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9 Mapping theorems 7810 Examples of quasionformal mappings 8411 Appendix 9311.1 Conformal mappings of a square onto a retangle . . . . . . . 9311.2 Some linear algebra . . . . . . . . . . . . . . . . . . . . . . . . 9411.3 Lp-spaes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9711.4 Regularity of p-harmoni funtions . . . . . . . . . . . . . . . 9911.5 Fixed point theorem and related results . . . . . . . . . . . . . 100Quasionformal mappings appeared perhaps for the �rst time in 1928 ina work by Grötzsh under the name �most nearly onformal mappings�. Heessentially onsidered the problem of mapping a planar square to a planar(non-square) retangle by a di�eomorphism that sends the verties of thesquare to the orner points of the retangle. Even though these two do-mains are onformally equivalent, the given boundary ondition annot berealized by any onformal mapping. For a onformal mapping f , the ra-tio |f ′(z)|2/Jf(z), is identially one by the Cauhy-Riemann equations, andone was then lead to try to minimize the maximum of this quantity underdi�eomorphisms with the given boundary ondition. Similar questions weresubsequently onsidered by Teihmüller in the 1930's. The term �quasifon-formal mapping� was oined by Ahlfors in 1935. He relaxed the regularityassumption and onsidered homeomorphisms in the loal Sobolev lass W 1,2for whih
|Df(z)|2 ≤ KJf(z)almost everywhere for some onstant K ≥ 1. The restrition K ≥ 1 omesfrom simple linear algebra: for eah n× n-matrix A,

detA ≤ |A|n,where detA refers to the determinant of A and
|A| = sup

|h|≤1

|Ah| = sup
|h|=1

|Ah|is the operator norm of the linear transformation assoiated with A.In 1938, Morrey proved a powerful existene theorem, alled the measur-able Riemann mapping theorem. This essentially states that, in the plane,quasionformal mappings with any presribed ratio |Df(z)|2/Jf(z) ∈ L∞ andany given diretion for the the maximal diretional derivative an be found.Other important developers of the theory inlude Lavrantiev and Bojarski.Planar quasionformal mappings have sine then been applied to many en-tirely di�erent problems. Let us simply here list the following: Kleinian2



groups, Nevanlinna theory, surfae topology, omplex dynamis, partial dif-ferential equations, inverse problems and ondutivity.Higher dimensional quasionformal mappings were already introdued byLavrantiev in 1938. The theory began to �ourish around 1960 when impor-tant works by Loewner, Gehring, and Väisälä appeared. Other signi�antontributors inlude Callender, Shabat, and Reshetnyak. Subsequently, thesemappings were introdued also in non-Eulidean settings by Mostow, whoproved his elebrated rigidity theorem in 1968. Another elebrated result isthe reverse Hölder inequality of Gehring's from 1972. In higher dimensions,the theory of and tehniques introdued to study quasionformal mappingshave been suessfully applied in di�erential geometry, topology, harmonianalysis, partial di�erential equations, and non-linear elastiity, among other�elds.The purpose of these notes is to give an introdution to the theory. Theseleted approah has been in�uened by reent advanes in the metri set-ting, but the framework is mostly that of a Eulidean spae. The oneptof quasisymmetry will be ruial in our approah. We have tried to makethe notes as self-ontained as possible. The reader is nevertheless assumed toknow the basis of the Lebesgue integration theory and Lp-spaes. The topisovered re�et the personal taste of the author. Naturally many importantaspets must have been left untouhed. For further reading, we reommendthe lassi monograph �Letures on n-dimensional quasionformal mappings�by Väisälä [30℄ and the monograph [4℄.These notes are based on ourses given at the University of Jyväskyläin 1997, 2004 and 2008 and at the University of Mihigan in 2002. Theurrent notes are the outome of several iterations. We wish to thank all thepeople who have provided us with lists of typos. In our experiene, most ofthe material an be overed in a one semester, graduate level topis ourse.Regarding the soures for the presented material, we wish to highlight [8℄,[14℄ and [30℄. There are rather few historial omments in what follows, andthe inlusions or omissions of referenes are essentially random.1 The metri de�nitionWe begin by introduing the so-alled metri de�nition of quasionformality.To this end, let (X, | · |), (Y, | · |) be metri spaes and f : X → Yhomeomorphism. Let x ∈ X and r > 0. De�ne
Lf (x, r) := sup{|f(x) − f(y)| : |x− y| ≤ r},

lf (x, r) := inf{|f(x) − f(y)| : |x− y| ≥ r},3



and
Hf(x, r) :=

Lf (x, r)

lf(x, r)
.

f l  (x,r)f

f(x)
f(B)

x

B

r

L  (x,r)fFigure 1: The de�nition of Lf (x, r) and lf(x, r)A homeomorphism f is quasionformal if there exists H <∞ suh that
Hf(x) := lim sup

r→0
Hf (x, r) ≤ Hfor all x ∈ X. We then say that f is (metrially) H-quasionformal.Here is a list of examples of quasionformal mappings in the Eulideansetting.1.1 Examples.1) Eah onformal f is quasionformal.2) The planar mapping f(x, y) = (x, 2y) is quasionformal.3) The �radial strehing� f(x) = x|x|ε−1, ε > 0, is quasionformal in alldimensions.4) There is quasionformal mapping f : R2 → R2 suh that f(S1(0, 1)) isthe von Koh snow�ake urve.5) Eah di�eomorphism f : Ω → Ω′ is quasionformal in every subdomain

G ⊂⊂ Ω.Let us begin by onsidering 1) in the plane. Write z = x + iy and
f(z) = u(x, y) + iv(x, y) for a onformal mapping f, where u, v are realfuntions. Then f is analyti and the Jaobian determinant Jf of f is stritlypositive.By the Cauhy-Riemann equations we have that

ux = vy, uy = −vx.4



Thus
Df(x, y) =

[
ux uy
vx vy

]

=

[
ux uy
−uy ux

]

.We onlude that Jf (x, y) = (ux)
2+(uy)

2 = |∇u|2 = |∇v|2 and that∇u·∇v =
0. Moreover, also the two olumns of Df(x, y) are perpendiular and both oflength |∇u|. Thus, given a vetor h, we have that

|Df(x, y)h| = |∇u||h|.By the (omplex) di�erentiability of f we onlude that
lim sup
r→0

Hf(x, r) = 1everywhere. Notie also that
|Df(x, y)|2 = Jf(x, y)everywhere, where |A| = sup|h|≤1 |Ah| is the usual operator norm. Sine

f ′(x + iy) = ux(x + iy) − iuy(x + iy) for the omplex derivative f ′, we alsohave that |Df(x, y)| = |f ′(x + iy)|, where the latter term is the modulus ofthe omplex derivative and the former again the operator norm.For 2) one easily heks that f is indeed quasionformal, with
lim sup
r→0

Hf(x, r) = 2everywhere.The radial mapping desribed in 3) requires already some e�ort, see Chap-ter 10 below. We will also disuss the mapping referred to in 4) in more detailin Chapter 10.Regarding 5), notie that the Jaobian Jf(x) of f is loally bounded awayfrom zero and that |Df(x)| = sup|h|≤1 |Df(x)h| is loally bounded. Thus,given G ⊂⊂ Ω, we have that
|Df(x)|n ≤ KJf (x)for some onstant K and all x ∈ G. This implies that

|Df(x)| ≤ K ′ min
|h|=1

|Df(x)h|with some onstant K ′ in G (in fat, we may take K ′ = |K|n−1). Thequasionformality then follows with H = K ′ using the di�erentiability of f.The metri de�nition is easy to state but it is hard to dedue propertiesof quasionformal mappings diretly from it. For example, it is not learfrom the de�nition if quasionformal mappings form a group. The problemis that the de�nition is an in�nitesimal one. In the next hapter we showthat it implies a global estimate whih is easier to work with.5



2 From loal to globalIn this hapter we prove the following global estimate and introdue themahinery needed for its proof.2.1 Theorem. Let f : Ω → Ω′ be H-quasionformal, where Ω,Ω′ ⊂ Rn aredomains, n ≥ 2. Then Hf(x, r) ≤ H ′(H, n) whenever B(x, 7r) ⊂ Ω.To help to understand the fundamental ideas of the proof, let us beginwith a simpler setting.2.1 Speial aseSuppose that Ω = Ω′ = R2 and assume that f be a di�eomorphism.Assume that f is orientation preserving. Let x ∈ Ω. Then f is di�erentiableat x with Jf(x) > 0. It follows that
max
|e|=1

|Df(x)e| ≤ H min
|e|=1

|Df(x)e|and
|Df(x)|2 ≤ HJf(x),see Subsetion 11.2 in the appendix. Let us show that Hf(x0, r) ≤ H ′. Wemay assume that x0 = 0 = f(x0). Denote L := Lf (0, r) and l := lf(0, r).De�ne

v(y) =







1 if |y| ≤ l

0 if |y| ≥ L
log L

|y|

log L
l

if l ≤ |y| ≤ L

.Then
|∇v(y)| =







0 if |y| < l

0 if |y| > L
1

|y| log L
l

if l < |y| < L

.
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Now
∫

R2

|∇v(y)|2 dy =

(

1

log L
l

)2 ∫

l≤|y|≤L

dy

|y|2

=

(

1

log L
l

)2 ∫ L

l

∫ 2π

0

1

r2
r dϕ dr

=

(

1

log L
l

)2

(logL− log l)2π

=
2π

log L
l

.Let u(x) = v(f(x)). Then (see Subsetion 11.2 in the appendix)
∫

R2

|∇u(x)|2 dx ≤
∫

R2

|∇v(f(x))|2|Df(x)|2 dx

≤ H

∫

R2

|∇v(f(x))|2|Jf(x)| dx

= H

∫

R2

|∇v(y)|2 dy

=
2πH

log L
l

.Now, u = 1 on f−1(B(0, l)) and u = 0 on f−1(R2 \ B(0, L)). Let w0, z0 besuh that |w0| = |z0| = r, w0 ∈ f−1(R2 \B(0, L)) and z0 ∈ f−1(B(0, l)). Set
w =

{
w0

2
if |w0 − z0| ≥

√
2r

w0+z0
|w0+z0|

r if |w0 − z0| <
√

2r
.Then, for πr

4
< t < r, S1(w, t) intersets both f−1(R2\B(0, L)) and f−1(B(0, l)).Now, sine u osillates from 0 to 1 on S1(w, t), we have
1 ≤

∫

S1(w,t)

|∇u|
Hölder
≤ (2πt)1/2

(∫

S1(w,t)

|∇u|2
)1/2for eah πr

4
< t < r. Thus
∫

B(0,2r)

|∇u|2 ≥
∫ r

πr
4

(∫

S1(w,t)

|∇u|2
)

dt ≥
∫ r

πr
4

1

2πt
= C (1)where C is independent of r. Hene

L

l
≤ exp(CH).This gives us the desired global ontrol.7



2.2 Relaxing the regularity assumptionWe ontinue with the planar setting. We begin by disposing of the use of thehain rule.Let us de�ne
ρ(x) =

{
|Df(x)|
|f(x)|

1
log L

l

on f−1(B(0, L) \B(0, l)) =: A

0 elsewhere .Then ∫

R2

ρ2 ≤ 2πH

log L
l

.If γ is a subar of S1(w, t) whih onnets f−1(R2 \B(0, L)) to f−1(B(0, l)),then f ◦ γ onnets R2 \B(0, L) to B(0, l), and so
∫

S1(w,t)

ρ ds ≥
∫

f◦γ

ds

|y| log L
l

≥ 1,where w and πr
4
< t < r are as above. Reasoning as in (1), using polaroordinates, we onlude that

∫

B(0,2r)

ρ2 ≥ C > 0.We no longer require the hain rule, but it still looks like we need f to bedi�erentiable. To relax this assumption, let us try to disretize the de�nitionof our funtion ρ. Reall that we wish to bound L/l from above. We maythus assume that L ≥ 2l.Suppose A = f−1(B(0, L) \B(0, l)) ⊂ ⋃Bj, where Bj's are balls. Set
ρ(x) =

(

log
L

l

)−1∑ diam(f(Bj))

diam(Bj)

1

dist(0, f(Bj))
χ2Bj

(x).Then
∫

S1(w,t)

ρ ds =

(

log
L

l

)−1∑ diam(f(Bj))

diam(Bj)

1

dist(0, f(Bj))

∫

S1(w,t)

χ2Bj
ds.If the Bj's are small, then

∫

S1(w,t)

χ2Bj
ds ≥ diam(Bj)

28



whenever Bj ∩ S1(w, t) 6= ∅. Hene
∫

S1(w,t)

ρ ds ≥
(

log
L

l

)−1
1

2

∑

Bj∩S1(w,t)6=∅

diam(f(Bj))

dist(0, f(Bj))
.Assume that the sets f(Bj) are so small that eah f(Bj) intersets at mosttwo annuli Ai = B(0, 2il)\B(0, 2i−1l).Write ⌊t⌋ for the integer part of a realnumber t. Then

∑

Bj∩S1(w,t)6=∅

diam(f(Bj))

dist(0, f(Bj))
≥ 1

4

⌊log2
L
l
⌋

∑

i=1

∑

Bj∩S1(w,t)6=∅,f(Bj)∩Ai 6=∅

diam(f(Bj))

dist(0, f(Bj))

≥ 1

4

⌊log2
L
l
⌋

∑

i=1

∑

Bj∩S1(w,t)6=∅,f(Bj)∩Ai 6=∅

diam(f(Bj))

2il

≥ 1

4

⌊log2
L
l
⌋

∑

i=1

2i−1l

2il

≥ 1

8
log2

L

l
,and so ∫

S1(w,t)

ρ ds ≥ C > 0whenever πr
4
< t < r. As before, this gives

∫

B(0,2r)

ρ2 ≥ C > 0. (2)When we try to estimate ‖ρ‖L2(B(0,2r)) from above, we are faed with theintegral
(

log
L

l

)−2 ∫

B(0,2r)

(
k∑

1

diam(f(Bj))

diam(Bj)

1

dist(f(Bj), 0)
χ2Bj

(x)

)2

dx. (3)Problems:1) How to selet balls Bj so that we an �nd an e�etive estimate on ourintegral? This requires ontrol on the overlap of the balls Bj .2) How to get rid of the annoying 2 in χ2Bj
?9



3) Even if we an handle 1) and 2), how an we handle dimensions n ≥ 3?Notie here that the proof of (2) strongly used the fat that we are inthe plane.We next introdue the tehnology that will allow us to handle the aboveproblems.2.3 Covering theoremsWe will later use overing theorems to selet the above balls Bj . We beginwith a overing lemma that holds in all metri spaes whose losed balls areompat.2.2 Theorem. (Vitali) Let B be a olletion of losed balls in Rn suh that
sup{diamB : B ∈ B} <∞.Then there are B1, B2, . . . (possibly a �nite sequene) from this olletionsuh that Bi ∩ Bj = ∅ for i 6= j and

⋃

B∈B

B ⊂
⋃

5Bj.For a proof we refer the reader to [20℄. Let us anyhow brie�y explain theidea in a simple ase. Suppose that the family B onsists of balls B(x, rx),where x ∈ A and A is bounded. Let M = supx∈A rx. Choose a ball B1 =
B(x, rx) so that rx > 3M/4. Continue by onsidering points in A \ 3B1,and repeating the �rst step (now letting M1 = supy∈A\3B1

ry) and after thatontinue by indution.In the Eulidean setting, a subolletion often an be hosen so that weonly have uniformly bounded overlap for the over.2.3 Theorem. (Besiovith) Let B be a olletion of losed balls in Rnsuh that the set A onsisting of the enters is bounded. Then there is aountable (possibly �nite) subolletion B1, B2, . . . suh that
χA(x) ≤

∑

χBj
(x) ≤ C(n)for all x.The seletion of the balls Bj eventually will be made using the Besiovithovering theorem. In more general settings, say, in the Heisenberg group,Besiovith fails. The reason it holds in the Eulidean setting, is basiallythe following fat: 10



Suppose that we are given B(x1, r1) and B(x2, r2) so that 0 ∈ B(x1, r1)∩
B(x2, r2), x1 /∈ B(x2, r2) and x2 /∈ B(x1, r1). Then the angle between thevetors x1 and x2 is at least 60 degrees.For a proof of the Besiovith overing theorem, we again refer to [20℄.2.4 The maximal funtionWe will need maximal funtions to dispose of the onstant 2 in the term χ2Bjin (3). Maximal funtions turn out to be important for other things as well.Let u ∈ L1lo(Rn). The non-entered maximal funtion of u isMu(x) = sup

x∈B(y,r)

−
∫

B(y,r)

|u|.Here and in what follows,
−
∫

A

v =
1

|A|

∫

A

vwhen A is measurable with 0 < |A| < ∞, and |A| refers to the Lebesguemeasure of A.2.4 Remarks.1) Aording to the Lebesgue di�erentiation theorem (f. Remarks 4.3),Mu(x) ≥ |u(x)|almost everywhere. This fat is not be needed in this setion.2) There are many other maximal funtions. For example the restrited,entered maximal funtionMC
δ u(x) = sup

0<r<δ
−
∫

B(x,r)

|u|.3) We always have MC
∞u(x) ≤ Mu(x) ≤ 2nMC

∞u(x).4) Notie that {Mu > t} is open for eah t ≥ 0 and, onsequently, Mu ismeasurable. Indeed, if x ∈ {Mu > t}, then it immediately follows fromthe de�nition that B(y, r) ⊂ {Mu > t}, for some B(y, r) ontaining x.2.5 Theorem.1) If u ∈ L1 and t > 0, then |{Mu > t}| ≤ 5n

t

∫

{Mu>t} |u| ≤ 5n

t
‖u‖1.11



2) If u ∈ Lp, p > 1, then ∫ (Mu)p ≤ C(p, n)
∫
|u|p.

Proof . 1) We may assume thatM :=
∫

{Mu>t} |u| <∞. For eah x ∈ {Mu >
t} there is a ball B suh that x ∈ B and

−
∫

B

|u| > t.Then
|B| < t−1

∫

B

|u|and thus
diam(B) < C(n)t−1||u||1.If y ∈ B, then Mu(y) > t and thus B ⊂ {Mu > t}. So

|B| < 1

t

∫

B

|u| ≤ 1

t

∫

{Mu>t}∩B |u|.By the Vitali overing theorem we �nd pairwise disjoint balls B1, B2, . . . asabove so that {Mu > t} ⊂ ⋃ 5Bj . Then
|{Mu > t}| ≤

∑

|5Bj| = 5n
∑

|Bj| ≤
5n

t

∑
∫

Bj

|u| ≤ 5n

t

∫

{Mu>t} |u|.2) Reall the Cavalieri priniple:
∫

|v|p = p

∫ ∫ |v(x)|

0

tp−1 dt dx

= p

∫ ∫ ∞

0

tp−1χ{|v|>t} dt dx

= p

∫ ∞

0

tp−1|{|v| > t}| dt.Fix t > 0. De�ne g(x) = |u(x)| χ{|u(x)|> t
2
}(x). Then |u(x)| ≤ g(x) + t

2
and soMu(x) ≤ Mg(x) + t

2
. Thus {x : Mu(x) > t} ⊂ {x : Mg(x) > t

2
}. Now, theCavalieri priniple, part 1) of our theorem and the Fubini theorem yield the

12



estimate
∫

(Mu(x))p = p

∫ ∞

0

tp−1|{Mu(x) > t}| dt

≤ p

∫ ∞

0

tp−1|{Mg(x) > t

2
}| dt

≤ p

∫ ∞

0

tp−12 · 5n
t

||g||1

≤ p

∫ ∞

0

tp−12 · 5n
t

∫

{|u(x)|> t
2
}|

|u| dx dt

≤ 2 · 5np
∫ ∞

0

tp−2

∫

Rn

χ{|u(x)|> t
2
}|u| dx dt

= 2 · 5np
∫

Rn

|u(x)|
∫ 2|u(x)|

0

tp−2 dt dx

=
2p5np

p− 1

∫

|u|p.

