance with Proposi-

tion 3.1 to the solution q(a*). Any uniformly convergent subsequence of {a}} has
the properties mentioned above.

Proof. Let 8 € U,q be arbitrarily chosen. There exists a sequence {8}, h —
0, Bn € UM, such that 8, — B in C([0,1]) (for the proof — see [9]-Lemma 3.1 and
the Appendix in [5]).

Let us consider the set

* ={ae CON0,1]) ] 0 < amin < () < amax, |’ (2)] < C1,

1
/ o dz = Cs}.
0

Since U, c U, Vh and U}, is compact in C([0,1]) (cf. Arzela-Ascoli Theorem),
there exists a subsequence {a;} C {a}}, such that of — o* in C([0,1]). Using
Lemma 3.2 of [9], we obtain that a* € Ugg.
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By definition we have
J*(az,q"(a})) < J*(8;,9"(8;)) V.
Letting h — 0 and using Proposition 3.2 on both sides, we obtain

J (", q(a”)) < J*(B,q(8)).

Consequently, a* is a solution of (P*), which is equivalent with (P). The rest of

the Theorem follows from Proposition 3.1.
Corollary 3.1. There exists at least one solution of the problem (P).

Proof. follows from Proposition 3.3 and Theorem 3.1 .

4. NUMERICAL REALIZATION

Asqt=ph+ A= Zf\il c;®; + X = Bc + A, the cost functional J*(ay,,q" ()
can be written in matrix form

1
J*(ozj,qh(%)):5 > IBc+ X —g*rdrdz
KeTn(an)” K
1
(4.1) =3 > | IBe+A—gl’r|dk|dpd.

KETh(Oéh) K

Here K denotes some fixed reference element ([—1,1] x [—1,1], for example) and
|d x| denotes the Jacobian determinant of the coordinate transformation F : K —
K.

The approximate domain optimization problem (IP}) is equivalent to the follow-
ing nonlinear programming problem:

Find a* € A such that
(4.2)

j*(a*,c(a*)) < j*(a,c(a)) Vae A,
where

A= {a € RN+1 |amin < a; < Qmax, 1 =0,1, '"7N;
- Clh S a; — Q51 S Clh, 1= 1,2,...,N;
- 02h2 S A;4+1 — QCLZ' + a;—1 S CQhQ, 1= 1,2, ,N — 1;

N-1

h
Sl +ak) +h Y al =Cs}
=1

The problem (4.2) is nonlinearly constrained. To solve it efficiently on a com-
puter, one must calculate analytic gradients of the cost functional. The following
result is standard:

Lemma 4.1. Partial derivatives 05*(a)/0a; are given by

dj*(a)  9j5*(a,c) v | Of oK
4. = - _
( 3) aCL]’ 8a]~ +h i aaj |
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where h is the solution of the adjoint equation

(4.4) Kh = Vcj*(a,c).

Proof. See [9], for example.

In our case
(4.5) Vei*(ac) :Z/ BT(Bc+ A —g)rlJx| dpdc
* JK
and

dj (a.,c) -y [(B’)T(Bc+A—g)r\JK\
KeTi(ap) " K

KNR=0
O\, g 9.
T / r r /
+B" (B'c+ 5 " 2 " arr)r]JK]
(4.6) +BT(Bc+A—g)7' |[Jg| +BT(Bc+A—g)r |JK|’] dpdc.

Above we have denoted ()’ = 9( )/0a;. The terms 0f/0a;, 0K/Ja; in (4.3)
and the terms B, v/, |Jx|" in (4.6) can be calculated using techniques described
in [9] and [10], for example.

5. NUMERICAL EXAMPLES

In this section we present numerical results of several test cases. In optimization
we have used Sequential Quadratic Programming (SQP) algorithm E04VCF from
the NAG-library. E04VCEF is essentially the code NPSOL due to Gill et al. (see
[4]). The state problem (3.15) and the adjoint problem (4.4) were solved iteratively
using the Jacobi-conjugate gradient method. All computations were done in double
precision using a HP 9000/370-workstation.

Example 5.1. In this example we have f = —1, a, = a, = 1, amin = 0.8, Qmax =
1.2, C1=2,C,=10,C3=1, g = (r/2,O)T and h = 1/8. In this case the optimal
solution is known to be a* = 1. As an initial quess we choose ozglo) € U, with
nodal values

al®) = (0.8, 0.8871, 1.007, 1.1163, 1.1508, 1.1103, 0.995, 0.8751, O.S)T.

The initial cost is J*(ago)) = 7.61 x 1073, After 13 SQP-iterations and 72

CPU-seconds we obtained 04,(113), for which

J* (") = 2.47 x 1071
o — al'¥ o = 0.019 .
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FIGURE 5.1

Example 5.2. Let amin, = 0.8, amax = 1.2, C1 =2, Cy =8, C3 =1, f =
17 ay = 17

(r/4,—r/4)", for z <

aﬂr’ - and g ==

{%, for z <
1, forz>

N~ N[

(r/4,—r/4)T, for z >

N — N -

ELO) = 1 was chosen

We solved the problem with three different hA:s. In all cases «
as an initial quess.
In the case h = 1/10 after 8 SQP-iterations and 42 CPU-seconds we obtained

agi)lo with J*(ag)g) = 9.44 x 1073, The initial cost was 18.7 x 1073. Plots of

cogradient fields in the initial and final domains are shown in Figure 5.1.
In the case h = 1/20 after 14 SQP-iterations and 480 CPU-seconds we obtained

51/;)0 with a cost 9.32 x 1073. In Figure 5.2 the finite element mesh of the final

domain is shown.

«

FIGURE 5.2

In the final case h = 1/40 after 17 SQP-iterations and 46 CPU-minutes we

gl/z)o with a cost 9.26 x 1073. In Figure 5.3 the finite element mesh of

the final domain is shown.

obtained «

FIGURE 5.3

It is to be noted that in this example even with a coarse mesh fairly good
approximations for the (possibly local) optimum a* were obtained as

13) . 17) .
max;=o,1,...,10 ‘Oég/l)o(J : %) - a§/4)0(] : %)‘

17) .
max;—o,1,...,10 ‘045/1)0(3 : 1_10)’

~ 3%.
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