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listening to music often is associated with spon-
taneous body movements frequently synchronized with its 
periodic structure. The notion of embodied cognition 
assumes that intelligent behavior does not emerge from 
mere passive perception, but requires goal-directed inter-
actions between the organism and its environment. 
According to this view, one could postulate that we may use 
our bodily movements to help parse the metric structure 
of music. The aim of this study was to investigate how pul-
sations on different metrical levels manifest in music- 
induced movement. Musicians were presented with a piece 
of instrumental music in 4/4 time, played at four different 
tempi ranging from 92 to 138 bpm. Participants were 
instructed to move to the music, and their movements 
were recorded with a high quality optical motion capture 
system. Subsequently, signal processing methods and prin-
cipal components analysis were applied to extract move-
ment primitives synchronized with different metrical levels. 
We found differences between metric levels in terms of the 
prevalence of synchronized eigenmovements. For instance, 
mediolateral movements of arms were found to be fre-
quently synchronized with the tactus level pulse, while 
rotation and lateral flexion of the upper torso were com-
monly found to exhibit periods of two and four beats, 
respectively. The results imply that periodicities on several 
metric levels are simultaneously present in music-induced 
movement. This could suggest that the metric structure of 
music is encoded in these movements.
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There is a strong connection between music 
and bodily movement. When we listen to a piece 
of music, we often tap our foot, nod our head, or 

move our body along with it. In most cultures, music 
and dance have evolved together (Arom, 1991; Cross, 
2003; Wallin, Merker, & Brown, 2000). Most people 
report that they move with music (Lesaffre et al., 2008). 
When listening to music, people tend to walk faster (i.e., 
take longer strides) than with metronomic stimuli 
(Styns, van Noorden, Moelants, & Leman, 2007). 

The notion of embodied cognition (Leman, 2008) 
assumes that intelligent behavior does not emerge from 
mere passive perception, but requires goal-directed inter-
actions between an organism and its environment. In the 
field of linguistics, the motor theory of speech perception 
(Liberman & Mattingly, 1985) draws from this notion, 
assuming that speech perception is based on the cognitive 
system’s ability to compute the articulatory gestures that 
could have produced the received acoustical signal. The 
notion of embodied music cognition has its roots in the 
early 20th century and has recently been elaborated by 
Leman (2008). Leman emphasizes the role of goal- 
directed actions in music perception. He sees synchroni-
zation to music as a form of corporeal imitation, and 
postulates: “Spontaneous movements [to music]—may 
be closely related to predictions of local bursts of energy 
in the musical audio stream, in particular to the beat and 
the rhythm patterns” (Leman, 2008).

There is evidence that movement is more strongly 
connected to the auditory system than to the visual sys-
tem. For instance, tapping to a visual rhythm is more 
efficiently disrupted with an auditory distractor than 
vice versa (Repp & Penel, 2004). Moreover, Patel, Iversen, 
Chen, and Repp (2005) found that in a tapping task par-
ticipants failed to synchronize to metrical nonisochro-
nous visual stimuli, while they had no difficulty in 
synchronizing to similar auditory stimuli.

Music often contains recurring temporal patterns that 
give rise to a percept of beat. The beat refers to the sub-
jective sense of periodicity in music evoked by temporal 
regularities in the acoustical signal. The ability to syn-
chronize with musical beat has to date been mostly 
investigated with finger tapping studies. According to 
these studies, synchronization ability is spontaneous and 
accurate (Drake, Penel, & Bigand, 2000; Large, Fink, & 
Kelso, 2002; Snyder & Krumhansl, 2001; Toiviainen & 
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Snyder, 2003) within a relatively wide range of periods 
(300–900 ms), and is associated with a preferred pulse 
period near 500 ms (Fraisse, 1982; Parncutt, 1994; van 
Noorden & Moelants, 1999). 

When listening to music, we frequently perceive more 
than one beat level. These beats are often hierarchically 
organized, with their periods having integer ratios 
(Palmer & Krumhansl, 1990). The interaction between 
these different pulse sensations results in a percept of 
periodically alternating strong and weak beats, corre-
sponding to the generally accepted definition of meter 
(Lerdahl & Jackendoff, 1983). Metrical structure is nor-
mally derived from the accent structure of music, which 
again emerges from various sources such as the duration, 
loudness, and pitch of tones, and harmonic changes. 
Most music has either a duple (every second beat 
accented) or a triple meter (every third beat accented).