22.6 Remark.1) Let us single out, for future referene, the estimate
|{Mu(x) > t}| ≤ 2 · 5n

t

∫

{|u(x)|> t
2
}

|u| dxfrom the above proof.2) Suppose that u ∈ Lp(Ω), p > 1. Applying Theorem 2.5 to the zeroextension of u we onlude that ∫
Ω
(Mu)p ≤ C(p, n)

∫

Ω
|u|p. Similarly,the inequality in part 1) of this remark an be restrited to Ω when

u ∈ L1(Ω).The ase p = 1 was not left out by aident from the previous theorem.2.7 Example. If u(x) = χB(0,1)(x), then Mu 6∈ L1(Rn). In fat, Mu /∈
L1(Rn) unless u is the zero funtion.The following lemma from [7℄ will allow us to handle problem 2) statedafter formula 3. 13



2.8 Lemma. (Bojarski) Fix 1 ≤ p < ∞. Let B1, B2, . . . be balls in Rn,
aj ≥ 0 and λ > 1. Then

‖
∑

ajχλBj
‖p ≤ C(λ, p, n)‖

∑

ajχBj
‖p.

Proof . The ase p = 1 is lear. Let p > 1. Then, by the Lp−Lp/(p−1)-duality(see Subsetion 11.3 in the appendix),
‖
∑

ajχλBj
‖p = sup

‖ϕ‖ p
p−1

≤1

∣
∣
∣
∣

∫
∑

ajχλBj
ϕ

∣
∣
∣
∣
.Now, using monotone onvergene and Theorem 2.5 we estimate

∣
∣
∣
∣

∫
∑

ajχλBj
ϕ

∣
∣
∣
∣
≤
∑

aj

∫

λBj

|ϕ|

≤
∑

aj |λBj| −
∫

λBj

|ϕ|

≤
∑

ajλ
n

∫

Bj

Mϕ
= λn

∫
∑

ajχBj
Mϕ

≤ λn‖
∑

ajχBj
‖p‖Mϕ‖ p

p−1

≤ λnC(p, n)‖
∑

ajχBj
‖p‖ϕ‖ p

p−1
.The laim follows. 2

2.5 Upper gradients and Poinaré inequalitiesIn this setion we give a substitute for (1). We will later show that it allowsus to prove an analog of (2) in all dimensions.A Borel funtion g ≥ 0 is an upper gradient of u in U , if
|u(x) − u(y)| ≤

∫

γx,y

g ds (4)whenever x 6= y ∈ U and γx,y is a reti�able urve that joins x to y in U.Here we agree that inequality (4) holds, whatever an expression we have onthe left hand side, if the given line integral is in�nite, and that both u(x)and u(y) are �nite if the integral in question onverges.14



The reti�ability of γ : [a, b] → Rn above means that, for some M <∞,

k−1∑

j=1

|γ(tj+1) − γ(tj)| ≤Mwhenever a = t1 < t2 < · · · < tk = b and k ≥ 2. The supremum of suhsums over all k ≥ 2 and all partitions is then the length of γ. Reall thateah reti�able urve γ : [a, b] → Rn of length l an be parametrized by
γ0 : [0, l] → Rn so that |γ′0(t)| = 1 for a.e. t and γ0 is 1-Lipshitz, i.e.
|γ0(t) − γ0(s)| ≤ |t− s| for all t, s ∈ [0, l]. Then

∫

γ

g ds :=

∫

[0,l]

g(γ0(t)) dt.For all this see [30℄.2.9 Examples.1) u ∈ C1, g = |∇u|. This is simply the fundamental theorem of alulusfor the absolutely (even Lipshitz) ontinuous funtion u◦γ0 of a singlevariable:
u(γ(l)) − u(γ(0)) =

∫

[0,l]

< ∇u(γ0(t)), γ
′
0(t) > dt. (5)2) u Lipshitz, g the pointwise Lipshitz �onstant�Lipu(x) = lim sup

r→0
sup

|x−y|≤r

|u(x) − u(y)|
r

.Notie that (u ◦ γ0)
′(t) ≤ Lipu(t) for almost every t.3) u anything, g ≡ ∞. In this ase, the right hand side of (4) is alwaysin�nite.Integration of (4), the Fubini theorem and spherial oordinates give usthe important Poinaré inequality.2.10 Theorem. (Poinaré inequality) Let u ∈ L1(B(x0, r)) ⊂ Rn, n ≥

2, and let g ∈ Lp(B(x0, r)), 1 ≤ p <∞, be an upper gradient of u in B(x0, r).Then
−
∫

B(x0,r)

|u− uB| ≤ C(n)r

(

−
∫

B(x0,r)

gp
)1/p

.Here uB := −
∫

B(x0,r)
u. 15



Proof . Let x ∈ B = B(x0, r). Then
∫

B

|u(x) − u(y)| dy ≤
∫

B

∫ 1

0

g(x+ t(y − x))|y − x| dt dy

=

∫ 1

0

∫

B

g(x+ t(y − x))|y − x| dy dt

≤
∫ 1

0

∫

B∩B(x,2tr)

g(z)

( |z − x|
t

)

t−n dz dt

≤ 2r

∫ 1

0

∫

B∩B(x,2tr)

g(z)t−n dz dt

≤ 2r

∫

B

g(z)

∫ 1

|z−x|
2r

t−n dt dz

≤ Cnr
n

∫

B

g(z)

|z − x|n−1
dz.Integrating with respet to x we obtain the estimate

∫

B

∫

B

|u(x) − u(y)| dy dx ≤ Cnr
n

∫

B

∫

B

g(y)

|y − x|n−1
dy dx

= Cnr
n

∫

B

g(y)

∫

B

1

|y − x|n−1
dx dy

≤ C ′
nr

n+1

∫

B

g.Now
−
∫

B

|u(x) − uB| dx = −
∫

B

∣
∣
∣
∣
−
∫

B

u(x) − u(y) dy

∣
∣
∣
∣
dx ≤ −

∫

B

−
∫

B

|u(x) − u(y)| dy dx.Combining the above estimates, we obtain the desired inequality for p = 1.The general ase follows by Hölder's inequality. 22.11 Remarks.1) The Poinaré inequality also holds when n = 1 and the proof is easier:when x < y and x, y ∈ I, where I is a bounded interval, we have that
|u(y) − u(x)| ≤

∫ y

x

g(t) dt ≤
∫

I

g(t) dtby the upper gradient inequality. Integrating this estimate over I withrespet both of the variables, we obtain the Poinaré inequality byrepeating the last steps of the proof of Theorem 2.10.16



2) It is easy to modify the proof of Theorem 2.10 so as to verify
(

−
∫

B(x,r)

|u− uB|p
)1/p

≤ C(n, p)r

(

−
∫

B(x,r)

gp
)1/p

.This is the usual form of the Poinaré inequality.3) It is harder to prove that
(

−
∫

B(x,r)

|u− uB|
pn

n−p

)n−p
pn

≤ C(n, p)r

(

−
∫

B(x,r)

gp
)1/pwhen 1 ≤ p < n. This inequality is alled the Sobolev-Poinaré inequal-ity.4) If u ∈ L1(B(x0, r)) has an upper gradient g ∈ L∞(B(x0, r)), then it eas-ily follows that u has a representative ũ (i.e. ũ = u almost everywhere)that is ||g||L∞-Lipshitz. By the last step of the proof of Theorem 2.10we then onlude that the Poinaré inequality also holds for p = ∞.We are now ready to prove a substitute for (1).2.12 Theorem. Let u be ontinuous inB(x0, 3r), g ≥ 0 an upper gradient of

u inB(x0, 3r) and assume that u ≤ 0 on E, u ≥ 1 on F where E,F ⊂ B(x0, r)are ontinua with min{diam(E), diam(F )} ≥ δ0r > 0. Then
∫

B(x0,3r)

gn ≥ δ(δ0, n) > 0.

Proof . Let a = −
∫

B(x0,r)
u. Assume that a ≤ 1/2. Let x ∈ F and write

ri = 2−ir, i ≥ −1, Bi = B(x, ri). Then
u(x) = lim

i→∞
uBi

= lim
i→∞

−
∫

Bi

u.Now
1

2
≤ |u(x) − uB(x0,r)| ≤

∑

i≥0

|uBi
− uBi+1

| + |uB0 − uB(x0,r)|.

17



Also, B(x0, r) ⊂ B(x, 2r) and thus a simple estimate and the Poinaré in-equality yield
|uB0 − uB(x0,r)| ≤ |uB(x,r) − uB(x,2r)| + |uB(x0,r) − uB(x,2r)|

≤ 2 · 2n−
∫

B(x,2r)

|u− uB(x,2r)|

≤ C(n)2r

(

−
∫

B(x,2r)

gn
)1/n

≤ C(n)(2r)1/n

(

(2r)−1

∫

B(x,2r)

gn
)1/n

.Similarly
|uBi

− uBi+1
| ≤ C(n)r

1/n
i

(

r−1
i

∫

Bi

gn
)1/n

.Thus
1

2
≤

∞∑

i=−1

C(n)r
1/n
i

(

r−1
i

∫

Bi

gn
)1/n

≤ C(n)r1/n sup
0<t≤2r

(

t−1

∫

B(x,t)

gn
)1/n

.Thus, for eah x ∈ F, there is a ball B(x, tx) so that tx ≤ 2r and
tx ≤ C(n)r

∫

B(x,tx)

gn.By Vitali we �nd pairwise disjoint balls B1, B2, . . . as above suh that F ⊂
⋃

5Bk. Then
diam(F ) ≤

∑

diam(5Bk) ≤ C(n)r
∑

∫

Bk

gn ≤ C(n)r

∫

B(x0,3r)

gn.If a > 1/2, then we use E instead of F above. 22.13 Remark. By hoosing the balls Bi more leverly, one an show that
B(x0, 3r) may be replaed with B(x0, r).18



2.6 Proof of Theorem 2.1.We prove the estimate for B(x0, r). We may assume that x0 = 0 = f(x0).Realling that we wish to bound Hf(x0, r) =
Lf (x0,r)

lf (x0,r)
from above, we mayfurther assume that L ≥ 2l, where L := Lf(x0, r) and l := lf (x0, r). Let

A := f−1((B(0, L) \B(0, l)) ∩ Ω′) ∩B(0, 6r).For eah x ∈ A, pik 0 < rx < r/30 suh that
H(x, rx) < 2H and diam(f(B(x, rx))) < l/4.By the Besiovith overing theorem we �nd a subolletion {Bj}j = {B(xj , rj)}jof {B(x, rx)}x so that

χA(x) ≤
∑

χBj
(x) ≤ C(n)for all x. Beause f is a homeomorphism, also

∑

χf(Bj)(x) ≤ C(n).Pik rj < rxj
< 2rj so that

diam(f(B(xj , rxj
))) ≤ 2 diam(f(Bj)).Beause A is ompat, already a �nite number of the balls B̂j = B(xj , rxj

)over A, say B̂1, . . . , B̂k. De�ne
ρ(x) =

(

log
L

l

)−1 k∑

1

diam(f(B̂j))

diam(B̂j)

1

dist(0, f(B̂j))
χ2B̂j

(x).Then
ρ(x) ≤ 8

(

log
L

l

)−1 k∑

1

diam(f(Bj))

diam(Bj)

1

dist(0, f(Bj))
χ4Bj

(x).By Lemma 2.8
∫

ρn dx ≤ C(n)

(

log
L

l

)−n ∫
(

k∑

1

diam(f(Bj))

diam(Bj)

1

dist(0, f(Bj))
χBj

(x)

)n

dx

≤ C(n)

(

log
L

l

)−n k∑

1

(
diam(f(Bj))

dist(0, f(Bj))

)n

≤ C(n,H)

(

log
L

l

)−n k∑

1

|f(Bj)|
dist(0, f(Bj))n

.19



Denote Ai = {x : 2i−1l ≤ |x| ≤ 2il} and i0 = ⌊log L
l
/ log 2⌋ + 1. Then

k∑

1

|f(Bj)|
dist(0, f(Bj))n

≤
i0∑

1

∑

f(Bj)∩Ai 6=∅

|f(Bj)|
dist(0, f(Bj))n

≤
i0∑

1

C(n)
|B(0, 2i+1l))|

(2(i−2)l)n
,and so

∫

ρn dx ≤ C(n,H)

(

log
L

l

)1−n

. (6)Notie that f−1(Rn \ B(0, L)) ontains a ontinuum F that joins Sn−1(0, r)to Sn−1(0, 2r) in B(0, 2r). Beause f(B(0, r)) is open, it is easy to hekthat B(0, l) ⊂ f(B(0, r)). De�ne E = f−1(B(0, l)). Then E is a ontinuum,
diam(E) ≥ r, diam(F ) ≥ r, and E,F ⊂ B(0, 2r). If γ is a reti�able urvethat joins E to F , then f ◦ γ joins B(0, l) to Rn \ B(0, L). Reasoning as in2.2 we see that ∫

γ

ρ ds ≥ ε0 > 0where ε0 does not depend on f, r or γ. De�ne
u(x) =

1

ε0
inf

∫

γx

ρ ds,where in�mum is taken over all reti�able urves that join x to F. Then u = 0in F and u ≥ 1 in E. Remember from the de�nition of ρ that ρ is bounded.Let u(y) > u(x). Then
|u(y)− u(x)| ≤

∫

γx,y

ρ

ε0

dsfor all reti�able urves γx,y onneting x to y. Thus ρ
ε0

is an upper gradientof u. Note that u is Lipshitz beause
|u(x) − u(y)| ≤ sup

z∈B(x,2|x−y|)

ρ(z)

ε0

|x− y|.By Theorem 2.12 we onlude that
∫

B(0,6r)

ρn dx ≥ εn0δ > 0. (7)A bound on L/l follows ombining (6) and (7), as desired.2.14 Remarks. 20



1) The assumption that n ≥ 2 was needed to ensure that the exponent
1 − n in (6) is negative. Thus the proof does not extend to the ase
n = 1. This is no aident. The simple quasionformal mapping f(x) =
x+exp(x) of a single variable shows that the laim of Theorem 2.1 failsfor n = 1.2) We only needed that

lim inf
r→0

Hf(x, r) ≤ Hfor all x ∈ Ω for our homeomorphism in the proof of Theorem 2.1. Thusthe quasionformality assumption an be relaxed to this ondition.3) It is now natural to inquire if the uniform boundedness of the lim supor lim inf of Hf(x, r) is really neessary. To this end, let E ⊂ [0, 1] bethe 1
3
-Cantor set. Then the Cantor funtion ξ : [0, 1] → [0, 1] maps

E to a set of positive length. Let Ω =]0, 1[×R and de�ne f(x, y) =
(x+ ξ(x), y). Then

lim sup
r→0

Hf(x, r) = 1outside E ×R and f : Ω → f(Ω) is a homeomorphism that takes a setof zero area to a set of positive area. We will soon prove that a qua-sionformal mapping annot do this (one an also show diretly usingthe properties of the Cantor funtion that f annot be quasionformal).We an replae the 1
3
-Cantor set in this example with any Cantor set,even of Hausdor� dimension zero. Consequenty, uniform boundednessof Hf (x) outside a set of dimension one when n = 2 does not su�efor the uniform boundedness of Hf(x, r). In higher dimensions, one re-plaes R above by Rn−1 to see that the analog of dimension one is then

n− 1.On the other hand, if
lim inf
r→0

Hf(x, r) ≤ Houtside a set of σ-�nite (n − 1)-measure, one an prove that f is qua-sionformal. This is rather easily seen from our previous argumentswhen n = 2: Let Ẽ be the exeptional set of σ-�nite length. Instead ofpiking small balls entered at eah x ∈ A, do this for A \ Ẽ. De�ne ρas before. Then still
∫

ρ2 ≤ C(H)

(

log
L

l

)−1

.21



What about the lower bound? Let us refer to our previous argumentin 2.2. It ould well happen that our balls do not over the subar of
S1(w, t). However, one an prove that, for almost every t > 0, the set
Ẽ ∩ S1(w, t) is ountable. Then the balls we seleted over the subarof S1(w, t) up to a ountable set for almost every t > 0. Hene theimages of the balls over f(S1(w, t)) up to a ountable set. Thus

∫

S1(w,t)

ρ ds ≥ ε0 > 0for almost every t > 0. The general setting is similar in spirit to thatin the plane.4) In the above proof, H ′ depends on H, n. It is not known if the laimould hold with someH ′ that does not depend on the dimension n. Thisis an interesting open problem. One annot in general take H ′ = Heven when f is a onformal mapping of the unit disk onto a simplyonneted planar domain.5) Theorem 2.1 extends to a rather abstrat setting. Let X, Y be Ahlfors
Q-regular 1, Q > 1, suppose that losed balls are ompat, and thePoinaré inequality with exponent p = Q holds for both X and Y . If
f : X → Y is quasionformal, then

Hf(x, r) ≤ H ′for all x ∈ X, r > 0. In fat, even
lim inf
r→0

Hf(x, r) ≤ Hfor all x su�es. These results an be proved by suitably modifyingthe argument that we used above, see [5℄. The real di�ulty is in ir-umventing the Besiovith overing theorem. The size of exeptionalsets is not yet entirely understood in this general setting, see [18℄.6) A metri spae X is alled linearly loally onneted (LLC), if there isa onstant C so thati) eah pair of points in any ball B an be joined by a ontinuum in
CB, and1A metri measure spae X is Ahlfors Q-regular, if there is a onstant C so that

C−1rQ ≤ µ(B(x, r)) ≤ CrQfor all x, r for some Borel measure µ. 22



ii) eah pair of points outside any ballB an be joined by a ontinuumin X \ C−1B.The spaes in 5) are LLC. This onnetivity ondition is used to �ndsubstitutes for the sets E and F in the proof of Theorem 2.1.3 Quasisymmetri mappingsBy Theorem 2.1 we know that quasionformality implies the uniform loalboundedness of Hf(x, r). We introdue the equivalent onept of quasisym-metry that turns out to be very useful.Let X and Y be metri spaes and let η : [0,∞) → [0,∞) be a homeo-morphism. A homeomorphism f : X → Y is η-quasisymmetri (η-qs), if
|f(a) − f(x)|
|f(b) − f(x)| ≤ η

( |a− x|
|b− x|

)for all a 6= x 6= b.3.1 Remark. If f is η-quasisymmetri, then
Hf(x, r) =

Lf (x, r)

lf(x, r)
≤ η(1).So, quasisymmetri mappings are quasionformal.We next prove that quasionformal mappings are loally quasisymmetri.3.2 Theorem. Let f : B(x0, 3r0) → Ω′ ⊂ Rn be a homeomorphism suhthat Hf(x, r) ≤ H for all x ∈ B(x0, r0) and 0 < r < 2r0. Then f|B(x0,r0)

is
η-quasisymmetri, where η depends only on n and H .
Proof . Let a 6= x 6= b be points in B(x0, r0) and let t = |a− x|/|b− x|.Case 1: t > 1. Write

aj = x+ j|b− x| a− x

|a− x|for j = 0, 1, . . . , k, where k = ⌊t⌋. Then
|f(aj) − f(aj−1)| ≤ H|f(aj−1) − f(aj−2)|,for j ≥ 2, and so

|f(aj) − f(aj−1)| ≤ Hj−1|f(a1) − f(x)| ≤ Hj|f(b) − f(x)|.23



Sine |f(a) − f(ak)| ≤ H|f(ak) − f(ak−1)|, we obtain
|f(a) − f(x)| ≤ |f(a) − f(ak)| +

k∑

j=1

|f(aj) − f(aj−1)|

≤ (k + 1)Hk+1|f(b) − f(x)|
≤ (t+ 1)H t+1|f(b) − f(x)|.

a1

ak

b

a

0x = a

Figure 2: Case 1Case 2: t < 1/9. Denote bj = x+ 3−j(b− x), for j ≥ 0, and
Bj = B((bj + bj−1)/2, 3

−j|b− x|),for j ≥ 1. Let j ≤ k = ⌊log3(1/t)⌋. Then |a− x| ≤ |bj − x| and so
|f(a) − f(x)| ≤ H|f(bj) − f(x)| ≤ H2|f(bj) − f(bj−1)| ≤ H2 diam(f(Bj)).This implies that

|f(a) − f(x)|n ≤ C(H, n)|f(Bj)|.

B

b

1b

1

Bk
a

x
bk

Figure 3: Case 2Sine the balls Bj are pairwise disjoint and
f(Bj) ⊂ f(B(x, |b− x|)) ⊂ B(f(x), H|f(b) − f(x)|),24



we obtain
k|f(a) − f(x)|n ≤ C(H, n)

k∑

j=1

|f(Bj)|

≤ C(H, n)|B(f(x), H|f(b) − f(x)|)|
≤ C ′(H, n)|f(b) − f(x)|n.Thus

|f(a) − f(x)|
|f(b) − f(x)| ≤ C ′′(H, n)(log(1/t))−1/n.Case 3: 1/9 ≤ t ≤ 1. Clearly

|f(a) − f(x)|
|f(b) − f(x)| ≤ H.Selet a homeomorphism η : [0,∞[→ [0,∞[ that is greater than or equal tothe above bounds. 23.3 Remarks.1) The proof goes through if f : X → Y , X is LLC and both X and Yare Q-regular.2) In fat, one an hoose C and s depending on n and H so that the re-strition of f toB(x0, r) is η̃-quasisymmetri with η̃(t) = C max{ts, t1/s}.This requires a bit more work.3.4 Corollary. Let Ω,Ω′ ⊂ Rn, where n ≥ 2. Suppose that f : Ω → Ω′ isquasionformal and let 0 < λ < 1. Then there is an η = η(n,H, λ) so thatthe restrition of f to B(x, λd(x, ∂Ω)) is η-quasisymmetri whenever x ∈ Ω.

Proof . By Theorem 2.1, the assumptions of Theorem 3.2 are satis�ed forballs B(x, d(x, ∂Ω)/15). If 1/15 < λ < 1, one then iterates the quasisym-metry estimate for the ase λ = 1/15 so as to obtain quasisymmetry in
B(x, λd(x, ∂Ω)) (with a new ontrol funtion η that also depends on λ). 2It is easy to hek, from the de�nition, that quasisymmetri mappingsform a group. The following proposition follows diretly from the de�nition.25



3.5 Proposition. Let f : A1 → A2 be η1-quasisymmetri and let g : A2 →
A3 be η2-quasisymmetri. Then f−1 : A2 → A1 is η̂-quasisymmetri, where
η̂(0) = 0 and

η̂(t) =
1

η−1
1 (1

t
)
,for t > 0, and g ◦ f : A1 → A3 is η̃-quasisymmetri, where η̃(t) = η2(η1(t)).As a onsequene of Corollary 3.4 and Proposition 3.5 we now onludethat quasionformal mappings also form a group. This annot be easilyproven from the de�nition.3.6 Theorem. Let f : Ω1 → Ω2 be H1-quasionformal and let g : Ω2 → Ω3be H2-quasionformal. Then f−1 is H(H1, n)-quasionformal and g ◦ f is

H(H1, H2, n)-quasionformal.
Proof . By Corollary 3.4 there is η = η(n,H) so that the restrition of f toany ball B = B(x, d(x, ∂Ω1)/2) is η-quasisymmetri. Then f−1 : f(B) → Bis η̂-quasisymmetri by Proposition 3.5. Given y ∈ Ω2, hoose x = f−1(y), let
B = B(x, d(x, ∂Ω)/2), notie that B(y, r) ⊂ f(B) for r < lf(x, d(x, ∂Ω1)/2),and apply Remark 3.1 to f−1.The quasionformality of the omposition follows by a similar argument.
23.7 Remark. Let Ω ⊂ R2 be bounded and simply onneted. Let f :
B2(0, 1) → Ω be quasionformal. Then the following are equivalent:1) f is quasisymmetri.2) Ω is LLC.3) There is a quasionformal mapping g : R2 → R2 so that g|B2(0,1)

= f .The fat that 1) implies 2) is easy to prove. By Corollary 3.4, 3) yields 1).The remaining impliations are harder. To see that 2) implies 1), one reasonsas in the proof of Theorem 2.1 using Remark 2.13 and a suitable ase study.The fat that 1) implies 3) an be shown relying on tehniques from Chapter10 below.
26



4 Gehring's lemma and regularity of quasion-formal mappingsWe will prove that quasionformal mappings are di�erentiable almost ev-erywhere, preserve the null sets for Lebesgue measure, and belong to theSobolev lass W 1,plo for some p = p(n,H) > n. This amounts to absoluteontinuity of the omponent funtions of f on almost all lines parallel to theoordinate axes (in the domain in question) and loal p-integrability of thelassial partial derivatives.4.1 The volume derivativeIt will be important for us to pull bak the Lebesgue measure under ourquasionformal mapping.4.1 Proposition. Let f : Ω → Ω′ be a homeomorphism. Then
µ′
f(x) = lim

r→0

|f(B(x, r))|
|B(x, r)|exists almost everywhere in Ω, belongs to L1lo(Ω) and

∫

E

µ′
f(x) dx ≤ |f(E)|for eah Borel set E ⊂ Ω, with equality whenever |A| = 0 implies |f(A)| = 0.This is a diret onsequene of the following Radon-Nikodym theoremwhen one hooses µ(A) = |f(A)| and λ(A) = |A|.4.2 Theorem. (Radon-Nikodym) Let µ and λ be Radon measures on

Ω ⊂ Rn. Then
D(µ, λ, x) := lim

r→0

µ(B(x, r))

λ(B(x, r))exists λ-a.e., is loally integrable with respet to λ, and
∫

E

D(µ, λ, x) dλ(x) ≤ µ(E)for eah Borel set E with equality if an only if µ is absolutely ontinuouswith respet to λ. 27



Reall that a measure µ is Radon, if µ(K) < ∞ for ompat sets, Borelsets are measurable,
µ(U) = sup{µ(K) : K ⊂ U ompat}for open U , and
µ(A) = inf{µ(U) : A ⊂ U open}for arbitrary A.We refer the reader to [20℄ for a proof of the Radon-Nikodym theorem.It is a rather diret appliation of a overing theorem that we have notdisussed.Let us however brie�y explain how a weaker version of Proposition 4.1an be justi�ed using the overing theorems from 2.3. Instead of µ′

f , let usonsider
u(x) = lim sup

r→∞

|f(B(x, r))|
|B(x, r)| ,and let us assume that we already know the Borel measurability of u. Let

E ⊂ Ω be a Borel set. We may assume that E ⊂⊂ Ω. Given k ∈ Z, write
Ek = {x ∈ E : 2k−1 < u(x) ≤ 2k}, and set E0 = {x ∈ E : u(x) = 0},
E∞ = {x ∈ E : u(x) = ∞}.Consider �rst E∞. Let 0 < r < d(E, ∂Ω) and �xM ≥ 1. For eah x ∈ E∞,we �nd 0 < rx < r so that

|B(x, r)| ≤M |f(B(x, rx))|.By the Vitali overing theorem, we �nd pairwise disjoint balls B1, B2, · · · asabove and so that E∞ ⊂ ∪j5Bj . Thus
|E∞| ≤ 5n

∑

|Bj| ≤ 5nM−1| ∪j f(Bj)|.There exists a ompat set F ⊂ Ω, independent of M, so that ∪jBj ⊂ F.Thus | ∪j f(Bj)| ≤ |f(F )| < ∞. By letting M tend to in�nity, we onludethat |E∞| = 0.Fix then ε > 0 and let k ∈ Z. Pik an open set Uk so that f(Ek) ⊂ Ukand |Uk| < |f(Ek)| + ε. For eah x ∈ Ek, pik 0 < rx < d(E, ∂Ω) so that
2k−1|B(x, rx)| ≤ |f(B(x, rx)|and f(B(x, rx)) ⊂ Uk. Using the Vitali overing theorem as above, we on-lude that

2k−15−n|Ek| ≤ |Uk| < |f(Ek)| + ε,28



and letting ε→ 0, we infer that
2k−15−n|Ek| ≤ |f(Ek)|. (8)Regarding the opposite inequality, we hoose an open set Uk ontaining Ekso that |Uk| < |Ek| + ε. Given x ∈ Ek pik then rx so that

2k|B(x, rx)| ≥ |f(B(x, rx))|and B(x, rx) ⊂ Uk. By the Besiovith overing theorem, we �nd balls
B1, B2, · · · as above and so that

χEk
(x) ≤

∑

j

χBj
≤ CnχUk

.Summing over j and letting ε → 0, we onlude that
|f(Ek)| ≤ 2kCn|Ek| (9)Summing over k in (8) and (9), and notiing that ∫

E0 u = 0, we arrive at
C−1
n |f(E \ E∞)| ≤

∫

E

u(x) ≤ Cn|f(E)|, (10)where Cn depends only on n. Realling that |E∞| = 0, we may replae E\E∞with E, provided f maps sets of measure zero to sets of measure zero.One an establish (10) with Cn = 1 by substituting a suitable morere�ned overing theorem [20℄ for the Besiovith and Vitali overing theoremsabove. The almost everywhere existene of the limit in the de�nition of µ′
falso follows from suitable versions of (8) and (9). The measurability of µ′

f isrutine.4.3 Remarks.1) (Lebesgue's di�erentiation theorem) Let u ∈ L1lo. Then
lim
r→0

−
∫

B(x,r)

u(y) dy = u(x)for almost every x.Proof. By onsidering the positive and negative parts of u separately,we may assume that u ≥ 0. De�ne µ(E) =
∫

E
u for Lebesgue measur-able E ⊂ Rn. Then µ is a Radon measure and the Radon-Nikodymtheorem gives

∫

E

lim
r→0

−
∫

B(x,r)

u(y) dy dx =

∫

E

u dx.Thus the laim follows. 29



2) The Lebesgue di�erentiation theorem an be improved to: If u ∈ Lplo,
p ≥ 1, then

lim
r→0

−
∫

B(x,r)

|u(y)− u(x)|p dy = 0for almost every x. This follows by applying the Lebesgue di�erentationtheorem to the funtions uq(y) = |u(y)− q|p, q ∈ Q.3) Let E ⊂ Rn be Lebesgue measurable. From 1), with u = χE , we seethat
lim
r→0

|E ∩B(x, r)|
|B(x, r)| = 1for almost every x ∈ E.4) The use of balls entered at x in the Lebesgue di�erentation theorem isnot essential. Indeed, onsider the olletion Q onsisting of all ubes

Q ⊂ Rn. If u ∈ L1lo, then, for almost every x,
lim
j→∞

−
∫

Qj

u(y) dy = u(x)whenever Qj ∈ Q satisfy ∩jQj = {x}. This an be proved, for example,by �rst notiing that the laim is trivial if u is ontinuous, approximat-ing a general loally integrable funtion by ontinuous ones, and byontrolling the error terms via the weak boundedness (as in part 1) ofTheorem 2.5) of the maximal operator [26℄.4.2 The maximal strehingSet
Lf (x) = lim sup

r→0

Lf(x, r)

r
.4.4 Lemma. Let f : Ω → Ω′ be a homeomorphism. The funtion Lf isBorel measurable and

µ′
f(x) ≤ Lf (x)

n ≤ Hf(x)
nµ′

f(x)for almost every x ∈ Ω. In partiular, Lf ∈ Lnlo(Ω) when f is quasionformal.
Proof . The Borel measurability of Lf follows from the fat that, given aompat subset E of Ω,

{x ∈ E : Lf (x) < t} =
⋃

Ai,30



where the sets
Ai =

{

x ∈ E :
|f(x+ h) − f(x)|

|h| ≤ t− 1

i
for all 0 < |h| < d(E, ∂Ω)/i

}are losed by ontinuity of f . Let x ∈ Ω, 0 < r < d(x, ∂Ω). Then
|f(B(x, r))|
|B(x, r)| ≤

(
Lf (x, r)

r

)n

.Now
(
Lf (x, r)

r

)n

≤
(
Lf (x, r)

lf (x, r)

)n(
lf (x, r)

r

)n

≤
(
Lf (x, r)

lf(x, r)

)n |f(B(x, r))|
|B(x, r)| .Hene the laim follows by letting r tend to zero. 2Notie that, at a point x, where Df(x) exists, |Df(x)| is ontrolled interms of Lf(x). However, integrability of Lf does not a priori guaranteeabsolute ontinuity of f on almost all lines parallel to the oordinate axes.Indeed, Lf (x) = 1 almost everywhere for the homeomorphism f from part3) of Remarks 2.14, but f is not absolutely ontinuous on any line parallelto the x-axis. We are thus lead to modify the de�nition of Lf .For a homeomorphism f : Ω → Ω′ and ε > 0 de�ne

Lεf (x) = sup
r≤ε

Lf (x, r)

r
.Then Lεf is Borel measurable. Note that ε 7→ Lεf (x) is inreasing and that

Lεf (x) → Lf (x), as ε→ 0.It is easy to hek that, in dimension one, loal integrability of Lεf guar-antees the absolute ontinuity of f. The following result is a generalizationof this fat.4.5 Lemma. Let f : Ω → Ω′ be a homeomorphism, and let ε > 0. Then
|f(x) − f(y)| ≤

∫

γ

2Lεf dsfor all reti�able urves onneting x to y in Ω. In partiular, 2Lεf is an uppergradient of the omponent funtions fi of f in Ω, and of the funtion
u(x) = |f(x) − f(x0)|,whenever x0 ∈ Ω is �xed. 31



Proof . Fix x, y ∈ Ω and let γ = γ0 : [0, l] → Ω, be a reti�able urve joining
x to y. Assume �rst that d := diam(γ([0, l])) < ε. Let z ∈ γ([0, l]). Then
γ([0, l]) ⊂ B(z, d) and so

|f(x) − f(y)| ≤ diam(f(γ([0, l]))) ≤ 2Lf(z, d).Hene
|f(x) − f(y)| ≤

∫

[0,l]

2Lf(γ(s), d)

l
ds ≤

∫

[0,l]

2Lf(γ(s), d)

d
ds ≤

∫

γ

2Lεf ds.If d ≥ ε, hoose 0 = t1 < · · · < tk = l suh that diam(γ([ti, ti+1])) < ε, for
1 ≤ i < k, and use the triangle inequality.The rest of the laim follows from the fats that

|fi(x) − fi(y)| ≤ |f(x) − f(y)|,for 1 ≤ i ≤ n, and
|u(x) − u(y)| =

∣
∣|f(x) − f(x0)| − |f(y)− f(x0)|

∣
∣ ≤ |f(x) − f(y)|.

2The above proof did not employ the fat that f is a homeomorphism. Infat, the onlusion holds for eah ontinuous f : Ω → Rk, k ≥ 1.We next show that Lεf is loally p-integrable for all p < n, provided f isquasisymmetri.4.6 Lemma. Let f be η-quasisymmetri in 2B, where B = B(x0, r0) ⊂ Rn,and let 0 < ε < diam(B)/100. Then
|{x ∈ B : Lεf (x) > t}| ≤ [5η(1)η(2)/t]n |f(B)|for t > 0.

Proof . If Lεf (x) > t, then there exists 0 < rx ≤ ε suh that
Lf (x, rx)

rx
> t.Write Et = {x ∈ B : Lεf (x) > t}. By the Vitali overing theorem we �ndpairwise disjoint losed balls B1 = B(x1, r1), B2 = B(x2, r2), . . . as above so32



that Et ⊂ ⋃ 5Bj. Thus
|Et| ≤ 5n

∑

|Bj | ≤ 5n|B(0, 1)|t−n
∑

Lf(xj , rj)
n

≤ |B(0, 1)| [5η(1)/t]n
∑

lf(xj , rj)
n

≤ [5η(1)/t]n
∑

|f(B(xj, rj))|
≤ [5η(1)/t]n |f(2B)|.By quasisymmetry,

|f(2B)| ≤ |B(0, 1)|Lf(x0, 2r0)
n

≤ |B(0, 1)|lf(x0, r0)
nη(2)n

≤ |f(B)|η(2)n.

24.7 Lemma. Let f be η-quasisymmetri in 2B, where B = B(x0, r0) ⊂ Rn,and let 0 < ε < diam(B)/100. Then
−
∫

B

(Lεf )
p ≤ C(n, η, p)

( |f(B)|
|B|

)p/nfor 1 ≤ p < n.
Proof . Applying the Cavalieri formula and the previous lemma we see that

∫

B

(Lεf)
p = p

∫ ∞

0

tp−1|{x ∈ B : Lεf (x) > t}| dt

= p

[∫ t0

0

+

∫ ∞

t0

]

≤ p

∫ t0

0

tp−1|B| dt+ C(n, η, p)|f(B)|
∫ ∞

t0

tp−n−1 dt

= |B|tp0 + C(n, η, p)|f(B)|tp−n0 .Solve for t0 so that the two terms are equal. 24.8 Corollary. Let f : Ω → Ω′ be quasisymmetri (or quasionformal),where Ω,Ω′ ⊂ Rn are domains, n ≥ 2. Then f ∈W 1,nlo (Ω,Rn): |f | ∈ Lnlo(Ω),the omponent funtions are absolutely ontinuous on almost all lines par-allel to the oordinate axes in Ω, and the lassial partial derivatives of theoordinate funtions belong to Lnlo(Ω).33



Reall that absolute ontinuity of a funtion u : Ω → R on almost all linesparallel to the oordinate axes in Ω requires that, for (n− 1)− almost every
(x2, · · · , xn), u(t, x2, · · · , xn) is absolutely ontinuous on eah ompat linesegment in the x1-diretion in Ω, as a funtion of t, and analogously when
x1 above is replaed by xj , j = 2, · · · , n.

Proof . Fix a ube Q with Q ⊂ Ω, and pik 0 < ε < 1 so that Lεf ∈ L1(Q),see Lemma 4.7. Fix a oordinate diretion, say x1. Fiber Q by line segmentsparallel to the x1-axis. Denote J(x2, . . . , xn) = {y ∈ Q : y2 = x2, . . . , yn =
xn}. By the Fubini theorem Lεf ∈ L1(J(x2, . . . , xn)) for (n− 1)-almost every
(x2, . . . , xn). Let J = J(x2, . . . , xn) be suh a line segment. By Lemma 4.5we have, for 1 ≤ j ≤ n,

|fj(t1, x2, . . . , xn) − fj(t2, x2, . . . , xn)| ≤
∫

J(t1,t2)

2Lεf ds,where J(t1, t2) = {x ∈ J : t1 ≤ x1 ≤ t2}. Sine Lebesgue integral is ab-solutely ontinuous with respet to Lebesgue measure, it follows that fj isabsolutely ontinuous on J and that ∂1fj(x) exists at almost every x ∈ J .Furthermore,
|∂1fj(x)| ≤ Lf(x),for suh points. The above learly shows that fj is absolutely ontinuouson almost all lines parallel to the oordinate axes in Ω. Next, from Lemma4.4 we know that Lf ∈ Lnlo(Ω). Beause a quasionformal mapping is loallyquasisymmetri by Corollary 3.4, the laim follows. 24.9 Remark. The previous results do not allow us to onlude that a qua-sisymmetri mapping of the real line onto itself is absolutely ontinuous.Indeed, in the proof of Lemma 4.7 we only obtain the p-integrability of Lεffor p < 1 and thus Lemma 4.5 gives no estimate on the osillation of f. Thisdoes not mean any weakness in our tehnique beause one an give examplesof quasisymmetri mappings f : R → R that fail to be absolutely ontinuous.Next we will show that Lf ∈ Lplo(Ω) for some p = p(n,H) > n.4.3 Gehring's lemmaThe following result is the starting point for the higher integrability of Lf .34



4.10 Lemma. (Reverse Hölder Inequality) Let f be η-quasisymmetrion 2B ⊂ Rn. Then
(

−
∫

B

Lnf

)1/n

≤ C(n, η)−
∫

B

Lf .