While music certainly induces movement, there also is 
some evidence to suggest that movement affects beat per-
ception. Todd, Cousins, and Lee (2007) found that 16% 
of variation in preferred beat rate can be predicted from 
anthropometric factors, such as weight as well as length 
and width of certain body segments. Phillips-Silver and 
Trainor found that both infants’ (2005) and adults’ (2007) 
encoding of meter can be affected by movement. Todd, 
O’Boyle, and Lee (1999) proposed that pulse is an inher-
ently sensorimotor phenomenon in the sense that pulse 
perception necessarily involves motor system activity. 
Phillips-Silver and Trainor (2008) investigated whether 
passive movement of the head and legs affects the percep-
tion of rhythm, and found that head movement biases 
meter perception while movement of legs has no effect. 
Moreover, Trainor, Gao, Lei, Lehtovaara, and Harris (2009) 
discovered that galvanic stimulation of the vestibular sys-
tem can be used to disambiguate an ambiguous metric 
pattern. These results suggest that the vestibular system 
has a central role in the perception of rhythm.

While there exists a few studies on synchronization 
with a musical beat (Drake et al., 2000; Large et al., 2002; 
Repp, 2005a, 2005b; Snyder & Krumhansl, 2001; Toivi-
ainen & Snyder, 2003), the kinematic aspects of this 
activity have been investigated to a lesser extent. How-
ever, Eerola, Luck, and Toiviainen (2006) investigated 
toddlers’ corporeal synchronization with music using a 
high resolution motion capture system. They found that 
2–4 year old children exhibited periodic movement, and 
that this movement was at times synchronized with the 
tactus of music. The tactus refers to the basic pulse of 
music, i.e., the pulse to which listeners typically entrain 
when tapping. The periodic movement was most clearly 
visible in the vertical dimension. The embodiment of 
higher metrical levels in musical movement has received 

less attention. Naveda and Leman (2010), however, stud-
ied how the metric hierarchy of Samba and Charleston 
is reflected in professional dancers’ repetitive gestures. 
To this end, they propose a method based on principal 
components analysis and periodicity transform (Sethares 
& Staley, 2001). With respect to musical movement by 
ordinary music listeners, the presence of metrical levels 
has, to date, not been studied.

The present work investigates the nature of music-
induced movements, focusing on how pulsations on dif-
ferent metrical levels manifest in these movements. We 
were interested in two main questions. First, whether 
music-induced movements display movement compo-
nents that are simultaneously synchronized to different 
metrical levels. Second, whether the synchronized move-
ment patterns differ between the metrical levels. To this 
end, we applied kinetic analysis, body modeling, dimen-
sionality reduction, and signal processing to data 
acquired using a high resolution motion capture system 
to identify the most typical movement patterns, or eigen-
movements, synchronized to different metrical levels. 

Based on the theoretical considerations presented above, 
in particular the notion of embodied cognition, we expect 
to see simultaneous synchronization of movement pat-
terns to several metrical levels. Moreover, due to inertial 
and biomechanical properties of the body, we expect to 
see the higher (i.e., slower) metrical levels to be embodied 
as gross body movements, in particular movement of the 
torso, and lower (faster) metrical levels embodied as 
movements of the extremities. This behavior can be 
expected based on the simple argument that the specific 
period of oscillation of a rigid physical body is propor-
tional to the square root of its moment of inertia and the 
moment of inertia is proportional to the mass and the 
physical dimensions of the rigid body. For instance, the 
torso has larger physical dimensions and larger mass than 
the arm and therefore has a higher moment of inertia and 
consequently a longer specific period of oscillation.

Method

Participants

A total of 18 participants (12 females, 6 males, mean age =  
24.2, SD of age = 3.9) took part in the study. These par-
ticipants were predominantly Finnish university students 
(75%) with the remainder comprising international 
exchange students of various nationalities. The average 
number of years of formal music training was 8.0 (SD = 
6.7); 89% of those with music training had trained for 10 
years or more. Most participants stated that they enjoyed 
dancing at home or in a nightclub (56%), with an average 
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time spent dancing of 2.0 hours per week (SD = 2.6 
hours), while a minority (25%) of the participants had 
had formal dance or aerobics training. Additionally, par-
ticipants were asked how many hours per week they spent 
doing physical activities or sports, of which the average 
time was 5.1 hours (SD = 4.1 hours). Participants received 
an honorarium in the form of a movie ticket for their 
participation in the study.