Proof . There is nothing to be proved when n = 1. Thus assume that n ≥ 2.Let ε > 0 be small. Suppose B = B(x0, r0). De�ne u(x) = |f(x) − f(x0)|.Then, by Lemma 4.5, 2Lεf is an upper gradient of u and thus, by the Poinaréinequality,
−
∫

B

|u− uB| ≤ C(n)r0−
∫

B

Lεf .Sine Lεf is loally integrable, the monotone onvergene theorem impliesthat
−
∫

B

|u− uB| ≤ C(n)r0−
∫

B

Lf . (11)Now
uB = −

∫

B

|f(x) − f(x0)| ≥
1

|B|

∫

B\ 1
2
B

|f(x) − f(x0)| ≥
2−n

η(2)
Lf (x0, r0),and there is a δ = δ(n, η) > 0 suh that

u(x) = |f(x) − f(x0)| ≤
2−n

2η(2)
Lf (x0, r0),whenever x ∈ δB. Thus

−
∫

B

|u− uB| ≥
1

|B|

∫

δB

(uB − u) ≥ C(n, η)Lf(x0, r0).This, ombined with (11), gives
Lf (x0, r0) ≤ C(n, η)r0−

∫

B

Lf . (12)So, by Lemma 4.4 and Proposition 4.1,
(

−
∫

B

Lnf

)1/n

≤ C(n, η)

(

−
∫

B

µ′
f

)1/n

≤ C(n, η)
|f(B)|1/n

r0

≤ C(n, η)
Lf(x0, r0)

r0
≤ C(n, η)−

∫

B

Lf .
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4.11 Remarks.1) Applying Hölder's inequality to the right hand side of (12) we obtainthe estimate
Lf(x0, r0) ≤ C(n, η)r0

(

−
∫

B

Lpf

)1/pfor p ≥ 1. In partiular, with p = n, we have
Lf(x0, r0) ≤ C(n, η)

(∫

B

Lnf

)1/n

.2) If X is Q-regular and if we have a p-Poinaré inequality for some p < Q,then the proof of Lemma 4.10 gives
(

−
∫

B

LQf

)1/Q

≤ C(data)(−∫
B

Lpf

)1/pwhen f is η-quasisymmetri.3) The reverse Hölder inequality also holds with balls replaed by ubes(assuming that f is quasisymmetri on√
nQ). Indeed, letB = B(x0, r0) ⊂

Q, where the edge length of Q is diam(B). Then Q ⊂ √
nB. By 1),

Lf(x0, r0) ≤ Cr0−
∫

B

Lf ,and by quasisymmetry
diam(f(Q)) ≤ 2η(

√
n)Lf(x0, r0).Following the proof of Lemma 4.10 we see that

(

−
∫

Q

Lnf

)1/n

≤ C
diam(f(Q))

r0
,and we onlude that

(

−
∫

Q

Lnf

)1/n

≤ C−
∫

B

Lf ≤ C−
∫

Q

Lf .One an also verify the reverse Hölder inequality diretly for ubes,without using the Poinaré inequality. Let us sketh this in dimension36



two. Suppose that f is η-quasisymmetri on Q. Assume for notationalsimpliity that Q = [−1, 1]2. By quasisymmetry,
diam(f(Q)) ≤ 2η(

√
2)|f(1, t)−f(0, 0)| ≤ 2η(1)η(

√
2)|f(1, t)−f(−1, t)|for eah −1 ≤ t ≤ 1. As at the end of the proof of Lemma 4.10, wehave that

(

−
∫

Q

L2
f

)1/2

≤ C(n, η) diam(f(Q)).The laim follows by notiing (see the proof of Corollary 4.8)
|f(1, t) − f(−1, t)| ≤

∫

Jt

2Lf dsfor almost every −1 ≤ t ≤ 1, where Jt is the line segment between thepoints (1, t) and (−1, t), and then integrating with respet to t.As the �rst onsequene of the reverse Hölder inequality we show thatquasionformal mappings preserve the lass of sets of measure zero.4.12 Corollary. Let f : Ω → Ω′ be quasionformal, where Ω,Ω′ ⊂ Rn,
n ≥ 2. Then |f(E)| = 0, if and only if |E| = 0. In partiular,

|f(E)| =

∫

E

µ′
f dx,for Borel (and all Lebesgue measurable) sets E, and f maps Lebesgue mea-surable sets to Lebesgue measurable sets. Moreover, µ′

f (x) > 0 almost ev-erywhere.
Proof . Let |E| = 0. We may assume that E is bounded and E ⊂ Ω. Pikopen U ⊃ E so that U ⊂⊂ Ω. Then Lf ∈ Ln(U) by Lemma 4.4. Given
ε > 0, we further �nd an open set V with E ⊂ V ⊂ U and |V | < ε. For eah
x ∈ E, pik a ball B(x, rx) so that B(x, 15rx) ⊂ V . By the Vitali overingtheorem, we �nd suh balls B1, B2, . . . so that Bi ∩ Bj = ∅ when i 6= j and
E ⊂ ∪5Bj. Then f(E) ⊂ f(∪5Bj) and

|f(∪5Bj)| ≤
∑

|f(5Bj)| ≤ η(5)C(n)
∑

Lf (xj, rj)
nand so, by part 1) of Remark 4.11,

|f(∪5Bj)| ≤ C(n, η)
∑

∫

Bj

Lnf = C(n, η)

∫

∪Bj

Lnf ≤ C(n, η)

∫

V

Lnf .37



Letting ε→ 0, we onlude that |f(E)| = 0. The �only if� part follows fromthe fat that f−1 is also quasionformal. By the Radon-Nikodym theorem,
|f(E)| =

∫

E

µ′
f dx (13)for all Borel sets E. Let E ⊂ Ω be Lebesgue measurable. Pik a Borel set

F ⊃ E so that |F \ E| = 0. Then f(F ) is a Borel set, f(E) ⊂ f(F ) and
|f(F ) \ f(E)| = |f(F \E)| = 0. It follows that f(E) is Lebesgue measurableand that (13) holds also for E. Suppose �nally that µ′

f(x) = 0 in E with
|E| > 0. Then

|f(E)| =

∫

E

µ′
f dx = 0,whih ontradits the fat that |f(E)| = 0 if and only if |E| = 0. 2We ontinue with a powerful tool from harmoni analysis, the Calderón-Zygmund deomposition, and some onsequenes of this deomposition.The dyadi deomposition of a ube Q0 onsists of open ubes Q ⊂ Q0with faes parallel to the faes of Q0 and of edge length l(Q) = 2−il(Q0),where i = 1, 2, . . . refer to the generation in the onstrution. The ubesin eah generation over Q0 up to a set of measure zero and the losuresof the ubes in a �xed generation over Q0; there are 2in ubes of edgelength 2−il(Q0) in the ith generation and the ubes orresponding to the samegeneration are pairwise disjoint. For almost every x ∈ Q0, there is a (unique)dereasing sequene Q0 ⊃ Q1 ⊃ . . . of ubes in the dyadi deomposition sothat {x} =

⋂
Qi. In what follows, Q,Q0, Qx et. are ubes.4.13 Theorem. (Calderón-Zygmund deomposition) LetQ0 ⊂ Rn, u ∈

L1(Q0), and suppose that
t ≥ −
∫

Q0

u ≥ 0.Then there is a subolletion {Qj} from the dyadi deomposition of Q0 sothat Qi ∩Qj = ∅ when i 6= j,
t < −
∫

Qj

u ≤ 2ntfor eah j, and u(x) ≤ t for almost every x ∈ Q0 \
⋃
Qj .

Proof . For almost every x ∈ Q0 there is a dereasing sequene {Qj} ofdyadi ubes so that {x} =
⋂
Qj . By the Lebesgue di�erentiation theorem38



(see part 3) of Remarks 4.3)
lim
j→∞

−
∫

Qj

u = u(x)for almost every suh x. Let u(x) > t and assume that the above holds for xwith the sequene {Qj}. Then there must be maximal Qx := Qj(x) so that
−
∫

Qx

u > t.For this ube we have
t < −
∫

Qx

u ≤ 2n−
∫

Qj(x)−1

u ≤ 2nt.We an pik suh a ube Qx for almost every x with u(x) > t. It is then easyto hoose the desired subolletion from the ubes Qx. 2The dyadi maximal funtion of a measurable funtion u (with respetto a ube Q0) is de�ned by
MQ0u(x) = sup

x∈Q⊂Q0

−
∫

Q

|u|,where the supremum is taken over all ubes Q that belong to the dyadideomposition of Q0 and whose losures ontain x.4.14 Remark. As for the usual maximal funtion, we have the weak typeestimate
|{x ∈ Q0 : MQ0u(x) > t}| ≤ 2 · 5n

t

∫

{x∈Q0:|u(x)|> t
2
}

|u|for the dyadi maximal funtion. Moreover,
∫

Q0

(MQ0u)
p ≤ C(p, n)

∫

Q0

|u|pfor p > 1. The proof of the weak type estimate is atually easier than for theusual maximal operator beause no overing theorem is needed.The following simple onsequene of the Calderón-Zygmund deompo-sition is essentially the onverse of the weak type estimate for the dyadimaximal funtion. 39



4.15 Lemma. Let u ∈ L1(Q0) and suppose t ≥ −
∫

Q0
|u|. Then

∫

{x∈Q0:|u(x)|>t}

|u| ≤ 2nt|{x ∈ Q0 : MQ0u(x) > t}|.

Proof . By the Calderón-Zygmund deomposition we �nd pairwise disjointubes Q1, Q2, . . . so that
t < −
∫

Qj

|u| ≤ 2ntfor all j, and |u(x)| ≤ t almost everywhere in Q0 \
⋃
Qj . Then

∫

{x∈Q0:|u(x)|>t}

|u| ≤
∑

∫

Qj

|u|

≤
∑

2nt|Qj |
≤ 2nt|{x ∈ Q0 : MQ0u(x) > t}|,beause

MQ0u(x) ≥ −
∫

Qj

|u| > tfor eah x ∈ Qj . 2We are now ready to prove an important result. For historial reasons,it is only alled a lemma (Gehring's lemma). I learned the trunation trikemployed in the proof below from Xiao Zhong.4.16 Lemma. (Gehring's lemma, 1973) Let u ∈ Lq(Q0), 1 < q < ∞and suppose that
(

−
∫

Q

|u|q
)1/q

≤ C−
∫

Q

|u| (14)for all dyadi sububes Q ⊂ Q0. Then there is s = s(q, n, C) > q so that
(

−
∫

Q0

|u|s
)1/s

≤ 21/sC−
∫

Q0

|u|. (15)In partiular, u ∈ Ls(Q0).
Proof . We begin by notiing that

MQ0(|u|q)(x) ≤ CqMQ0u(x) (16)40



for eah x ∈ Q. Let then t ≥ t0 := −
∫

Q0
|u|q. Combining Lemma 4.15, (16)and the weak type estimate from Remark 4.14, we onlude that

∫

{x∈Q0:|u(x)|q>t}

|u|q ≤ 2nt|{x ∈ Q0 : MQ0(|u|q)(x) > t}|

≤ 2nt|{x ∈ Q0 : MQ0u(x) > C−qt1/q}|

≤ 2n+15nt1−
1
q

∫

{x∈Q0:|u(x)|> 1
2
C−qt1/q}

|u|,provided t ≥ t0. Consequently, for these values of t,
∫

{x∈Q0:|u(x)|q>t}

|u|q ≤ Cnt
1− 1

q

∫

{x∈Q0:|u(x)|>δt1/q}

|u|, (17)where Cn depends only on n and δ = 2−1C−q. Multiplying both sides of (17)by tp−2 and integrating over the interval [t0, j], where j > t0 is �xed, resultsin
∫ j

t0

tp−2

∫

{x∈Q0:|u(x)|q>t}

|u|q dxdt ≤
∫ j

t0

tp−1−1/q

∫

{x∈Q0:|u(x)|>δt1/q}

|u| dxdt.(18)Write b(j, s, u(x)) = min{j, s|u(x)|q} when s > 0. Notie that
b(j, s, u(x)) ≤ sb(j, 1, u(x))when s ≥ 1. By the Fubini theorem,

∫ j

t0

tp−1−1/q

∫

{x∈Q0:|u(x)|>δt1/q}

|u| dxdt

=

∫

Q0

|u|
∫ b(j,δ−q ,u(x))

t0

tp−1−1/q dtdx

≤ q(pq − 1)−1

∫

Q0

b(j, δ−q, u(x))p−1/q|u| dx

≤ q(pq − 1)−1δ1−pq

∫

Q0

b(j, 1, u(x))p−1/q|u| dx

≤ q(pq − 1)−1δ1−pq

∫

Q0

b(j, 1, u(x))p−1|u|q.Similarly,
∫ j

t0

tp−2

∫

{x∈Q0:|u(x)|q>t}

|u|q dxdt =

∫

Q0

|u|q
∫ b(j,1,u(x))

t0

tp−2 dtdx

= (p− 1)−1

∫

Q0

(
b(j, 1, u(x))p−1 − tp−1

0

)
|u|q dx.41



Combining the above estimates for the left and right hand sides of (18) weonlude that
−
∫

Q0

min{j, |u(x)|q}p−1|u(x)|q ≤ C ′(−
∫

Q0

|u|q)p ≤ C ′Cpq(−
∫

Q0

|u|)pqwhere C ′ = ((p− 1)−1 − q(pq − 1)−1δ1−pq)
−1
, provided C ′ > 0.We used (14)at the last step. Choosing p > 1 so that C ′ = 2 allows us to onlude thelaim via the monotone onvergene theorem. 2Given a domain Ω ⊂ Rn and 1 ≤ p ≤ ∞, we let W 1,p(Ω) denote the ol-letion of all funtions u ∈ Lp(Ω) that are absolutely ontinuous on almost alllines parallel to the oordinate axes in Ω and whose lassial partial deriva-tives belong to Lp(Ω). Then W 1,p(Ω,Rn) refers to mappings f : Ω → Rnwhose eah omponent funtion fj , j = 1, · · · , n, belongs to W 1,p(Ω). Thede�nitions of W 1,plo (Ω) and W 1,plo (Ω,Rn) should then be obvious.4.17 Corollary. Let f : Ω → Ω′ be quasionformal, where Ω,Ω′ ⊂ Rn,

n ≥ 2. There is p = p(n,H) > n and a onstant C = C(n, p,H) so that1) f ∈W 1,plo (Ω,Rn) and
(

−
∫

Q

Lpf

)1/p

≤ C

(

−
∫

Q

Lnf

)1/nwhenever 2Q ⊂ Ω.2) If 2Q ⊂ Ω and E ⊂ Q is measurable, then
|f(E)|
|f(Q)| ≤ C

( |E|
|Q|

)1−n/p

.

Proof . 1) By Remark 4.11 we have
(

−
∫

Q

Lnf

)1/n

≤ C−
∫

Q

Lfwhever 2Q ⊂ Ω. The Sobolev regularity and the asserted inequality followfrom Gehring's lemma beause f is absolutely ontinuous on almost all linesparallel to the oordinate axes and
|∂jfi(x)| ≤ Lf(x)42



for almost every x, see Corollary 4.8 and its proof.2) By Corollary 4.12, Lemma 4.4, Hölder's inequality, Proposition 4.1, andpart 1) we see that
|f(E)| =

∫

E

µ′
f ≤ C

∫

E

Lnf

≤ C

(∫

E

Lpf

)n/p

|E|1−n/p

≤ C

(

−
∫

Q

Lpf

)n/p

|E|1−n/p|Q|n/p

≤ C−
∫

Q

Lnf
︸︷︷︸

≤Cµ′f

|E|1−n/p|Q|n/p

≤ C|f(Q)||E|1−n/p|Q|n/p−1.

2

4.4 Ap-weightsWe will brie�y point out the onnetion between Ap-weights and reverseHölder inequalities. The results of this setion will not be needed later on.We refer the reader to [26℄ for proofs of the fats presented in this setion.Let w ∈ L1lo, w > 0 almost everywhere. If −∞ < s < t <∞ and |E| > 0,then
(

−
∫

E

ws
)1/s

≤
(

−
∫

E

wt
)1/t

.So, when p > 1, we have that
(

−
∫

B

w1/(1−p)

)1−p

≤
(

−
∫

B

wp
)1/pfor eah ball B. We say that w is an Ap-weight (belongs to the Mukenhoupt

Ap-lass), if for all balls
(

−
∫

B

wp
)1/p

≤ Cp,w

(

−
∫

B

w1/(1−p)

)1−p

,when 1 < p <∞, and
−
∫

B

w ≤ C1,wessinfBw,43



when p = 1. Clearly A1 ⊂ Ap ⊂ Aq when 1 ≤ p ≤ q. We �nally set
A∞ =

⋃

p>1Ap.One of the onnetions between Ap-lasses and reverse Hölder inequalitiesis given by the following result.4.18 Fat. Let w ∈ L1lo, w > 0 almost everywhere. Then w ∈ A∞ if andonly if there exist q > 1 and C suh that
(

−
∫

B

wq
)1/q

≤ C−
∫

B

wfor all balls B.4.19 Corollary. Let n ≥ 2. If f : Rn → Rn is quasionformal, then µf ∈
A∞.Given w ∈ Ap, p > 1, one an use the above reverse Hölder inequality toprove that w ∈ Aq for some q < p that depends on n, p, Cp,w.

Ap-weights are of their own interest. One of their important properties isthat they work well with maximal funtions.4.20 Fat. Let 1 < p <∞. The inequality
∫

(Mu)pw ≤ C

∫

|u|pwholds for eah Lebesgue measurable u if and only if w ∈ Ap.One an further haraterize A∞ by the following ondition. There areonstants C and δ so that
∫

E
w

∫

Q
w

≤ C

( |E|
|Q|

)δ (19)for eah ube Q and eah measurable E ⊂ Q. Given a domain G, let us write
A∞(G) for the olletion of all w for whih (19) holds with uniform onstantsfor eah ube Q ⊂ G with diam(Q) ≤ d(Q, ∂G). Then, in dimensions n ≥ 2,a homeomorphism f : Ω → Ω′ is quasionformal if and only if, for eahsubdomain G ⊂ Ω, w ◦ f−1 ∈ A∞(f(G)) for eah w ∈ A∞(G) and w ◦ f ∈
A∞(G) for eah w ∈ A∞(f(G)) with uniform bounds in both ases. For thissee [25℄.
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4.5 Di�erentiability almost everywhereWe begin with an almost everywhere di�erentiability result that goes bakto Cesari and Calderón. Reall that u ∈ W 1,plo (Ω) means that u is loally p-integrable, absolutely ontinuous on almost all lines parallel to the oordinateaxes in Ω and that the lassial partial derivatives are loally p-integrable.4.21 Theorem. Let p > n and let u ∈ W 1,plo (Ω) be ontinuous. Then u isdi�erentiable almost everywhere.This result is optimal in the sense that there exist ontinuous funtionsin W 1,nlo that are nowhere di�erentiable.We need a few tehnial results for the proof of this theorem.4.22 Lemma. Let u ∈ W 1,1lo (Ω) and Ω0 ⊂⊂ Ω. Given 0 < r < d(Ω0, ∂Ω),set
ur(x) = −

∫

B(x,r)

u(y) dyfor x ∈ Ω0. Then ur ∈ C1(Ω0) and
∇ur(x) = −

∫

B(x,r)

∇u(y) dy.

Proof . Fix 0 < r < d(Ω0, ∂Ω), x ∈ Ω0 and 1 ≤ j ≤ n. Let 0 < |t| <
d(Ω0, ∂Ω) − r. By the absolute ontinuity of u on almost all lines parallel tothe xj-axis in Ω,

u(y + tej) − u(y) =

∫

[0,t]

∂ju(y + sej) dsfor almost all y ∈ B(x, r). Integrating this estimate and invoking the Fubinitheorem we infer that
ur(x+ tej) − ur(x)

t
= −
∫

B(x,r)

u(y + tej) − u(y)

t
dy

= −
∫

B(x,r)

−
∫

[0,t]

∂ju(y + sej) ds dy

= −
∫

[0,t]

−
∫

B(x,r)

∂ju(y + sej) dy ds.

= −
∫

[0,t]

−
∫

B(x+sej ,r)

∂ju(y) dy

︸ ︷︷ ︸

=:f(s)

ds.45



Sine ∂ju ∈ L1(Ω), it follows that f is ontinuous. Hene
∂jur(x) = lim

t→0
−
∫

[0,t]

f(s) ds = f(0) = −
∫

B(x,r)

∂ju(y) dy.

24.23 Lemma. Suppose that v ∈ Lp(λB), 1 ≤ p < ∞, where λ > 1. Given
0 < ε < d(B, λBc), set

vε(x) = −
∫

B(x,ε)

v(y) dyfor x ∈ B. Then vε → v in Lp(B).