Apparatus

Participants’ movements were recorded using an eight-
camera optical motion capture system (Qualisys 
ProReflex). The system tracked the movement of reflec-
tive markers placed on each participant at a frame rate 
of 60 Hz.  The trajectories were interpolated together to 
create a three dimensional point-light display of each 
participant. The motion capture data were synchronized 
with the musical stimulus using the synchronization 
pulses transmitted by the Qualisys cameras. The musical 
stimulus was played back from a Pure Data (Pd) patch 
running on an Apple computer. Both the audio and the 
synchronization pulses were routed to the inputs of a 
Digidesign Mbox and recorded using ProTools software. 
For reference purposes, the sessions were additionally 
videotaped using a Panasonic Mini DV camcorder.

Materials and Procedure

Participants were recorded individually, and, prior to 
each motion capture session, a total of 28 reflective 
markers were attached to the participant’s body. The 
locations of the markers were as follows (L = left, R = 
right, F = front, B = back): 1: LF head (L frontal emi-
nence); 2: RF head (R frontal eminence); 3: LB head (L 
dorsal parietal bone); 4: RB head (R dorsal parietal 
bone); 5: L shoulder (L scapular acromion); 6: R shoul-
der (R scapular acromion); 7: spine (midpoint between 
the superior angles of the scapulae); 8: breastbone (ster-
num); 9: LF hip (L anterior superior iliac spine); 10: RF 
hip (R anterior superior iliac spine); 11: LB hip (L pos-
terior superior iliac spine); 12: RB hip (R posterior supe-
rior iliac spine); 13: L elbow (L olecranon); 14: R elbow 
(R olecranon); 15: L inner wrist(L distal radius); 16: L 
outer wrist (L distal ulna); 17: R inner wrist (R distal 
radius); 18: R outer wrist (R distal ulna); 19: L middle 
finger (metacarpophalangeal joint of L digitus medius); 
20: R middle finger (metacarpophalangeal joint of R 
digitus medius); 21: L knee (L lateral distal femur); 22: 
R knee (R lateral distal femur); 23: L ankle (L lateral 
malleolus); 24: R ankle (R lateral malleolus); 25: L little 
toe (L 5th proximal phalanx); 26: L big toe (distal 

interphalangeal joint of L hallux); 27: R little toe  (R 5th 
proximal phalanx); 28: R big toe (distal interphalangeal 
joint of R hallux). The locations of the markers are 
depicted in Figure 1a.

Once the markers were attached and well placed, we 
ensured that they were nonintrusive to the participant’s 
mobility, and that the participant was comfortable with 
the apparatus and the setting. The participant stood in 
the centre of the capture area and was instructed to 
‘move freely’ to the music. 

Participants were presented with an instrumental 
12-bar blues progression performed in a minor key and 
4/4 meter.  During the piece, the progression was repeated 
at four different tempi chosen randomly from the tempi 
92, 103, 115, 126, and 138 beats per minute (bpm), and 
presented in random order. The total amount of motion 
capture data collected and subjected to analysis was ca. 
37.5 min.

Results

A schematic representation of the entire analysis proce-
dure is provided in Figure 2.

In what follows, the steps of the analysis process are 
described in detail.

Preprocessing

To start the computational analysis, a set of secondary 
markers, subsequently referred to as the joints, was 

Figure 1.  (a) Anterior view of the location of markers attached to 
participants’ bodies. (b) Anterior view of the locations of the secondary 
markers used in the analysis (see text). Neighboring joints in kinematic 
chains are connected with lines. The directions of the mediolateral (ml) 
and vertical (v) axes are indicated by arrows. The anteroposterior axis is 
vertical to the surface of the page.
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derived from the marker locations. This was done in 
order to make the movement data compatible with the 
body-segment model used in subsequent analyses. 
The new set of twenty joints is depicted in Figure 1b. The 
locations of joints C, D, G, H, M, N, P, Q, R, S, and T are 
identical to the locations of one of the markers, while 
the locations of the other joints were obtained by averag-
ing the locations of two or more markers. In addition to 
the joints obtained by the calculation described above, 
Figure 1b displays as lines the body segments that con-
nect the joints. The following nomenclature will be used 
in subsequent discussion of the joints: A: root; B: left hip; 
C: left knee; D: left ankle; E: left toes; F: right hip; G: right 
knee; H: right ankle; I: right toes; J: midtorso; K: manu-
brium; L: head; M: left shoulder; N: left elbow; O: left 
wrist; P: left fingers; Q: right shoulder; R: right elbow; 
S: right wrist; T: right fingers.

The body segments considered in this study comprise 
five kinematic chains of body segments connected by 
joints. These are (see Figure 1b): ABCDE (left hip; left 
thigh; left leg; left foot), AFGHI (right hip; right thigh; 
right leg; right foot), AJKL (abdomen; thorax; head and 
neck), AJKMNOP (abdomen; thorax; left shoulder; left 
upper arm; left forearm; left hand), and AJKQRST 
(abdomen; thorax; right shoulder; right upper arm; right 
forearm; right hand). 

Mechanical Energy

Next, we estimated two kinetic variables from the joint 
locations and velocities: potential energy and kinetic 
energy. Potential energy of a body of mass is a form of 
mechanical energy that depends on its height in the 
gravitational field. For instance, bending the knees while 
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Figure 2.  Overview of the analysis of the data. PCA = principal components analysis, PC = principal component, KDE = kernel density estimation.
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standing reduces the total potential energy of the body. 
Kinetic energy, on the other hand, is energy due to 
motion and thus depends on the speed of body of mass. 
The potential energy of the body was calculated using 
the formula
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where M stands for the total mass of the body, ms the 
mass of body segment s relative to the total mass of the 
body, g the acceleration of gravity, and ys,c the vertical 
location of the center of mass of body segment s. The 
kinetic energy was calculated using the formula
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where Etrans and Erot denote translational and rotational 
energy, respectively, ns,c the speed of the center of mass of 
body segment s, Is,c the moment of inertia of body seg-
ment s, and ws the angular velocity of body segment s. 

To estimate the instantaneous velocities of the joints 
and the angular velocities of the body segments needed 
for the calculation of kinetic energy, we utilized numeri-
cal differentiation to the joint location data. To this end, 
we used the Savitzky-Golay smoothing FIR filter 
(Savitzky & Golay, 1964) with a window length of seven 
samples and a polynomial order of two. These values 
were found to provide an optimal combination of preci-
sion and smoothness in the time derivatives.

The inertial constants of the body were obtained from 
the body segment model proposed by Dempster, Gabel, 
and Felts (1959; see also Robertson, Caldwell, Hamill, 
Kamen, & Whittlesley, 2004). The model specifies a 
number of parameters for each of the body segments. 
These are the mass of the segment in relation to the total 
body mass, the distance of the center of mass from the 
proximal joint in relation to the segment length, and the 
radius of gyration in relation to segment length with 
respect to the center of mass, the proximal joint, and the 
distal joint. 

To obtain an overview of the relationship of the total 
instantaneous kinetic and potential energies and the 
metrical structure of the musical stimulus, we decom-
posed the estimated energies into segments, each of 
which had a length equal to eight beats of the respective 
musical stimulus. Subsequently, the instantaneous ener-
gies were averaged across participants and across eight-
beat segments in the stimuli. The results are shown in 
Figure 3. As can be seen, the average potential energy 
displays a clear periodicity at the one-beat level, the beat 
location closely matching the point of maximal decrease 
in potential energy and thus maximal downward velocity 
of the body. Average kinetic energy, on the other hand, 
displays a clear superposition of half-beat and two-beat 
periods.

Subsequently, we performed a periodicity analysis of 
the two components of mechanical energy. To this end, 
we first decomposed each motion capture recording into 
eight-beat sections with 50% overlap between neighbor-
ing sections. Subsequently, we estimated the period of 
potential and kinetic energy in each eight-beat segment 
using autocorrelation, which is a standard method for 

Figure 3.  Total potential (left) and kinetic (right) energy of the body, averaged across participants and eight-beat segments.
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periodicity estimation (Rabiner & Schafer, 1978). In the 
autocorrelation analysis, the period was defined to be 
equal to the lag corresponding to the first maximum in 
the autocorrelation function. Subsequently, we estimated 
the distribution of the thus obtained periods using Ker-
nel Density Estimation (KDE; Silverman, 1986).  KDE is 
a nonparametric method for estimating the probability 
distribution of a variable from a sample, and is based on 
summation of kernel function (such as narrow Gaussian 
curves) centered at each value in the sample. The thus 
estimated distributions of the periods of potential and 
kinetic energy are displayed in Figure 4.

As is evident from Figure 4, both forms of mechanical 
energy display periodicities at the three main metrical 
levels corresponding to periods of one, two, and four 
beats. For potential energy (Figure 4a), the most com-
mon periodicity for each tempo corresponds to the 
length of one beat, with a two-beat period being the sec-
ond most prominent. For kinetic energy (Figure 4b), the 
most common period is two beats, while four-beat peri-
ods are also relatively common. 