Proof . Let w ∈ Lp(λB). Let 0 ≤ ψε ∈ L∞ be suh that ∫ ψε = 1 andsptψε ⊂ B(0, ε). Extend w as zero to Rn \ λB. Then
wψε :=

∫

Rn

ψε(y)w(x− y) dyis bounded on B:
|wψε(x)| ≤ ‖ψε‖L∞

∫

λB

|w|.Choose now
ψε(y) =

1

|B(0, ε)|χB(0,ε)(y)and write wε = wψe. By the Hölder inequality,
|wε| =

∫

Rn

ψε(y)
1/p|w(x− y)|ψε(y)(p−1)/p ≤

(∫

Rn

ψε(y)|w(x− y)|p dy
)1/pand so

∫

B

|wε|p ≤
∫

λB

∫

Rn

ψε(y)|w(x− y)|p dy dx

=

∫

Rn

ψε(y)

∫

λB

|w(x− y)|p dx dy

≤
∫

λB

|w|p.If w is ontinuous on λB, then
‖w − wε‖Lp(B) → 0,46



as ε → 0. Let δ > 0. Reall that ontinuous funtions are dense in Lp(λB),see Subsetion 11.3 in the appendix. Choose a ontinuous w suh that
‖v − w‖Lp(λB) < δ,and take ε > 0 so small that
‖w − wε‖Lp(B) < δ.Then

‖v − vε‖Lp(B) ≤ ‖v − w‖Lp(B) + ‖w − wε‖Lp(B) + ‖wε − vε
︸ ︷︷ ︸

=(w−v)ε

‖Lp(B) < 3δ.Thus vε → v in Lp(B). 24.24 Corollary. If u ∈W 1,1(B), then
∫

B

|u− uB| dx ≤ C diam(B)

∫

B

|∇u| dx.

Proof . Let 0 < δ < 1. Then, for 0 < r < δ/2, ur is well de�ned and C1 in
(1 − δ)B. Thus, by the usual Poinaré inequality,
∫

(1−δ)B

|ur(x) − (ur)(1−δ)B | dx ≤ C(1 − δ) diam(B)

∫

(1−δ)B

|∇ur(x)| dx.By letting r → 0 we see that this inequality holds for u (vr tends to v in
L1 when v ∈ L1 and r → 0 by Lemma 4.23). The laim follows by letting
δ → 0; notie that u(1−δ)B → uB. 24.25 Corollary. Let u ∈W 1,p(5B) and let p > n. Then

|u(x) − u(y)| ≤ C(n, p)|x− y|1−n/p
(∫

B(x,2|x−y|)

|∇u|p
)1/pfor all Lebesgue points x, y ∈ B of u.

47



Proof . Let x, y ∈ B be Lebesgue points of u. De�ne Bi = B(x, 2−i|x− y|)for i ≥ 0. Then, by Corollary 4.24 and the Hölder inequality,
|u(x) − uB0 | ≤

∞∑

i=1

|uBi−1
− uBi

|

≤ 2n
∞∑

i=0

−
∫

Bi

|u− uBi
|

≤ C(n, p)

∞∑

i=0

2−i|x− y|
(

−
∫

Bi

|∇u|p
)1/p

≤ C(n, p)
∞∑

i=0

(2−i|x− y|)1−n/p

(∫

Bi

|∇u|p
)1/p

≤ C(n, p)|x− y|1−n/p
(∫

B(x,|x−y|)

|∇u|p
)1/p

.Similarly,
|u(y)− uB(y,|x−y|)| ≤ C(n, p)|x− y|1−n/p

(∫

B(y,|x−y|)

|∇u|p
)1/p

.Moreover, denoting Bx = B(x, |x− y|), By = B(y, |x− y|) and ∆ = Bx ∩By,we have
|uBx − uBy | ≤ |uBx − u∆| + |u∆ − uBy |

≤ −
∫

∆

|u− uBx| + −
∫

∆

|u− uBy |

≤ C(n)

(

−
∫

Bx

|u− uBx| + −
∫

By

|u− uBy |
)

≤ C(n, p)|x− y|1−n/p
(

−
∫

B(x,2|x−y|)

|∇u|p
)1/p

.The laim follows by the triangle inequality. 24.26 Remarks.1) If u ∈W 1,plo (Ω), p > n, then
ũ(x) = lim sup

r→0
−
∫

B(x,r)

u48



is ontinuous and satis�es the modulus of ontinuity given in the orol-lary. This easily follows from the previous orollary. Notie that, bythe Lebesgue di�erentiation theorem, ũ = u almost everywhere. Weall ũ the ontinuous representative of u. A funtion u ∈W 1,nlo (Ω) doesnot need to have a ontinuous representative when n > 1. An exampleof this is u(x) = log log |x|−1, |x| < e−1.2) The ontinuous representative ũ belongs toW 1,plo (Ω): By the ontinuityof ũ and the fat that ũ = u almost everywhere, we have that
ũ(x) = lim

r→0
(ũ)r(x) = lim

r→0
ur(x)for all x. By Lemma 4.22, ∂j(ur)(x) = (∂ju)r(x) for all x and 1 ≤ j ≤ n.Fix a ube Q ⊂⊂ Ω and 1 ≤ j ≤ n. Sine (∂ju)r → ∂ju in L1(Q), itfollows that ∫

J
(∂ju)r →

∫

J
∂ju for almost every line segment J ⊂ Qparallel to the xj-axis. Let J be suh a line segment with endpoints xand y. Then

ũ(x)−ũ(y) = lim
r→0

(ur(x)−ur(y)) = lim
r→0

∫

J

∂j(ur) = lim
r→0

∫

J

(∂ju)r =

∫

J

∂ju.It follows that ũ is absolutely ontinuous on almost all lines in Ω andthat ∂j ũ = ∂ju almost everywhere, as desired.We are now ready to prove Theorem 4.21.
Proof . Let u ∈W 1,plo (Ω) be ontinuous. Then, by part 2) of Remark 4.3, atalmost every x0, ∇u(x0) exists and

lim
r→0

−
∫

B(x0,r)

|∇u(x) −∇u(x0)|p dx = 0.Fix suh an x0 and de�ne
w(x) = u(x) − u(x0) −∇u(x0) · (x− x0).Then w ∈ W 1,plo (Ω) and ∇w(x) = ∇u(x) − ∇u(x0) whenever ∇u(x) exists.By Corollary 4.25,

|w(x) − w(x0)| ≤ C(n, p)|x− x0|
(

−
∫

B(x0,5|x−x0|)

|∇u(y) −∇u(x0)|p dy
)1/p

.Thus
lim
x→x0

|u(x) − u(x0) −∇u(x0) · (x− x0)|
|x− x0|

= lim
x→x0

|w(x) − w(x0)|
|x− x0|

= 0.49



24.27 Remark. By Theorem 4.21, Lipshitz funtions are di�erentiable al-most everywhere. This immediately implies that eah Lipshitz mapping
f : Rn → Rn is almost everywhere di�erentiable.Given a domain Ω ⊂ Rn, reall that W 1,plo (Ω,Rn) denotes the olletionof mappings f : Ω → Rn whose eah omponent funtion fj , j = 1, · · · , n,belongs to W 1,plo (Ω).4.28 Corollary. Let f : Ω → Ω′ be quasionformal, where Ω,Ω′ ⊂ Rn,
n ≥ 2, are domains. Then f belongs to W 1,plo (Ω,Rn) for some p > n and, foralmost every x ∈ Ω, f is di�erentiable at x with Jf(x) 6= 0 and satis�es

|Df(x)|n ≤ Hf(x)
n−1|Jf(x)|.

Proof . By Corollary 4.17 and Theorem 4.21 applied to the oordinate fun-tions of f , f belongs to W 1,plo (Ω,Rn), for some p > n, and is di�erentiablealmost everywhere.Suppose that f is di�erentiable at x0 and that Jf(x0) = detDf(x0) = 0.Then
|f(B(x0, r))| ≤ (|Df(x0)| + ε(r))n−1 rn−1ε(r)r,where ε(r) → 0, as r → 0. Thus

µ′
f(x0) = lim

r→0

|f(B(x0, r))|
|B(x0, r)|

= 0.Beause µ′
f > 0 almost everywhere by Corollary 4.12 and f is di�erentiablealmost everywhere, Jf 6= 0 almost everywhere.Suppose that f is di�erentiable at x0 with Jf (x0) = detDf(x0) 6= 0.Then

|Df(x0)| ≤ Hf(x0) min
|h|=1

|Df(x0)h|.Beause
|Jf(x0)| ≥

(

min
|h|=1

|Df(x0)h|
)n−1

|Df(x0)|,see Subsetion 11.2 we onlude that
|Df(x0)|n ≤ Hf(x0)

n−1|Jf(x0)|.
250



4.29 Remarks.1) The exponent n − 1 for H in Corollary 4.28 is optimal. This is seenby onsidering the quasionformal mapping f(x) = Ax, where A is adiagonal matrix whose diagonal entrees are all 1 expet for a singleentry whih is, say, 2.2) If f : Ω → Ω′, both domains in Rn, is a homeomorphism and di�eren-tiable at x, y ∈ Ω, then either Jf(x) ≥ 0 and Jf(y) ≥ 0 or Jf(x) ≤ 0and Jf(y) ≤ 0. This an be proved using the so-alled topologial de-gree, whih we have not introdued. Combining this with Corollary4.28 allows us to onlude that, given a quasionformal mapping f, de-�ned in a domain Ω ⊂ Rn, n ≥ 2, either Jf (x) > 0 almost everywherein Ω or Jf(x) < 0 almost everywhere in Ω.3) If f ∈ W 1,plo (Ω,Rn), where Ω ⊂ Rn, n ≥ 2 is a domain, is a homeo-morphism and p > n − 1 (p ≥ 1 in the plane), then f is di�erentiablealmost everywhere, see [23℄. If p = n−1 and n ≥ 3, then f need not bedi�erentiable anywhere. The positive results are non-trivial. For theounterexample, one piks a ontinuous funtion u ∈ W 1,n−1lo (Rn−1) of
n− 1 variables that fails to be di�erentiable anywhere and de�nes

f(x1, · · · , xn) = (x1, · · · , xn−1, xn + u(x1, · · · , xn−1)).4) If p < n − 1, it is not known if the Jaobian of a homeomorphism
f ∈ W 1,plo (Ω,Rn) an hange its sign. For p > n − 1, the Jaobiandeterminant annot hange its sign by 1) and 2) and this is expetedto also hold when p = n− 1.Added: Henl and Malý, Jaobians of Sobolev homeomorphisms, toappear in Cal. Var. have very reently shown that one an relax theassumption p > n − 1 to p > pn, where pn is the integer part of n/2,espeially p3 = 1. The ase 1 < p ≤ pn remains open when n > 3.5 The analyti de�nitionIn this hapter we give an analyti de�nition for quasionformality by estab-lishing the following haraterization of quasionformality.5.1 Theorem. Suppose that Ω,Ω′ ⊂ Rn are domains, n ≥ 2. Let f : Ω → Ω′be a homeomorphism. Then the following are equivalent:1) f is quasionformal. 51



2) There exists η suh that f |B is η-quasisymmetri for eah ball B with
2B ⊂ Ω.3) f ∈W 1,1lo (Ω,Rn) and there is K suh that

|Df(x)|n ≤ K|Jf(x)|almost everywhere in Ω.5.2 Remark. It follows that either Jf > 0 almost everywhere in Ω or that
Jf < 0 almost everywhere in Ω, see Corollary 4.28 and Remarks 4.29.We already saw in Chapter 3 that 1) and 2) are equivalent and Corollary4.28 shows that 1) implies 3). In order to dedue 1) from 3) we introduesome preliminary results.Reall the notation

µ′
f(x) = lim

r→0

|f(B(x, r))|
|B(x, r)|that we used for homeomorphisms. One of our aims is to show that Jf isloally integrable for a homeomorphism that is loally in the Sobolev lass

W 1,1lo . This will be done by relating Jf to µ′
f . It is rather easy to do this atthe points of di�erentiability of our homeomorphism. The problem is that, indimensions n ≥ 3, our regularity assumption f ∈ W 1,1lo (Ω,Rn) (see Remarks4.29) does not by itself guarantee di�erentiability even at a single point. Inorder to overome this, we will use Lipshitz �approximations� to f, but theprize we have to pay is that these Lipshitz mappings need not be injetive.Given a ontinuous mapping f : Ω → Rn, we write

µ′
f(x) = lim sup

r→0

|f(B(x, r))|
|B(x, r)| .Beause f(B(x, r)) is ompat and so measurable, µ′

f(x) is indeed de�ned.We annot however apply the Radon-Nikodym theorem as we did in theonnetion with Proposition 4.1: µ(A) = |f(A)| does not neessarily de�nea measure when f fails to be injetive. We will be able to get around thisproblem.5.3 Lemma. Let f : Ω → Rn be ontinuous and assume that f ∈W 1,1lo (Ω,Rn).Then
|Jf(x)| ≤ µ′

f(x)almost everywhere in Ω. 52



The proof of this result will be based on a sequene of lemmas.5.4 Lemma. Let f : Ω → Rn be ontinuous and assume that f is di�eren-tiable at x0 ∈ Ω. Then
|Jf(x0)| = µ′

f(x0).

Proof . We already saw in the proof of Corollary 4.28 that if Jf (x0) = 0and f is di�erentiable at x0, then µ′
f(x0) = 0. Suppose that Jf (x0) 6= 0. Wemay assume that x0 = 0 = f(x0). Beause Jf (0) 6= 0, the inverse matrix

(Df(0))−1 exists. De�ne g(x) = (Df(0))−1f(x). Then g is di�erentiable at
0, Dg(0) = I, and moreover,

|f(B(0, r))| = |Df(0) g(B(0, r))| = |Jf(0)||g(B(0, r))|.Thus it su�es to show that
lim
r→0

|g(B(0, r))|
|B(0, r)| = 1.Beause g is di�erentiable at 0 and Dg(0) = I,

|g(x) − x| ≤ ε(|x|)|x|, (20)where ε(|x|) → 0 as |x| → 0. It follows that
|g(B(0, r))|
|B(0, r)| ≤ |B(0, r + ε(r)r)|

|B(0, r)| = (1 + ε(r))n −→ 1, as r → 0,so espeially
lim sup
r→0

|g(B(0, r))|
|B(0, r)| ≤ 1.For the opposite inequality we use the fat that

B
(
0, (1 − ε)r

)
⊂ g
(
B(0, r)

) (21)for given ε > 0 whenever 0 < r < rε. This follows from Lemma 11.10 in theappendix, sine now |g(x) − x| ≤ ε for |x| < rε by inequality (20). Thus by(21) we obtain for r < rε that
|g(B(0, r))|
|B(0, r)| ≥ |B(0, (1 − ε)r)|

|B(0, r)| = (1 − ε)n −→ 1, as ε → 0,so
lim inf
r→0

|g(B(0, r))|
|B(0, r)| ≥ 1.This proves the lemma. 253



5.5 Lemma. (MShane extension) Let A ⊂ Rn and f : A → Rm be
L-Lipshitz, that is

|f(x) − f(y)| ≤ L|x− y|for all x, y ∈ A. Then there exists a (
√
mL)-Lipshitz f̃ : Rn → Rm suhthat f̃ |A = f.

Proof . Let m = 1. De�ne
f̃(x) = inf

a∈A
{f(a) + L|x− a|}.Then f̃(x) = f(x) when x ∈ A: Sine f is L-Lipshitz on A,

f(x) ≤ f(a) + L|x− a| when x, a ∈ A,and so f̃(x) ≥ f(x). Also, learly f̃(x) ≤ f(x).Given x, y ∈ Rn, we have that
f̃(x) = inf

a∈A
{f(a) + L|x− a|

︸ ︷︷ ︸

≤L(|y−a|+|y−x|)

}

≤L|y − x| + f̃(y).Beause this also holds with x replaed by y, we onlude that f̃ is L-Lipshitz.Let us then onsider the ase m ≥ 2. For given f = (f1, . . . , fm) de�ne
f̃ = (f̃1, . . . , f̃m) as in the previous ase. Now

|f̃(x) − f̃(y)|2 =

m∑

1

|f̃i(x) − f̃i(y)|2 ≤ mL2|x− y|2,and the laim follows. 25.6 Remark. By hoosing a suitable extension di�erent from the MShaneextension, one ould require above f̃ to be L-Lipshitz. This an be doneusing the so-alled Kirszbaum extension.5.7 Lemma. Let u ∈ W 1,1(3B) and ε > 0. Then there is a set Aε ⊂ B sothat |B \ Aε| < ε and u|Aε is Lipshitz.
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Proof . Write B = B(x0, r0). Let x, y ∈ B be Lebesgue points of u. Choose
Bj = B(x, 2−j|x − y|) for j ≥ 0 and Bj = B(y, 2j+1|x− y|) for j < 0. Thenby the Poinaré inequality (as in the proof of Theorem 2.12),

|u(x) − u(y)| ≤
∞∑

−∞

|uBj
− uBj+1

| ≤
∞∑

−∞

Cn−
∫

Bj

|u− uBj
|

≤ Cn

∞∑

−∞

rj−
∫

Bj

|∇u|

≤ Cn|x− y|
(M3r0 |∇u(x)| + M3r0 |∇u(y)|

)

≤ 2Cn|x− y|λwhen both x and y belong to the set {z ∈ B : M3r0 |∇u(z)| ≤ λ}. Thus wehave Cnλ-Lipshitz ontinuity outside the setBadλ = {z ∈ B : M3r0 |∇u(z)| > λ} ∪ {z ∈ B : z non-Lebesgue point of u}.By Remark 2.6,
|Badλ| ≤ 5n2

λ

∫

{|∇u(z)|>λ
2
}∩3B

|∇u|
︸ ︷︷ ︸

−→
λ→∞

0

= o
(

1
λ

)

and the laim follows. 25.8 Remark. The above proof shows that u is Cnλ-Lipshitz in B \ Badλ,where |Badλ| = o
(

1
λ

). Use the MShane extension theorem to extend therestrition of u to this set as Cnλ-Lipshitz funtion uλ to all of B. Then
∫

B

|∇u−∇uλ| ≤
∫Badλ

|∇u| + |∇uλ| ≤
∫Badλ

|∇u| + Cnλo
(

1
λ

)
−→
λ→∞

0beause
∇uλ(x) = ∇u(x) (22)at almost every point x of Gλ = B \ Badλ .Reason: If E ⊂ Ω is measurable, ∂iv and ∂iw exist almost everywhere in Eand v = w on E, then ∂iv = ∂iw almost everywhere in E: Simply notie thatalmost every point x of E is of linear density one in the xi-diretion.One an do even better. Consider the setBad′λ = {x ∈ B : M3r0u(x) ≥ λ}.55



Then |Bad′λ| = o
(

1
λ

). So, when λ is large, the distane from any point inBad′λ to B \Bad′λ is at most one. Thus the MShane extension uλ of u from
B \ (Badλ ∪Bad′

λ) is Cnλ-Lipshitz and bounded in absolute value by 2Cnλon B. It follows that
∫

B

|u− uλ| + |∇u−∇uλ| −→
λ→∞

0.The �nal estimate of the preeding remark yields the following orollary:5.9 Corollary. If u ∈W 1,1(3B), then there is a sequene (ϕj)
∞
1 of Lipshitzfuntions suh that

|{x ∈ B : ϕj(x) 6= u(x)}| → 0and ∫

B

|u− ϕj| + |∇u−∇ϕj| → 0as j → ∞.5.10 Remarks.1) One an get rid of the onstant 3 above (see Figure 4)
y

xFigure 4: Remark 5.10 (1).2) The same argument as above gives the orollary for W 1,p and with
∫

B

|u− ϕj|p + |∇u−∇ϕj|p → 0 as j → ∞.Proof of Lemma 5.3. Assume that f : Ω → Rn is ontinuous and f ∈
W 1,1lo (Ω,Rn). Let B ⊂ Ω be a ball with 3B ⊂ Ω. It su�es to prove that

|Jf(x)| ≤ µ′
f(x) for a.e. x ∈ B.56



Let ε > 0. Pik a Lipshitz mapping f̃ : Rn → Rn suh that for the set
B = {x ∈ B : f̃(x) 6= f(x)} we have |B| < ε, see Corollary 5.9. Beause
f̃ is Lipshitz, it is di�erentiable almoste everywhere in B \ B; see Remark4.27. By Lemma 5.4, |Jf̃(x)| = µ′

f̃
(x) at the points of di�erentiability. By thereasoning in Remark 5.8, see (22), Jf̃(x) = Jf(x) almost everywhere in B\B.So it su�es to prove that µ′

f̃
(x) ≤ µ′

f(x) almost everywhere in G = B \ B.Let x ∈ G. Then
|f̃(B(x, r))|
|B(x, r)| ≤ |f̃(B(x, r) ∩G)| + |f̃(B(x, r) ∩ B)|

|B(x, r)|

≤ |f(B(x, r))|
|B(x, r)| +

Ln|B(x, r) ∩ B|
|B(x, r)| ,and the laim follows beause the last term tends to zero for almost every

x ∈ G by Remarks 4.3 3). 25.11 Corollary. Let f : Ω → Ω′ be a homeomorphismwith f ∈W 1,1lo (Ω,Rn).If
|Df(x)|n ≤ K|Jf(x)|almost everywhere in Ω for some 1 ≤ K <∞, then f ∈W 1,nlo (Ω,Rn).