It is noteworthy that the potential energy (Figure 4a) 
shows a relatively prominent peak at the period of two 
beats, while this period is not clearly visible in Figure 3a. 
Similarly, for kinetic energy, the peak in Figure 4b at the 
period of half a beat is relatively small, while this peri-
odicity is clearly visible in Figure 3b. These differences 
are due to the different methods used to produce these 
graphs. In Figure 3 the graphs have been obtained by 
averaging the mechanical energies across the eight-beat 
segments, while those in Figure 4 have been obtained by 
picking the most prominent periodicity in each eight-
beat segment and estimating the distribution of these 

values. Thus, it may happen, for instance, that although 
the half-beat period is often present in the kinetic energy, 
it is mostly less strong than the two-beat period and is 
thus seldom picked as the strongest periodicity.

The graphs of Figure 4 suggest that for most of the 
eight-beat segments, the strongest periodicity lies in the 
vicinity of the period of one metrical level (one, two, or 
four beats). Therefore, in terms of mechanical energy, 
the movements were synchronized to some metrical level 
for most of the time.

Eigenmovements

As the next step in the analysis, we extracted typical 
movement patterns from the data and investigated their 
periodicities. To this end, we used Principal components 
analysis (PCA). PCA is a method that transforms a large 
group of variables into a reduced group of uncorrelated 
variables called principal components (PCs), which are 
linear combinations of the original variables. The first 
PC accounts for as much of the variance in the data as 
possible and the successive PCs each in turn account for 
as much of the remaining variance as possible. As a result 
of PCA, each observation in the data set can be expressed 
as values of the reduced set of variables, called the PC 
projections. 

Again, the data were decomposed into eight-beat sec-
tions with 50% overlap between neighboring sections. 
This decomposition was carried out because many of the 
participants changed their movement patterns during 
the presentation of the stimuli; applying PCA to the 
whole duration of a stimulus would not have produced 
meaningful results. The decomposition resulted in 44 

Figure 4.  Kernel density estimate of distribution of periodicities for (a) potential energy and (b) kinetic energy.
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sections for each participant (11 sections per each 
tempo) and thus a total of 792 segments. For each seg-
ment, the motion capture data were rotated around the 
vertical axis so that the orientation of the frontal plane 
of the body, defined by the hip markers, was parallel to 
the first axis of the coordinate system. Subsequently, to 
reduce the dimensionality of the data, a PCA was carried 
out separately for each participant and each section. The 
data subjected to PCA thus consisted of a series of 
60-component vectors. Each vector consisted of the three 
Euclidean coordinates of each of the 20 joints and there 
was one vector for each motion capture frame. The PCs 
obtained from this analysis were thus 60-component 
vectors, whose components indicated the amount to 
which each joint moved in each of the three directions 
in the respective movement pattern. The PC projections, 
on the other hand, were time series indicating how the 
movement pattern represented by the respective PC 
evolves in time.

Periodicity of Eigenmovements

For each segment, the first five PCs were included in the 
analysis. They accounted on average for 96.7% of the 
variance in each segment (SD = 2.3%). The PC projec-
tions from each PCA were subjected to a periodicity 
analysis using autocorrelation. Again, we estimated the 
distribution of the periods of the Principal Component 
projections using kernel density estimation. The result 
is shown in Figure 5. As can be seen, the most common 
periods correspond to the three main metrical levels (i.e., 
periods of one, two, and four tactus beats), with the two-
beat period being the most prevalent, followed by four 
beats and one beat, in this order.

Next, we investigated the prevalence of eigenmovements 
embodying each metrical level. To this end, we compared 
the estimated periods of the eigenmovements with the 
period of one, two, and four beats of the respective musi-
cal stimulus. We found that 12% of the segments con-
tained a PC that was synchronized to the one-beat level, 
in the sense that its period differed from that of one musi-
cal beat by less than 10%. For the two-beat and four-beat 
levels, these proportions were 47% and 34%, respectively. 
On average, the synchronized eigenmovements comprised 

a total of 29% of the total kinetic energy of the move-
ments. For 65% of the segments, only one of the eigen-
movements coincided with the period of any of the three 
metrical levels. According to this criterion, the participants 
thus embodied only one metrical level at a time for most 
of the segments. The eigenmovements synchronized to 
the three main metrical levels will be subsequently referred 
to as eigenmodes.

Structure of Eigenmodes

As a next step in the analysis, we investigated whether 
the eigenmodes embodying each of the three metrical 
levels differed from each other. More specifically, the aim 
of this analysis was to investigate whether there were dif-
ferences between the metrical levels in terms of the 
movement of each joint along each of the three direc-
tions (mediolateral, anteroposterior, vertical). 

To investigate these differences, we first performed a 
one-way ANOVA on each of the 60 components of the 
PCs. For the purpose of the analysis, for each participant 
and each metrical level, the PCs whose projections dis-
played a periodicity that was within ±10% of the length 
of the respective period of the metrical level where cho-
sen. Subsequently, we calculated for each of the 60 com-
ponents the average value across the selected PCs. By 
doing this we obtained one averaged PC for each of the 
18 participants and for each of the three metric levels.

For the calculation of the PC averages, absolute values 
of the components were used. This was because the PCs 
are only defined up to a multiplicative constant (Strang, 
1976). For instance, if p is a PC obtained from a data set, 
so is -p. Therefore, if absolute values were not used, the 
averaging may have cancelled out some PCs having oppo-
site signs. The ANOVAs thus regarded the amount of 
movement of each joint along each of the three directions 
without any regard to the direction of movement.

Due to the large number of comparisons (60), we used 
Bonferroni correction. The level of significance was thus 
set to .05/60 = .00083. Table 1 displays the joints and 
movementdirections that showed a significant effect of 
metrical level in the amount of movement.

The results of the posthoc tests for each comparison 
and each direction are displayed graphically in Figure 6. 
In this figure, the joints displaying significant differences 
are shown as black circles. To summarize the findings 
displayed in this figure, the main significant difference 
between the one-beat and two-beat eigenmodes (panels 
a and b) is that one-beat eigenmodes displayed more 
movement of shoulders in the vertical direction. Post-
hoc tests between one-beat and four-beat eigenmodes 
(panels c and d) reveal that one-beat eigenmodes are Figure 5.  Distribution of periods of eigenmovements.
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associated with less movement of the upper torso in the 
mediolateral direction and hands in the anteroposterior 
direction than four-beat eigenmodes, while one-beat 
eigenmodes are associated with more movement of torso 
and arms in the vertical direction than four-beat eigen-
modes. Finally, two-beat eigenmodes showed less move-
ment of the torso in the mediolateral direction than 
four-beat eigenmodes (panels e and f). 

Between-Subjects PCA

To investigate more closely the nature of different 
movement patterns at the different metrical levels, a 
second (between-subjects) PCA was carried out on the 
one-beat, two-beat, and four-beat eigenmodes. In other 
words, the PCs obtained from the PCA described above, 
whose projections where synchronized to one of the 
three metrical levels (allowing a tolerance of 10% of the 
length of musical beat), were subjected to the between-
subjects PCA. 

For subsequent analysis we decided to include PCs 
that contained a minimum of 75% of the variance. Using 
this criterion, we ended up with six PCs that contained 
76.5% of the variance. The PCs obtained from this sec-
ond-order PCA subsequently are referred to as the sec-
ond-order PCs. To assess the degree to which each of the 
second-order PCs represents movement patterns syn-
chronized to each of the metrical levels, the proportion 
of variance contained in the second-order PC compo-
nent scores within each of the three metrical levels was 
quantified. The rationale behind this procedure was that 
if the second-order component scores for a given metric 
level display a high amount of variance, the respective 
second-order PC has a high degree of similarity to the 
first-order PCs representing this metric level. This fol-
lows from the fact that the PC component score is 
obtained by calculating the dot product between the 
first-order PC and the second-order PC, and since the 
PCs are normalized to have unit length, the dot product 
is equal to the cosine of the angle between first-order 
PCs and the second-order PC. Thus, such a second-order 
PC can be regarded to represent a typical movement pat-
tern for the metric level.

The proportion of variance contained in the projec-
tions onto the first PCs are shown in Figure 7. As is 
evident from this figure, the metrical levels differ in 
terms of the variance contained in each of the PC pro-
jections. In particular, the eigenmovements synchro-
nized to the one-beat level retain the highest proportion 
of variance when projected onto PCs 3 and 5. Similarly, 
the eigenmovements synchronized to the two-beat and 
four-beat levels retain the highest proportion of 

Table 1.  Results from ANOVA Testing Differences in the Amount of 
Movement Between the Three Metrical Levels. Only Significant Effects 
Are Shown.