Proof . By Lemma 5.3, |Jf(x)| ≤ µ′
f(x) almost everywhere in Ω. The laimfollows beause µ′

f ∈ L1lo(Ω), by Proposition 4.1. 25.12 Lemma. Let f : Ω → Ω′ be a homeomorphism, f ∈ W 1,1lo (Ω,Rn), andlet u : Ω′ → [0,∞) be Borel measurable. Then
∫

Ω

u(f(x))|Jf(x)| ≤
∫

Ω′

u.

Proof . Let a > 1 and set Gj = {y ∈ Ω′ : aj < u(y) ≤ aj+1} for j ∈ Z.Then Ω′ \⋃Gj = {y ∈ Ω′ : u(y) = 0}. Thus, by Proposition 4.1 and Lemma
57



5.3,
∫

Ω

u(f(x))|Jf(x)| =

∫

f−1(∪Gj)

u(f(x))|Jf(x)|

=
∑

∫

f−1(Gj)

u(f(x))|Jf(x)|

≤
∑

∫

f−1(Gj)

aj+1µ′
f(x) dx

≤
∑

aj+1|Gj| ≤ a
∑

∫

Gj

u dy = a

∫

Ω′

u.Let a→ 1 to omplete the proof. 25.13 Lemma. Let f : Ω → Ω′ be a homeomorphism, f ∈ W 1,nlo (Ω,Rn)and |Df(x)|n ≤ K|Jf(x)| almost everywhere in Ω. If u is C1 on Ω′, then
u ◦ f ∈W 1,nlo (Ω) and

∫

Ω

|∇(u ◦ f)|n ≤ K

∫

Ω′

|∇u|n .

Proof . Clearly u ◦ f is absolutely ontinuous on almost all lines parallel tothe oordinate axes in Ω beause f is and u is loally Lipshitz. Beause
u ◦ f is loally bounded, it thus su�es to show the loal n-integrability of
|∇(u ◦ f)| and the asserted inequality. Let f̃ be as in the proof of Lemma5.3. Then f̃ is di�erentiable almost everywhere and Df(x) = Df̃(x) almosteverywhere in G (see Remark 5.8). Thus, using the usual hain rule andProposition 11.1, we see that

|∇(u ◦ f)(x)|n = |∇u(f(x))Df(x)|n
≤ |Df(x)|n|∇u(f(x))|n ≤ K|Jf(x)||∇u(f(x))|nalmost everywhere in G. It follows that this inequality holds almost every-where in Ω. Use Lemma 5.12 to omplete the proof. 2Proof of 3) ⇒ 1) in Theorem 5.1. Let B = Bn(x0, r0) ⊂ 2B ⊂ Ω, andde�ne l, L as in the proof of Theorem 2.1, see Figure 5. We may again assume
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that L ≥ 2l. By Corollary 5.11, f ∈W 1,nlo (Ω,Rn). De�ne
u(y) =







1 if |y − f(x0)| ≤ l

0 if |y − f(x0)| ≥ L

log
1

|y − f(x0)|
− log

1

L

log
L

l

if l ≤ |y − f(x0)| ≤ L ,and set uε(y) = −
∫

B(y,ε)
u(z)dz for ε > 0. Then uε is C1 by Lemma 4.22 and

f

L

f(x) lΩ

x r

f(B)

B Figure 5: f(B(x, r)
)thus, by Lemma 5.13, uε ◦ f ∈W 1,nlo (Ω) and

∫

Ω

|∇(uε ◦ f)|n ≤ K

∫

Ω′

|∇uε|n . (23)Next ∫

Ω′

|∇uε|n →
∫

Ω′

|∇u|n = ωn−1

(
log L

l

)1−n (24)when ε → 0 by Lemma 4.22 and dominated onvergene (also by Lemma4.22 and Lemma 4.23). Here ωn−1 is the (n− 1)-dimensional measure of theunit sphere.Notie that f−1(Bn(f(x0), l)) is a onneted set ontaining x0 and itslosure intersets Sn−1(x0, r). Furthermore, f−1(Rn\B(f(x0), L)) has an openomponent G whose losure intersets both Sn−1(x0, r) and Sn−1(x0,
3r
2
).Wemay then selet ontinua E ⊂ f−1(Bn(f(x0), l)) and F ⊂ G, both of diameterat least r0/4 so that uε = 1 on E and uε = 0 on F for all su�iently small

ε. Thus ∫

Ω1

|∇(uε ◦ f)|n ≥ δn > 0 (25)59



for all su�iently small ε > 0 beause of the size of the 0- and 1-sets of uεand the fat that u ◦ f ∈ W 1,1(2B); notie that the proof of Theorem 2.12only assumed a Poinaré inequality, whih holds in our setting by Corollary4.24.A bound on L/l and so also quasionformality of f follow by ombining(23), (24) and (25). 25.14 Remarks. 1) Regarding the relationship between the onstants Hand K in parts 1) and 3) of Theorem 5.1, we have the estimates K ≤
Hn−1 and H ≤ exp(CnK

1/(n−1)).The �rst of these is sharp and ontained in Corollary 4.28 and theseond follows from the proof of Theorem 5.1 above. The seond es-timate an be improved to Hf (x) ≤ K almost everywhere, but, forexample, for the simple planar quasionformal mapping de�ned by
f(x, y) = (x, 2y) in the upper losed half plane and by f(x, y) = (x, y/2)in the lower half plane, one has K = 2 and H = 4. On the other hand,one an onstrut examples (in the plane [19℄) that show the sharpnessof the given global bound on H.2) Notie that the analyti de�nition requires the pointwise inequality atalmost every point. One ould then expet that the metri de�nitionould also be slightly relaxed. This is indeed the ase in the sense thata homeomorphism f : Ω → Ω′ satis�es

f ∈W 1,nlo (Ω,Rn) and |Df(x)| ≤ K min
|h|=1

|Df(x)h|almost everywhere if and only if lim infr→0Hf (x, r) < ∞ outside aset of σ-�nite (n − 1)-measure and lim infr→0Hf(x, r) ≤ K almosteverywhere. Above, lim sup instead of lim inf naturally works as well.6 K-quasionformal mappingsLet us all from now on a homeomorphism f : Ω → Ω′ with f ∈W 1,1lo (Ω,Rn)and
|Df(x)|n ≤ K|Jf(x)| a.e. in Ω

K-quasionformal (K-q) aording to the analyti de�nition. We will typ-ially abuse the notation and only talk about K-quasionformal mappingsbelow. Above, Ω,Ω′ ⊂ Rn are domains and we assume that n ≥ 2. Notiethat eah onformal f is 1-q. 60



6.1 Remark. If f is K-q, then(i) f is di�erentiable almost everywhere,(ii) f ∈W 1,plo (Ω,Rn) for some p = p(n,K) > n,(iii) either Jf(x) > 0 a.e. in Ω or Jf (x) < 0 a.e. in Ω ,(iv) f is loally Hölder ontinuous,(v) |f(E)| =
∫

E
|Jf | whenever E ⊂ Ω is measurable,(vi) |f(E)|

|f(Q)| ≤ C

( |E|
|Q|

)α whenever E ⊂ Q ⊂ 2Q ⊂ Ω, where
C = C(n,K), 0 < α = α(n,K).All this follows by ombining our previous results.By Theorem 3.6 we know that quasionformal mappings form a group.It turns out that the analyti de�nition allows us to give sharp estimates onthe assoiated onstants of quasionformality.6.2 Theorem. Let f1 : Ω1 → Ω2 be K1-q and f2 : Ω2 → Ω3 be K2-q.Then f2 ◦ f1 : Ω1 → Ω3 is K1K2-q.

Proof . We already know that f2 ◦ f1 is quasionformal beause the threedi�erent de�nitions (in Theorem 5.1) give the same lass of mappings. Thus
f2 ◦ f1 ∈ W 1,1lo (Ω1,R

n) (and even W 1,plo (Ω1,R
n) for some p > n). Now f2 isdi�erentiable almost everywhere in Ω2, f1 is di�erentiable almost everywherein Ω1, and beause f1 annot map a set of positive measure to a set of measurezero, we onlude that

D(f2 ◦ f1)(x) = Df2(f1(x))Df1(x)for almost every x ∈ Ω1. In partiular, for suh a point x,
|D(f2 ◦ f1)(x)|n = |Df2(f1(x))Df1(x)|n.For almost every x ∈ Ω1,

|Df1(x)|n ≤ K1|Jf1(x)|,and for almost every y = f1(x) ∈ Ω2,

|Df2(f1(x))|n ≤ K2|Jf2(f1(x))|.61



Beause f1 an not map a set of positive measure to a set of measure zero,both inequalities hold for almost every x ∈ Ω1. Thus
|D(f2 ◦ f1)(x)|n ≤ K2K1|Jf2(f1(x))||Jf1(x)| = K2K1|Jf2◦f1(x)|for almost every x ∈ Ω1. 26.3 Theorem. Let f : Ω → Ω′ be K-q. Then f−1 : Ω′ → Ω is Kn−1-q.6.4 Remark. The onstants K1K2 and Kn−1 in Theorem 6.2 and Theorem6.3 are sharp. To see this, simply onsider the linear quasionformal map-pings f1, f2, f assoiated to the diagonal matries A1, A2 and A where the�rst diagonal entry of A1 is K1/(n−1)

1 , of A2 is K1/(n−1)
2 and all the rest are 1,and the n− 1 �rst diagonal entries of A are all K and the last one is 1.For the proof of Theorem 6.3 we need some elementary linear algebra:6.5 Proposition. If detA 6= 0 and |A|n ≤ K| detA|, then

|A−1|n ≤ Kn−1| detA−1| .

Proof . By Proposition 11.2 in the appendix, we �nd two orthonormal basesso that the matrix of A with respet to these bases is diagonal. Notie thatthe assoiated hanges of bases preserve lenghts. Thus the operator normsof A and A−1 and the determinants of A,A−1 an be readily read of fromthis diagonal representation D of A (see Lemma 11.4 in the appendix). Wemay assume that
D =






λ1 . . . 0... . . . ...
0 . . . λn




with |λ1| ≥ |λ2| ≥ . . . ≥ |λn| > 0. Then

D−1 =






1/λ1 . . . 0... . . . ...
0 . . . 1/λn




 .Beause |λ1|n ≤ K|λ1 . . . λn|, we have that |λj| ≤ K|λn| for eah j. Thus

|D−1|n =
1

|λn|n
=

1

|λn|

(
1

|λn|

)n−1

≤ Kn−1

|λ1 . . . λn|
= Kn−1| detA−1|.62



2Proof of Theorem 6.3. We already know that f−1 is quasionformaland so f−1 ∈ W 1,nlo (Ω′,Rn). Also f preserves the null sets for the Lebesguemeasure and, at almost every x, f is di�erentiable with Jf (x) 6= 0. In parti-ular, for almost every x ∈ Ω

I = D(f−1 ◦ f)(x) = Df−1(f(x))Df(x).So
Df−1(f(x)) =

[
Df(x)

]−1for almost every x ∈ Ω and so also for almost every y = f(x) ∈ Ω′. Beause
f is K-q, we have |Df(x)|n ≤ K| detDf(x)|, and onsequently Proposition6.5 gives the laim. 26.6 Remark. Combining Corollary 4.25, almost everywhere di�erentiabilityof q mappings and Corollary 4.17 we see that eah K-q mapping is loallyHölder-ontinuous:

|f(x) − f(y)|
p>n

≤ C|x− y|1−n/p
(∫

B

|Df |p
)1/p

= C |x− y|1−n/p rn/p
(

−
∫

B

|Df |p
)1/pGehring

≤ C̃|x− y|1−n/p rn/p−
∫

B

|Df |,where p = p(n,K) > n. Thus f is Hölder ontinuous with some exponentthat depends on K,n. It is then natural to ask for the best possible Hölderexponent.6.7 Theorem. Let f : Ω → Ω′ be K-q. If 7B ⊂ Ω, then
|f(x) − f(y)|
diam f(B)

≤ C(n,K)

( |x− y|
diamB

)C1/K

,where C1 = C1(n), whenever x, y ∈ B.
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Proof . Let g : Ω1 → Ω2 be K-q, let y0 ∈ Ω2 and let y ∈ Ω2 satisfy
|y − y0| < d(y0, ∂Ω2)/3. Write r = d(y0, ∂Ω2)/2. We de�ne

v(z) =







1, if |z − y0| ≤ |y − y0|
0, if |z − y0| ≥ r

log
1

|z − y0|
− log

1

r

log
r

|y − y0|
, if |y − y0| ≤ |z − y0| ≤ r .Write u = v ◦ g and extend u as zero to the exterior of Ω1. Then, as in theproof of Theorem 5.1,

∫

Ω1

|∇u|n ≤ K

∫

Ω2

|∇v|n ≤ K ωn−1

(

log

(
r

|y − y0|

))1−n

, (26)where ωn−1 is the (n − 1)-dimensional measure of the unit sphere. Supposethat we ould show that
∫

Ω1

|∇u|n ≥ ωn−1

(

log

(
C(n)Lg−1(y0, r)

|g−1(y) − g−1(y0)|

))1−n

. (27)Then, ombining (26) and (27) and the fat that the support of u is ompatlyontained in Ω, we would onlude that
|g−1(y) − g−1(y0)| ≤ C(n)Lg−1(y0, r)

( |y − y0|
r

)K−1/(n−1)

.Applying this to the Kn−1-q (see Theorem 6.3 ) mapping g = f−1 : Ω′ → Ω,the laim would easily follow with C1 = 1. It is not easy to establish (27),but it is not hard to prove the lower bound with some onstant Cn, whih issu�ient for the laim of our theorem:Write L = Lg−1(y0, r), x0 = g−1(y0) and s = |g−1(y) − g−1(y0)|. If
−
∫

B(x0,3s)

u ≤ 2
3
,then ∫

B(x0,3s)

|∇u|n ≥ δ(n) > 0by the proof of the orresponding earlier estimate (Theorem 2.12); notiethat u = 1 on the ompat, onneted set g−1(B(y0, |y− y0|)) of diameter at64



least s. Notie further that u(x) = 0 on Rn \B(y0, L). Pik w ∈ Sn−1(y0, 2L).Then
−
∫

B(w,L)

u = 0.Now, we may assume that
−
∫

B(x0,3s)

u ≥ 2
3

and −
∫

B(w,L)

u = 0,and thus (see Figure 6)
w

3L

2L

L

L

y(  )

B

Bk−1

kB

0

x0

g−1

Figure 6: Choie of Bj's in the proof of 6.7
1
3
≤

k∑

j=1

|uBj
− uBj−1

| ≤
k∑

j=0

Crj

(

−
∫

Bj

|∇u|n
)1/n

≤
k∑

j=0

C̃

(
∫

Bj

|∇u|n
)1/n

≤ C̃(k + 1)
︸ ︷︷ ︸

≤c log cL
s

(n−1)/n

(
∫

S

Bj

|∇u|n
)1/n

.This gives the desired lower bound for ∫
Ω1

|∇u|n. 265



6.8 Remarks. 1) Given a domain Ω ⊂ Rn, n ≥ 2, and ompat sets E,F ⊂
Ω with E ∩ F = ∅, set

capn(E,F ; Ω) = inf
u∈A(E,F ;Ω)

∫

Ω

|∇u|n ,where
A(E,F ; Ω) =

{
u ∈ C(Ω ∪E ∪ F ) ∩W 1,nlo (Ω) : u ≥ 1 in E and u ≤ 0 in F} .This is alled the onformal apaity (varionational n-apaity, n-apaity)of E and F with respet to Ω. As a part of the proof of Theorem 5.1 weessentially showed the fat that
capn

(
f−1(E), f−1(F ); Ω

)
≤ K capn(E,F ; Ω′)whenever E,F ⊂ Ω′ are ompat and f : Ω → Ω′ is K-q.The basi estimates are:(i) If E ⊂ E ′, F ⊂ F ′ and Ω ⊂ Ω′, then

capn(E,F ; Ω) ≤ capn(E
′, F ′; Ω′) .(ii) If B(x, r) ⊂ B(x,R) ⊂ Ω , then

capn
(
B(x, r), Sn−1(x,R); Ω

)
= capn

(
B(x, r), Sn−1(x,R);B(x,R)

)

≤ ωn−1
(
log R

r

)n−1 .In fat, the inequality an also be reversed:If u ∈ A(B(x, r), Sn−1(x,R);B(x,R)) is C1, then the fundamental the-orem of alulus and Hölder's inequality give
1 ≤

∫ R

r

|∇u(tw)| dt

≤
∫ R

r

|∇u(tw)|tn−1
n

−n−1
n dt

≤
(∫ R

r

dt

t

)n−1
n
(∫ R

r

|∇u(tw)|ntn−1 dt

)1/nfor every w ∈ Sn−1(0, 1). The desired inequality follows by raising bothsides of this inequality to power n and integrating over Sn−1(0, 1) withrespet to w. Approximation then gives the same for general test fun-tions. 66



(iii) If E,F ⊂ B(x, r) are ontinua with
min{diamE, diamF}

r
≥ δ1 > 0 ,then

capn(E,F ;B(x, r)) ≥ δ(δ1, n) > 0.(iv) If Ω is bounded and E ⊂ Ω is a ontinuum, then
capn(E, ∂Ω; Ω) ≥ ωn−1

(

log C(n) diam Ω
diamE

)n−1This is not trivial; one uses symmetrization [11℄.One in fat also has the estimates [11℄
capn(E,F ; Rn) ≥ ωn−1

(log(C(n)(1 + t)))n−1given ontinua E,F ⊂ Rn, where t = d(E,F )
min{diam(E),diam(F )}

, and
capn(E,F ; Rn

+) ≥ capn(E,F ; Rn)/2when E,F ⊂ Rn
+.2) If we use (iv) in the proof of the Hölder-ontinuity estimate, we see thatone an take C1 = 1, so that the Hölder exponent is α = 1/K. This is sharp:
f(x) = x|x|−(1−1/K) is K-q.3) The Hölder exponent we found is thus 1/K (in terms of �H�, 1/H indimension two). By Corollary 4.25, f ∈ W 1,plo is loally Hölder-ontinuouswith exponent 1− n

p
. To obtain the Hölder exponent 1/K via Corollary 4.25,one would need f to be in the Sobolev lass W 1,pKlo with

pK =
nK

K − 1
.The radial mapping

f(x) = x|x|−(1−1/K)belongs to W 1,plo exatly when p is stritly less than this pK .6.9 Conjeture. Let Ω,Ω′ ⊂ Rn be domains, where n ≥ 2. If f : Ω → Ω′ is
K-quasionformal, then f ∈W 1,plo for all p < pK .This holds when n = 2 by results by Astala [2℄. In higher dimensions, theonjeture would follow if a ertain onjeture in alulus of variations getsproved [16℄. 67



7 Sobolev spaes and onvergene of quasion-formal mappingsWe will show that quasionformality is stable under loally uniform onver-gene in the following sense.7.1 Theorem. Let fj : Ω → Ωj be K-q for eah j ≥ 1, and suppose that
fj → f : Ω → Ω′ loally uniformly. If f is a homeomorphism, then f is K-q.7.2 Remarks. 1) In the plane, one obtains the following onlusion in termsof the metri de�nition. Suppose that fj : Ω → Ωj are quasionformal interms of the metri de�nition withHfj

(x) = lim supr→0Hfj
(x, r) ≤ H almosteverywhere in Ω for eah j. If the sequene (fj)j onverges loally uniformlyto a homeomorphism f : Ω → Ω′, then f is quasionformal with Hf(x) ≤ Halmost everywhere in Ω.To see this notie �rst that eah fj is H-q by Corollary 4.28. ThusTheorem 7.1 shows that f is H-q. By Corollary 4.28 we know that fis di�erentiable at almost every x with Jf(x) 6= 0. Fix suh an x. As inthe proof of Proposition 6.5, we may assume that Df(x) is diagonal withdiagonal entries λ1, λ2 satisfying |λ1| ≥ |λ2| > 0. Then

λ2
1 ≤ H|λ1λ2|and it follows that |λ1| ≤ H|λ2|. This implies that Hf (x) ≤ H, as desired.2) Let n ≥ 3. There is a sequene of q mappings fj : Rn → Rn sothat fj → f loally uniformly, the (metri) H-dilatations of fj are all al-most everywhere bounded by some H0 > 1 and the H-dilatation of f is notessentially bounded by H0 . Suh examples have been found by Iwanie [15℄.3) The assumption that the limit funtion be a homeomorphism is notsuper�uous. Indeed, the sequene (fj)j of 1-quasionformal mappings de�nedby setting fj(x) = x/j onverges loally uniformly to the onstant funtion

f(x) ≡ 0.4) One an haraterize the lass of K-quasionformal mappings by aompleteness property related to Theorem 7.1. We will return to this inChapter 8.In order to prove Theorem 7.1 we need a better understanding of theSobolev spaes than what immediately follows from the de�nition that wehave used this far. We begin by stating a haraterization for the membershipin the Sobolev lass and by skething its proof.7.3 Theorem. (De�nitions of Sobolev spaes.) Let u ∈ Lp(Ω), 1 ≤
p <∞, Ω ⊂ Rn. Then the following are equivalent:68



1) (ACL) There is ũ ∈ W 1,p(Ω) with ũ = u almost everywhere.2) (H) There is a sequene (ϕj)j ⊂ C1(Ω) so that ϕj → u in Lp(Ω) and
(∇ϕj)j is Cauhy in Lp(Ω).3) (W) For eah 1 ≤ j ≤ n there is vj ∈ Lp(Ω) so that

∫

Ω

u ∂jϕ = −
∫

Ω

vjϕfor eah ϕ ∈ C∞
0 (Ω).4) There is ũ and g ∈ Lp(Ω) so that ũ = u almost everywhere in Ω and gis an upper gradient of ũ in Ω.