Direction Joint
Joint  

symbol F(2, 51) p

Vertical Root A 10.07 .00026
Left hip B 10.05 .00027
Right hip F 12.57 .00005
Manubrium K 10.59 .00019
Head L 13.57 .00003
Right shoulder Q 11.57 .00010
Right elbow R 9.17 .00050
Right wrist S 9.32 .00045
Left shoulder M 12.93 .00004
Left elbow N 9.69 .00035
Left knee C 8.82 .00063

Mediolateral Root A 10.84 .00016
Manubrium K 16.08 .00001
Head L 10.97 .00015
Right shoulder Q 10.21 .00024
Right elbow R 9.63 .00036
Left shoulder M 20.42 .00000
Left hip B 12.08 .00007
Right elbow R 9.86 .00031

Anteroposterior Right wrist S 9.28 .00046
Left wrist O 11.76 .00009

Figure 6.  Significant differences in the amount of movement of each 
joint along each direction between eigenmodes (ml = mediolateral direc-
tion; ap = anteroposterior direction; v = vertical direction). For each com-
parison and each direction, joints having significant differences are 
displayed with black circles; (a) less movement in one-beat eigenmodes 
than in two-beat eigenmodes; (b) more movement in one-beat eigen-
modes than in two-beat eigenmodes; (c) less movement in one-beat 
eigenmodes than in four-beat eigenmodes; (d) more movement in one-
beat eigenmodes than in four-beat eigenmodes; (e) less movement in 
two-beat eigenmodes than in four-beat eigenmodes; (f) more movement 
in two-beat eigenmodes than in four-beat eigenmodes.
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variance when projected onto PCs 3 and 1, and 2 and 
1, respectively. 

The six secondary PCs are graphically depicted in 
Figure 8. In what follows, PCs 1, 2, 3, and 5, which show 
the highest variances in Figure 7, are analyzed in detail. 
PC 1 contains high values in the anteroposterior com-
ponents of the shoulders, elbows, wrists, and fingers 
(gray bars at joints M-T). Moreover, the components 
corresponding to the two sides of the body (M-P vs. 
Q-T) have opposite signs. PC 1 thus corresponds to the 
rotation of the upper torso. PC 2 displays large values in 
the mediolateral components of most joints (black bars). 
Moreover, the components have the same sign. There-
fore, PC 2 corresponds to lateral swaying of the body. PC 
3 displays largest values in the mediolateral components 
of the elbows, wrists, and fingers (black bars at joints 
N-P and R-T). Again, the components corresponding to 
the two sides of the body (N-P vs. R-T) have opposite 
signs. Therefore, PC 3 corresponds to antiphase medio-
lateral arm movement. Finally, PC 5 shows largest values 
in the vertical components of elbows, wrists, and fingers 
(joints N-P and R-T). Therefore, PC 5 corresponds to 
vertical movement of the arms.

Based on this analysis, we can identify the following 
typical movements for each of the metrical levels.

•  �One-beat level: (1) mediolateral arm movements  
(PC 3); (2) vertical arm movements (PC 5);

•  �Two-beat level: (1) mediolateral arm movements  
(PC 3); (2) rotation of the upper torso (PC 1);

•  �Four-beat level: (1) lateral swaying of the body (PC 2); 
(2) rotation of the upper torso (PC 1).

Discussion

We investigated music-induced movement, focusing 
particularly on the relationship between movement pat-
terns and metrical levels of music. A kinetic analysis of 
peaks in mechanical energy (potential energy and kinetic 
energy) revealed that participants embodied the musical 
stimulus on several metrical levels. A subsequent kine-
matic analysis of the periodicity structure of the move-
ment revealed that participants synchronized with 
periods of one, two, and four beats, supporting the find-
ings from the kinetic domain. The analysis also showed 
that several metrical levels can be embodied simultane-
ously in the movement, although participants mostly 
tended to embody only one metrical level at a time. 
Regarding direction of movement at different metrical 
levels, we found that the tactus (one-beat level) tended 
to be embodied mostly as vertical movement, while the 
four-beat level tended to be embodied as mediolateral 
movement. This observation is consistent with the 
kinetic finding that the average potential energy of the 
body displays a period of one beat. 