Proof . (sketh)2)⇒ 1): Passing to a subsequene, we may assume that (ϕj(x))j onvergesfor almost every x. We de�ne
ũ(x) = lim

j→∞
ϕj(x)whenever the limit exists, and set, say, ũ(x) = 0 for the remaining x ∈ Ω.Then ũ(x) = u(x) almost everywhere in Ω. By the fundamental theorem ofalulus applied to the funtions ϕj and the Hölder inequality, one obtainsabsolute ontinuity in Ω on the lines for whih both

∫

I

|∇u−∇ϕj|p −→
j→∞

0for eah ompat subinterval I in Ω and limj→∞ ϕj(x) exists for some x ∈ I.By the Fubini theorem, this holds for almost all lines parallel to the oordi-nate axes. It also easily follows that the lassial partial derivatives of ũ existalmost everywhere in Ω and that they are obtained as limits of the partialderivatives of the approximating funtions.1)⇒ 2): We already proved in Chapter 5 that u an be approximated inthis manner by Lipshitz funtions, provided Ω = Rn. In this ase, the laimfollows by taking averages, see Lemma 4.22. For the general ase, one uses apartition of unity: 0 ≤ ψi ≤ 1, ψi ∈ C∞
0 (Ω) suh that ∑∞

1 ψi = 1 in Ω andthe supports have bounded overlap. Considering uψi, the statement easilyfollows.1)⇒ 3): Integrate by parts, vj is the lassial partial derivative.69



3)⇒ 2): We use the (smooth) onvolution approximation: Let
ψ1(x) =

{

0, |x| ≥ 1

C exp
(

1
|x|2−1

)

, |x| < 1 ,where C is hosen so that ∫
Rn ψ1 dx = 1. De�ne
ψε(x) =

1

εn
ψ1

(x

ε

)

.If v ∈ Lplo, set
vε(x) = (ψε ∗ v)(x) =

∫

ψε(x− y)v(y) dy ,when B(x, ε) ⊂⊂ Ω. If v ∈ Lp(Rn), then vε → v in Lp(Rn), see the proof ofLemma 4.23. Also vε(x) → v(x) when x is a Lebesgue point of u.Fix x ∈ Ω and ε > 0 small ompared to d(x, ∂Ω). Now
uε(x+ hei) − uε(x)

h

=
1

εn

∫

Ω

1

h

[

ψ1

(
x+ hei − y

ε

)

− ψ1

(
x− y

ε

)]

︸ ︷︷ ︸

−→
h→0

1

ε

∂ψ1

∂xi

(
x− y

ε

)

= εn
∂ψε
∂xi

(x− y)

u(y) dy

−→
h→0

∫

Ω

∂ψε
∂xi

(x− y) u(y) dyby the dominated onvergene theorem:
∫

G

∣
∣
∣
∣

1

h

[

· · ·
]

u(y)

∣
∣
∣
∣
dy ≤ 1

ε

∫

G

‖∇ψ1‖∞ |u| dy .Thus
∃ ∂uε

∂xi
(x) =

∫

Ω

∂ψε
∂xi

(x− y) u(y) dyand beause ψε is smooth, we see that uε is C1. Moreover, when u ∈ W 1,p,
∂uε

∂xi
(x) =

∫
∂ψε(x− y)

∂xi
u(y) dy

= −
∫
∂ψε(x− y)

∂yi
u(y) dy

=

∫

ψε(x− y) vi(y) dy .70



If vi ∈ Lp(Rn), then this onvolution sequene onverges to vi in Lp(Rn).When u is given, use a partition of unity to redue the setting to that of Rn.2)⇒ 4): Reall that we have already shown that 2) implies 1). Pik aCauhy sequene (ϕj)j of C1-funtions in the norm ‖ϕ‖Lp(Ω) + ‖∇ϕ‖Lp(Ω) sothat ϕj → u and ∇ϕj → ∇u in Lp(Ω). Then a subsequene of (ϕj) onvergesto u almost everywhere and we de�ne ũ as the pointwise limit of suh a �xedsubsequene. Write E for the set where this subsequene does not onverge.We set ũ(x) = 0 when x ∈ E. We may assume that
‖∇u−∇ϕj‖Lp(Ω) ≤ 2−j .Let γ be a reti�able urve. If

lim
j→∞

∫

γ

|∇u−∇ϕj|p = 0, then lim
j→∞

∫

γ

|∇u−∇ϕj| = 0,and if further the sequene (ϕj(x))j onverges for some x ∈ γ, then the uppergradient inequality holds for the pair ũ, |∇u| along γ and along any suburveof γ (see (5); in fat (ϕj(y))j then onverges for all y ∈ γ). Consider then areti�able urve γ so that
∫

γ

|∇u−∇ϕj | 9 0.when j → ∞. Then there is δ > 0 so that
∫

γ

|∇u−∇ϕj| ≥ δ (28)for in�nitely many j. Now
∫

γ

∑

j

|∇u−∇ϕj | ds = ∞and ∫

Rn

(∑

|∇u−∇ϕj |
)p

≤ 1.De�ne
g = h(x) + |∇u(x)| +

∑

|∇u−∇ϕj | ,where we set h(x) to be in�nite if x ∈ E and h(x) = 0 when x /∈ E. We mayassume that g is a Borel funtion. It now easily follows that g is an uppergradient of ũ. 71



4)⇒ 1): This is immediate from the de�nitions. 2We now easily obtain the important weak ompatness property ofW 1,p(Ω),
p > 1. Reall that vjk ⇀ v in Lp(Ω) refers to weak onvergene, see Subse-tion 11.3 in the appendix.7.4 Corollary. Let (uj)j be bounded in W 1,p(Ω), 1 < p < ∞. Then thereis u ∈ W 1,p(Ω) so that ujk ⇀ u in Lp(Ω) and ∇ujk ⇀ ∇u in Lp(Ω) for asubsequene (ujk)k .
Proof . Both (uj)j and (∇uj)j are bounded in Lp(Ω). Thus there exist uand v = (v1, . . . , vn) in Lp(Ω) so that

ujk ⇀ u and ∇ujk ⇀ v in Lp(Ω),see Subsetion 11.3 in the appendix. Now
∫

Ω

∂i ϕujk = −
∫

Ω

ϕ∂iujk

↓ ↓
∫

Ω

∂iϕu = −
∫

Ω

ϕviby the weak onvergene, when ϕ ∈ C1
0(Ω). Thus u ∈ W 1,p(Ω) and ∇u =

(v1, . . . , vn). 27.5 Remark. Corollary 7.4 does not extend to the ase p = 1. For example,when Ω = B2(0, 1) and uj(x) = min{1,max{0, jx2}}, we have that uj ⇀
u = χB2

+(0,1), where B2
+(0, 1) = B2(0, 1) ∩ {(x1, x2) : x2 > 0}. Thus the onlypotential weak limit of a subsequene of (uj)j is u. Moreover, our sequene

(uj)j is bounded in W 1,1(Ω) and u /∈W 1,1(Ω).Proof of Theorem 7.1. FixB ⊂ 2B ⊂⊂ Ω. Then fj| 3
2
B is η-quasisymmetriwith η independent of j (Corollary 3.4 and Theorem 5.1). It follows from theuniform onvergene of the mappings fj that f is η-quasisymmetri on 3

2
B.Beause B was arbitrary, we onlude from Theorem 5.1 that f is K1-q in

Ω for some K1. It remains to be proven that we may hoose K1 = K.Let B = B(x, r) be as above. For eah ε > 0 there is jε suh that
f(B(x, r − ε)) ⊂ fj(B) ⊂ f(B(x, r + ε)) (29)72



for j ≥ jε. Indeed, it su�es to hek that
B(x, r − ε) ⊂ f−1(fj(B)) ⊂ B(x, r + ε).The seond inlusion follows using the uniform onvergene of our sequeneand the uniform ontinuity of f−1 on f(3

2
B). Regarding the �rst inlusion,notie that, given ε̃ there is jε̃ so that

|f−1 ◦ fj(y) − y| ≤ ε̃for all y with |x− y| = r when j ≥ jε̃. Thus the desired inlusion follows byapplying Lemma 11.10 to
h(z) =

1

r

(
f−1 ◦ fj(rz + x) − f−1 ◦ fj(x)

)
.Beause f is quasionformal and |∂B| = 0, we onlude from Corollary4.12 that |f(∂B)| = 0, Thus, it follows from Remark 6.1 and (29) that

∫

B

|Jfj
| = |fj(B)| j→∞−→ |f(B)| =

∫

B

|Jf | .Now ∫

B

|Dfj|n ≤ K

∫

B

|Jfj
| ≤Mfor some �niteM beause |fj(B)| → |f(B)| <∞. Moreover, there isM ′ <∞so that |fj(x)| ≤ M ′ for x ∈ B for all j. Thus the sequene (fj) is boundedin W 1,n(B,Rn) and so a subsequene onverges to some g ∈ W 1,n(B,Rn)weakly, i.e.

fjk ⇀ g, Dfjk ⇀ Dg in Ln(Ω) .Beause fj → f uniformly on B we onlude that g = f . Thus
∫

B

|Df |n =

∫

B

|Dg|n ≤ lim inf
k→∞

∫

B

|Dfjk|n

≤ K lim inf
k→∞

∫

B

|Jfk
| = K

∫

B

|Jf | .Let x ∈ Ω be a Lebesgue point both for |Df(x)|n and |Jf(x)|. Then
|Df(x)|n = lim

r→0
−
∫

B(x,r)

|Df |n ≤ K lim
r→0

−
∫

B(x,r)

|Jf | = K|Jf(x)| ,and the proof is omplete. 273



7.6 Corollary. Let fj : B → fj(B) ⊂ Rn be K-q. Assume that thesequene (fj)j is bounded in W 1,1(B; Rn). Then a subsequene onvergesloally uniformly to a ontinuous mapping f ∈ W 1,n(Ω; Rn). If f is a home-morphism, then f is K-q.
Proof . Fix B̃ ⊂ 2B̃ ⊂ B. By Remark 6.6

|fj(x) − fj(y)| ≤ C|x− y|1−n
p |B| 1

p
−1

∫

B

|Dfj|whenever x, y ∈ B̃ ⊂ 2B̃ ⊂ B, and so our sequene is equiontinuous on B̃.Also, eah fj is η-quasisymmetri in B̃ with some η independent of j, whihtogether with the estimate
∫

B

|fj | ≤M <∞implies that |fj | ≤ M ′ on B̃. Invoking the Arzela-Asoli theorem we mayapply Theorem 7.1 to onlude the laim. 2

8 On 1-quasionformal mappingsAs mentioned earlier, eah onformal mapping is 1-q. Thus there are plentyof 1-q mappings in the plane. However, the struture of global 1-q map-pings is simple in all dimensions n ≥ 2. This also holds for 1-quasionformalmappings aording to the metri de�nition, see part 1) of Remarks 5.14.8.1 Theorem. Let f : Rn → Rn be 1-q, n ≥ 2. Then there is a onstant
M > 0 so that

|f(x) − f(y)| = M |x− y|for all x, y ∈ Rn.Theorem 8.1 does not extend to the ase n = 1 (for the metri de�nition)as is seen by onsidering the 1-quasionformal mapping f : R → R de�ned by
f(x) = x3. We postpone the proof of Theorem 8.1 for a while and ontinuewith a version of the Liouville theorem aording to whih there are very few1-q mappings in dimensions n ≥ 3. This result is due to Gehring.8.2 Theorem. Let Ω,Ω′ ⊂ Rn, n ≥ 3, be domains and f : Ω → Ω′ be 1-q.Then f is the restrition of a Möbius transformation to Ω.74



Reall that a Möbius transformation is a �nite omposition of re�etionswith respet to spheres and hyperplanes.The proof of Theorem 8.2 will be based on the usual Liouville theoremwhih assumes a priori regularity of the mappings in question.8.3 Theorem. (Liouville) Let Ω,Ω′ ⊂ Rn be domains, n ≥ 3, and f : Ω →
Ω′ be 1-q, f ∈ C3(Ω) and Jf > 0 in Ω. Then f is the restrition of a Möbiustransformation to Ω.We omit the proof and refer the reader to [17℄ for a proof.Proof of Theorem 8.2. We may assume that Jf (x) ≥ 0 almost everywherein Ω, see Remark 5.2. Notie that f is loally Lipshitz and so is f−1 (bothare Hölder ontinuous with exponent 1 by part 2) of Remarks 6.8. Thus

|x− y|
C

≤ |f(x) − f(y)| ≤ C|x− y|when x is �xed and y is su�iently lose to x; C may depend on x butit is loally bounded. Consequently Jf is bounded away from zero loally(almost everywhere). Beause f is 1-q, we have that |Df(x)|n = Jf(x)almost everywhere with Jf(x) > 0. Fix suh an x. We onlude from basilinear algebra (see Proposition 11.3 and Proposition 11.4 in the appendix)that
|Df(x)h| = Jf(x)

1/n|h|for eah h ∈ Rn. Thus
adDf(x) = Jf(x)

1−2/nDf(x)tby Proposition 11.5. Let ej be one of the oordinate vetors. Then theprevious equation shows that
adDf(x)ej = Jf (x)

1−2/n∇fj(x).Notie further that |∇fj(x)| = |Df(x)tej | = Jf(x)
1/n.We thus onlude fromProposition 11.8 that fj is n-harmoni in Ω, and thus C1 by Proposition11.6. Beause |∇fj(x)| is (loally) bounded away from zero, it follows fromProposition 11.7 that f is C∞-smooth. The laim thus follows from Theorem8.3.8.4 Lemma. Let f : Rn → Rn be a homeomorphism so that

f
(
Sn−1(x, r)

)
= Sn−1

(
f(x), Rx,r

)75



for all x ∈ Rn, r > 0. Then there is M > 0 so that
|f(x) − f(y)| = M |x− y|for all x, y ∈ Rn.

Proof . Let us �rst observe that lines get mapped to lines: If z is the midpoint
z yx

f(z)
f(y)

f(x)

Figure 7: Line segment is mapped to a line segmentof [x, y], then f(z) lies on [f(x), f(y)] and furthermore
|f(x) − f(z)| = |f(z) − f(y)|,as we an see from Figure 7. By iterating, we see that for a given line L thereis ML so that |f(x) − f(y)| = ML|x− y| whenever x, y ∈ L.

f(x)x

L

L’

r

r
ML’

r

r

ML

Figure 8: when L ∩ L′ 6= ∅Let then L and L′ be lines. Suppose �rst that L∩L′ 6= ∅. If L = L′, then
ML = ML′ . Otherwise the setting looks like in Figure 8 and thus ML = ML′ .76



If L ∩ L′ = ∅, pik L′′ so that L ∩ L′′ 6= ∅ and L′ ∩ L′′ 6= ∅. 2Proof of Theorem 8.1. It su�es to show that
f
(
Sn−1(x, r)

)
= Sn−1

(
f(x), Rx,r

) (30)for all x ∈ Rn and r > 0 (Lemma 8.4 will then give the laim). Fix x and r.By using translations, rotations and dilations, we may assume that x = 0,
r = 1, f(e1) = e1 and B(0, 1) ⊂ f(B(0, 1)).Set
W =

{
f : Rn → Rn : f is 1-q , f(0) = 0, f(e1) = e1 and B(0, 1) ⊂ f(B(0, 1))

}De�ne a = supf∈W |f(B(0, 1))|. Then a < ∞ beause eah suh f is η-qswith a �xed η and so f(B(0, 1)) ⊂ B(0, η(1)).We will show that a = |B(0, 1)|. Clearly a ≥ |B(0, 1)|. Suppose a >
|B(0, 1)| and pik a sequene (fj)j of mappings in W so that |fj(B(0, 1))| →
a. Then (fj) is bounded in W 1,n(2B). Indeed

fj(B(0, 2)) ⊂ B(0, η(1)η(2)),and so ∫

2B

|Df |n ≤
∫

2B

|Jf | ≤ c0.Thus, by Corollary 7.6, fjk → g uniformly in B(0, 3/2) for some mapping
g and some subsequene (fjk)k. Beause fjk(0) = 0 and fjk(e1) = e1 andeah fjk is η-quasisymmetri, it follows from the uniform onvergene that
g is a homeomorphism. Invoking Corollary 7.6 again, we onlude that g is1-q. As in the proof of Theorem 7.1, we see that B(0, 1) ⊂ g(B(0, 1)) (andthat |g(B(0, 1))| = a). Thus g ∈W . Notie that g(B(0, 1))\B(0, 1) ontainssome non-trivial open set U beause |g(B(0, 1))| = a > 1. Clearly |g(U)| > 0.Consider h = g ◦ g. Now h ∈W and

|h(B(0, 1))| = |g
(
g(B(0, 1))

)
| ≥ |g(B(0, 1)) ∪ g(U)| ≥ a + |g(U)| > a,whih ontradits the de�nition of a.We have proven that a = |B(0, 1)|. Returning to our �xed mapping f, thisshows that |f(B(0, 1))| = |B(0, 1)|. By assumption, B(0, 1) ⊂ f(B(0, 1)),and we onlude that f(B(0, 1)) = B(0, 1). It follows that f(B(x, r)) =