A more detailed kinematic analysis revealed that the 
tactus level often was associated with vertical hand and 
torso movements as well as mediolateral arm movements, 
the two-beat level with mediolateral arm movements and 
rotation of the upper torso, and the four-beat level with 
lateral flexion of the torso and rotation of the upper torso. 
This observation is in line with our hypothesis that faster 
metric levels are embodied in the extremities, and slower 
ones in the central parts of the body. Furthermore, this 
finding is in tune with the kinetic observation that the 
most prevalent period of kinetic energy is two beats. The 
reasons for this are as follows. First, the torso has a signifi-
cant mass, and thus its movement contributes significantly 
to the body’s total kinetic energy. Second, because in peri-
odic motion kinetic energy obtains two maxima and two 
minima during one cycle, a two-beat period in kinetic 
energy corresponds to a four-beat period of movement.

An interesting observation was that, compared to two-
beat and four-beat periods, one-beat period was rela-
tively rare in the eigenmovements. There are two possible 
explanations for this finding. First, the method of Prin-
cipal components analysis extracts movement patterns 
that display the highest variance. It is thus possible that 
there exist movement patterns with one-beat period, but 
they may possess a low degree of variance and are thus 
not discovered by this method. This finding also can be 
explained by the type of variable that was used in the 
analysis. In particular, we used marker locations in the 
analysis. Using some other kinematic variable, such as 
marker speed, would have resulted in different periodicity 

Figure 7.  Proportion of variance contained in the projections of the 
primary PCs onto the secondary PCs for each metrical level.
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distributions. For instance, for a mediolateral swaying of 
the body with a two-beat period, the speed of the torso 
shows a period of one beat. Also, to produce such move-
ment, overall muscular effort has a period of one beat 
(muscular effort is maximal at the points where the tilt 
of the body is maximal). Therefore, one can say that even 
if this kind of movement pattern shows a period of two 
beats in terms of marker locations, the one-beat level is 
embodied in the muscular activity.

A possible limitation of the present study is that it used 
only one musical stimulus, albeit presented with a range 

of different tempi. Consequently, it may be that the 
observed movement patterns represent some musical 
features characteristic to this stimulus and thus are not 
generalizable to other musical stimuli. In subsequent 
work, we plan to include stimuli representing other vari-
ous musical genres and several time signatures.

One could assume that the tempo at which the stimu-
lus was presented to the participant could have had an 
effect on the way they moved to the music. For instance, 
given our preference to move at frequencies close to  
2 Hz (McDougall & Moore, 2005), one could expect that 

Figure 8.  First six second-order PCs obtained from the analysis. The first PC is in the left and the sixth in the right. On the left side of each graph, 
the letters refer to the joints as depicted in the left of the figure. The components are shown separately for mediolateral (ml), anteroposterior (ap), and 
vertical (v) dimensions.
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stimuli whose tempi are in the vicinity of 120 bpm would 
elicit larger movements than other stimuli. We compared 
the average kinetic energies of the participants across the 
different tempi, but failed to observe any significant dif-
ferences. More research is needed to clarify this issue.

A further potential limitation of the present study is that 
the kinematic analysis focused entirely on the location of 
the markers, while ignoring other kinematic variables 
such as velocity, acceleration, and jerk. Analysis of these 
kinematic variables could potentially reveal patterns that 
remain hidden in the location-based analysis.

The use of principal components analysis for dimen-
sionality reduction makes certain assumptions about the 
analyzed data that are not necessarily fulfilled by the 
present data. First, the Principal Components are non-
correlated, or orthogonal, and thus associating the eigen-
modes with them makes the assumption that the 
movement patterns synchronized to the different metri-
cal levels are orthogonal as well. This, however, may not 
be the case. Therefore, using nonorthogonal dimension-
ality reduction methods such as Independent Compo-
nent Analysis (Hyvärinen, Karhunen, & Oja, 2001) or 
Denoising Source Separation (Särelä & Valpola, 2005) 
for eigenmode extraction could provide new insights 
into the problem.

A second assumption of principal components analy-
sis is that the analyzed data are stationary within the 
analysis window. This may hold true when analyzing 

simple movement patterns such as walking, but with 
music-induced movement the patterns may change over 
time and the stationarity criterion is not met. This prob-
lem could be overcome by using eigenmode extraction 
methods that do not assume stationarity, such as Empiri-
cal Mode Decomposition (Huang et al., 1998).

The aforementioned limitations notwithstanding, our 
study is the first to tackle the question of music listeners’ 
movement and embodiments of musical meter using 
quantitative methods. We have shown that several levels 
of metrical hierarchy simultaneously can be embodied 
in the movements. Furthermore, we have identified the 
most typical movement types of different metric levels. 
In the future, we expect to gain a deeper insight into this 
phenomenon using more varied stimulus sets and 
improved methods of analysis, as described above.
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