B(f(x), Rx,r) for all x, r. This implies (30). 277



8.5 Remark. The proof of Theorem 8.1 was based on a ompatness argu-ment. In fat, ompatness an be used to haraterize quasionformality inthe following sense.We all a mapping T : Rn → Rn similarity if there is a onstant λ > 0 sothat |T (x)−T (y)| = λ|x−y| for all x, y ∈ Rn. Next, we say that a family F ofhomeomorphisms f : Rn → Rn is omplete with respet to similarities if, foreah f ∈ F and all similarities T, S, the omposite mapping g = T ◦f ◦S alsobelongs to F . We all a homemorphism f : Rn → Rn normalized if f(0) = 0and f(e1) = e1, where e1 is the unit vetor in the x1-diretion. Then thefamily F is said to satisfy the ompatness ondition if every in�nite set ofnormalized mappings in F ontains a subsequene whih onverges loallyuniformly to a homeomorphism.We have the following result: Let a family F of homeomorphisms f :
Rn → Rn, n ≥ 2, be omplete with respet to similarities. Then F satis�esthe ompatness ondition if and only if there is 1 ≤ K < ∞ so that eah
f ∈ F is K-q.The above statement is not hard to prove using the results and ideasgathered this far. The ompatness ondition for K-q mappings followsusing Corollary 7.6 and the normalization one we reall that eah of themappings f is η-quasisymmetri with a �xed η. For the onverse, one �rstproves that there is H <∞ so that Hf(x, r) ≤ H for eah f ∈ F , all x ∈ Rnand every r > 0 and then applies the equivalene of the metri and analytide�nitions.Here is a sketh of a proof of the estimate onHf(x, r). By the ompatnessproperty it easily follows that there is H < ∞ so that |f(x)| ≤ H for eahnormalized f ∈ F and all x ∈ Sn−1(0, 1). Given f ∈ F , x, and r > 0, pik
y ∈ Sn−1(x, r) that realizes lf (x, r). Map e1 to y and 0 to x using a similarity
S, f(x) to 0 and f(y) to e1 using a similarity T, and apply the above boundto g = T ◦ f ◦ S.9 Mapping theoremsWe begin by disussing the planar setting. It is onvenient to use omplexnotation: we identify R2 with C and write a point z ∈ C as z = x + iy,where x, y are real. Let f ∈ W 1,1lo (Ω; C) be ontinuous, where Ω ⊂ C is adomain. Writing f(z) = u(z) + iv(z) with u, v real-valued, we notie thatboth u and v have, at almost every z, partial derivatives ux, uy, vx, vy withrespet to x, y. Then

∂xf(z) = ux(z) + ivx(z),

∂yf(z) = uy(z) + ivy(z).78



We will employ the derivatives ∂f, ∂f de�ned by
∂f(z) =

1

2
(∂xf(z) − i∂y(f)),

∂f(z) =
1

2
(∂xf(z) + i∂y(f)).Realling the Cauhy-Riemann equations

ux = vy, uy = −vx,we notie that ∂f(z) = 0 if f is analyti. In fat, for a ontinuous f ∈
W 1,1lo (Ω; C), ∂f(z) = 0 almost everywhere only when f is analyti.Let us further denote by ∂αf(z) the derivative of f in the diretion eiα (ifit happens to exist). In the real notation, this is simply Df(x, y)(cosα, sinα)if f is di�erentiable at the point (x, y) and it is easy to hek that, in ouromplex notation,

∂αf(z) = ∂f(z)eiα + ∂f(z)e−iα. (31)In fat, one has for eah h ∈ C

Df(z)h = ∂f(z)h + ∂f(z)h,where h is the omplex onjugate of h (for h = x + iy, h = x − iy). Now
∂αf(z) has maximal length when the two vetors in the sum (31) point tothe same diretion, i.e. when

α + arg ∂f(z) = −α + arg ∂f(z)(modulo 2π), and minimal length when these two vetors point to oppositediretions. Here argw denotes the argument of a omplex number w. Thusthe maximal diretional derivative has the value
|∂f(z)| + |∂f(z)|and orresponds to the hoie

α =
1

2
(arg ∂f(z) − arg ∂f(z))and one has the minimal value
||∂f(z)| − |∂f(z)||79



orresponding to
α =

π

2
+

1

2
(arg ∂f(z) − arg ∂f(z)).Moreover,

|Jf(z)| = |(|∂f(z)| + |∂f(z)|)(|∂f(z)| − |∂f(z)|)|

= ||∂f(z)|2 − |∂f(z)|2|.9.1 Theorem. Let µ : C → C satisfy ||µ||L∞ < 1. Then there is a quasion-formal mapping f : C → C so that
∂f(z) = µ(z)∂f(z)almost everywhere.This is a very strong existene theorem. Notie that Jf(z) 6= 0 almosteverywhere beause f is quasionformal. Thus the disussion before Theorem9.1 shows that

|Df(z)|2
|Jf(z)|

=
1 + |µ(z)|
1 − |µ(z)|almost everywhere. Moreover, for almost every z,

Hf(z) =
1 + |µ(z)|
1 − |µ(z)|and the di�erential Df(z) maps disks B(z, r) entered at z to ellipses withmajor axes of the length

2|Df(z)|r = 2|∂f(z)|r(1 + |µ(z)|)and minor axes of the length
2|∂f(z)|r(1 − |µ(z)|).The orientation of these ellipses is not determined by µ(z). However, onsiderthe olletion of all ellipses E with enter x so that the ratio of the majorand the minor axis is Hf(z) and the angle determined by the minor axis andthe real line is

α =
1

2
arg µ(z).Then the di�erential Df(z) maps these ellipses to diss entered at f(z).We will omit the proof of Theorem 9.1 and refer the reader to [4℄ for theproof and further extensions of this existene theorem.Let us reall the Riemann mapping theorem, see [23℄ for a proof.80



9.2 Theorem. (Riemann Mapping Theorem) Eah simply onneted do-main Ω ( C is onformally equivalent to the unit disk.It follows that, given simply onnet, proper subdomains Ω,Ω′ of theplane, there is a onformal mapping f : Ω → Ω′. We ontinue with a quasi-onformal version of this statement.9.3 Theorem. (Measurable Riemann Mapping Theorem) Let Ω,Ω′ (

C be simply onneted subdomains and suppose that µ : Ω → C satis�es
‖µ‖L∞ < 1. Then there is a quasionformal mapping f : Ω → Ω′ so that

∂f(z) = µ(z)∂f(z) a.e. in Ω.In fat, f is 1 + ‖µ‖∞
1 − ‖µ‖∞

-q.
Proof . Given Ω,Ω′ and µ, we extend µ as zero to the rest of C. ThenTheorem 9.1 gives us a quasionformal mapping as asserted, exept for therequirement that f(Ω) = Ω′. In any ase, f(Ω) is a simply onneted propersubdomain of C, and thus the usual Riemann mapping theorem provides uswith a onformal mapping g : f(Ω) → Ω′. Setting f̃ = g ◦ f, it is easy tohek using the �hain rules�

∂(g ◦ h) = ∂g(h)∂h + ∂g(h)∂h,

∂(g ◦ h) = ∂g(h)∂h+ ∂g(h)∂h,that f̃ has all the required properties. 2We dedue from Theorem 8.2 that there is no Riemann mapping theoremin higher dimensions.9.4 Corollary. Let f : Bn → f(Bn) ⊂ Rn be 1-q, n ≥ 3. Then f(Bn) is aball or a half spae.One ould still hope for a �quasionformal Riemann mapping theorem�for n ≥ 3. Unfortunately, this hope is futile:9.5 Example. Let Ω ⊂ R3 be as in Figure 9. Then there is no quasionfor-mal mapping f : B3(0, 1) → Ω.
81



Ft
E

Ω

−1 0 x1

2g(t)=t

Figure 9: Domain Ω of the example 9.5
Reason : Suppose there is a quasionformal mapping f : B3(0, 1) → Ω. Pika irle Ft of radius 2t2 around the usp at the level x1 = t and let E = [−1, 0]on x1-axis. Then (see Figure 10)

capn(E,Ft ; Ω) ≤ capn

(

B
(
(t, 0, 0), 2t2

)
, S2

(
(t, 0, 0) , t

)
; Ω
)

=
ω2

(

log t
2t2

)2 −→ 0 when t→ 0 .

0 x1
2t

t

t

2

Ft

Figure 10: B((t, 0, 0) , 2t2
) and S2

(
(t, 0, 0) , t

).Beause f is K-q for some K, it follows that
cap3

(

f−1(E), f−1(Ft);B
3(0, 1)

)

≤ K cap3(E,Ft ; Ω) −→ 0 when t→ 0 .82



But, on the other hand,
min

{

diam f−1(E), diam f−1(Ft)
}

d
(
f−1(E), f−1(Ft)

) ≥ 10−6for all t, and thus
cap3

(

f−1(E), f−1(Ft);B
3(0, 1)

)

≥ δ(3, 10−6) > 0.To be preise, we have heated a bit above. Indeed, E intersets the boundaryof Ω and thus it is not lear if f−1(E) is ompat (nor even if f−1 has anextension to the points −1, 0). It is easy to �x this by replaing E with
Ej ⊂ E whih is the segment [−1 + 1/j,−1/j] with j su�iently large.Notie that f−1(y) neessarily tends to the boundary of B3(0, 1) when ytends to ∂Ω.By the above example, not every topologially nie Ω ⊂ Rn, n ≥ 3, isquasionformally equivalent to the unit ball. One does not in fat know anygeneral geometri riteria for this equivalene. The following result due toGehring gives a su�ient ondition for quasionformal equivalene. For aproof see [30℄.9.6 Theorem. If ∂Ω is di�eomorphi to Sn−1(0, 1), then there is a quasi-onformal mapping f : Bn(0, 1) → Ω.Based on Corollary 9.4 it is natural to ask if domains in Rn, n ≥ 3, thatare K-q equivalent to the unit ball for a suitably small K are more regularthan one a priori expets. This turns out to be true in the sense that theyare even quasisymmetrially equivalent to the unit ball.9.7 Theorem. Let n ≥ 3. There exists K0 = K0(n) > 1 suh that if
f : Bn → f(Bn) ⊂ Rn is K-q, 1 ≤ K < K0 and bounded, then f isquasisymmetri. In partiular, f extends to a homeomorphism f̃ : B

n →
f(Bn).This theorem is from [3℄, [27℄. The proof heavily relies on results due toReshetnyak [23℄ that essentially give an asymptoti version of Theorem 8.2when the distortion K tends to 1.9.8 Remark. There are still plenty of quasionformal mappings. For ex-ample, there is a quasionformal mapping f : Bn → f(Bn) ⊂ Rn so that
|∂Ω| = ∞. See [31℄ for this. 83



10 Examples of quasionformal mappings10.1 Example. (Basi mappings)1) Linear transformations: If f : Rn → Rn is linear and invertible, then f isquasionformal.2) Radial strethings: Let f(x) = x|x|a−1 = x
|x|
|x|a, where 0 < a <∞. Then

f is K-q, where
K =

{

an−1 if a ≥ 1

a−1 if 0 < a < 1 .In the planar setting, it is easy to establish this estimate on K by usingomplex notation. Indeed, let f : C → C, f(z) = z|z|a−1 = z(1+a)/2 z(a−1)/2.Then
∂f(z) = 1

2
(a− 1)z

1
2
(1+a)z

1
2
(a−3)

∂f(z) = 1
2
(a + 1)z

1
2
(a−1)z

1
2
(a−1) ,so

µ(z) =
∂f

∂f
=
a− 1

a+ 1

z

z
.Thus |µ(z)| = |a− 1|/(a+1), and the desired estimate follows by the disus-sion in the beginning of Chapter 9.The higher dimensional setting requires a bit more thinking. We leavethis to the reader with the following hints. First of all, f maps balls enteredat the origin to balls entered at the origin. Let x 6= 0. The matrix Df(x) isdiagonal when x lies on the x1-axis and the required estimate then easily fol-lows. Also, the image of B(x, r) in this ase is approximatively determined bythe image ellipsoid of B(x, r) under the linear transformation orrespondingto Df(x). Next, given x 6= 0, the image of B(x, r) under f is, modulo a rota-tion, the image of B(z, r), where z lies on the x1-axis and satis�es |z| = |x|,and f is di�erentiable at x. Combining this with the approximation fromabove gives the laim.3) Folding maps: Let (r, ϕ, z) be the ylindrial oordinates of x = (x1, . . . , xn) ∈

Rn, n ≥ 2; this means that r > 0, 0 ≤ ϕ < 2π, z ∈ Rn−2, and
x1 = r cosϕ , x2 = r sinϕ and z = (x3, . . . , xn) .Let 0 < α, β ≤ 2π, and let Ωα = {(r, ϕ, z) : 0 < ϕ < α}, Ωβ = {(r, ϕ, z) :

0 < ϕ < β}. Then the mapping f : Ωα → Ωβ , (r, ϕ, z) → (r, (β/α)ϕ, z) is
K-q, where

K =

{

(β/α)n−1 for α ≤ β

α/β for α > β .84



The estimate on K is obtained using the diagonal representation of Df(x)obtained using suitable orthonormal oordinates.
f

α β

Ω
Ω

α
β

Figure 11: Folding map f : Ωα → Ωβ4) Cone map: Let (R,ϕ, θ) be the spherial oordinates of (x1, x2, x3) ∈ R3;this means that R > 0, 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π, and
x1 = R sin θ cosϕ x2 = R sin θ sinϕ and x3 = R cos θ .For 0 < α ≤ π the domain Cα = {(R,ϕ, θ) : 0 ≤ θ < α} is alled a one ofangle α. The mapping f : Cα → Cβ, (R,ϕ, θ) → (R,ϕ, βθ/α) (see Fig. 12for the speial ase where β = π/2), is K-q for 0 < α ≤ β < π, where

K =
β2 sinα

α2 sin β
.For β = π the quasionformality fails. Use similar oordinates as for 3) toverify the laim.

r= π/2

f g

β=π/2

βC  = H

α

Cα

C 8Figure 12: Maps f : Cα → Cπ/2 and g : H → C∞ .5) Cone to an in�nite ylinder: Let H be the half-spae determined by
H = Cπ/2 . Let C∞ be the in�nite ylinder C∞ = {(r, ϕ, x3) : r ≤ π/2}85



(in ylindrial oordinates). Then g : H → C∞, whih maps the point
(R,ϕ, θ) ∈ H (spherial) to (r = θ, ϕ, x3 = logR) ∈ C∞ (ylindrial), is
π2/4-q ; see Figure 12. Espeially, for eah one Cα of angle 0 < α < π,there is a quasionformal mapping h : Cα → C∞.10.2 Example. (�Dust to dust�) Given n ≥ 2 and 0 < λ < n, 0 < λ′ < n,there is a K-q map f : Rn → Rn and Cantor sets E,E ′ of Hausdor�dimensions λ, λ′, respetively, so that f(E) = E ′. Here K depends on n, λ, λ′.
Reason : Let I = [0, 1]n ⊂ Rn and Ii, i = 1, . . . , 2n be the dyadi sububesof I with side length 1

2
. Fix 0 < s < 1

2
and for eah i = 1, . . . 2n pik asimilarity mapping gi : I 7→ Ii : x 7→ sx+ ai, where ai ∈ Ii is hosen so thatthe enters of Ii and Qi = gi(I) oinide. Let

Fj =
⋃

1≤i1,i2...,ij≤2n

gi1 ◦ gi2 ◦ . . . ◦ gij (I) . (32)It is easy to see that F1 ⊃ F2 ⊃ . . . . Moreover, the ubes gi1 ◦ . . . ◦ gij(I)and gi′1 ◦ . . . ◦ gi′j(I) are disjoint if ik 6= i′k for some 1 ≤ k ≤ j . We de�ne aCantor set Cn
s by setting

Cn
s =

∞⋂

j=1

Fj . (33)Then the Hausdor� dimension of Cn
s is n log 1

2

log s
, see [20℄.Fix 0 < s < 1

2
and 0 < s′ < 1

2
and the orresponding Cantor onstrutionsas above. It is easy to see that there exists a K-quasionformal f1 : Rn → Rnso that f1(x) = x outside I, and f1(x) = g′i ◦ g−1

i (x) if x ∈ Qi , where Kdepends basially only on the ratio 1
2
−s′

1
2
−s

. For example, de�ne ψ : [−1
4
, 1

4
]n →

[−1
4
, 1

4
]n by
ψ(x) =

{
s′

s
x , when 0 ≤ q||x||max ≤ s

2
and

x
( 1

2
−s′

1
2
−s

+ s′−s
4||x||max(

1
2
−s)

) when s
2
≤ ||x||max ≤ 1

4
,and �nally set for x ∈ Ii that

f1(x) = ψ(x− bi) + bi , (34)where bi denotes the enter of Ii (whih also is the enter of Qi). On Ic, wede�ne f1 to be identity. It is an easy exerise to hek that f1 satis�es thedesired properties (see Figure 13 in the two-dimensional ase).86



Figure 13: The initial map f1We de�ne a sequene of funtions fj indutively: assuming that fj isde�ned, we de�ne the mapping fj+1 by setting fj+1(x) = fj(x) outside Fjand
fj+1(x) = g′i1 ◦ fj ◦ g−1

i1
, if x ∈ gi1 ◦ · · · ◦ gij (I) (35)when x ∈ Fj. It is easy to hek that fj is a homemorphism that maps Fjonto F ′

j . Moreover, beause eah gi and g−1
i is 1-q, eah fj is K-q with theonstant K orresponding to the onstrution of f1 above.It is immediate from the onstrution that the sequene (fj)j of K-qmaps onverges uniformly to a homemorphism f that maps Cs

n onto Cs′

n .From Theorem 7.1 we dedue that f is K-q.10.3 Example. (Re�etion) Let f : Rn
+ → Rn

+ be a K-q map that mapsbounded sets to bounded sets. Then f is quasisymmetri and thus f extendsto a (quasisymmetri) homeomorphism f̃ : R
n

+ → R
n

+. De�ne
f̂(x) =







f(x) if xn > 0

f̃(x) if xn = 0

f(x) if xn < 0 ,where x = (x1, x2, . . . ,−xn). Then f̂(x) : Rn → Rn is K-q.
Reason : Repeat the argument we used to prove that the analyti de�nitionimplies the metri de�nition (Theorem 5.1) to see that f is quasisymmetri(see Figure 14). For the K-quasionformality of f̂ it su�es to hek that
f̂ ∈W 1,nlo . For eah bounded G ⊂ Rn we have

∫

G+

|Df |n ≤ K

∫

G+

|Jf | <∞,87
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y
z
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f(x)

f(z)

f(y)

8

Figure 14: f : Rn
+ → Rn

+beause f maps bounded sets to bounded sets. Similarly, ∫
G−

|Df̂ |n <∞.Thus we only need to hek that
∫

∂ifjϕ = −
∫

fj∂iϕ for all ϕ ∈ C∞
0 (Rn).This is trivial when i = 1, . . . , n − 1; almost every line parallel to the �rst

n− 1 oordinate axes lies either in the upper half spae or in the lower one.For i = n, integrate by parts along lines up to boundary in both sides; theboundary term showing up gets anelled beause f is ontinuous.10.4 Example. (Lifting) Let f : Rn → Rn be quasisymmetri, n ≥ 1.Then there is a quasionformal mapping f̂ : Rn+1 → Rn+1 so that f̂ |Rn = f .
Reason : For n = 1 de�ne
f̂(x, y) =

(

1
2

∫ 1

0

f(x+ ty) + f(x− ty) dt,

∫ 1

0

f(x+ ty) − f(x− ty) dt

)for y > 0 and use re�etion (Example 10.3). This is the Beurling-Ahlforsextension.The high dimensional ase is hard essentially beause of topologial dif-�ulties. The setting n = 2 is due to Ahlfors [1℄, n = 3 to Carleson [9℄ and
n ≥ 4 to Tukia and Väisälä [29℄. Notie that, in dimensions n ≥ 2, weould simply assume that f be quasionformal. For n = 1 one really needsto assume quasisymmetry beause there exist quasionformal mappings ofthe real line that fail to be quasisymmetri.10.5 Example. (�Generalized lifting�) Let f : R → f(R) ⊂ R2 be qua-sisymmetri. Then there is quasionformal mapping f̂ : R2 → R2 so that
f̂ |R = f . 88
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h(z)
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h(y)

Figure 15: Conformal h : R2
+ → Ω1

Reason : (See Figure 15.) One an show using the fat that f : R → ∂Ω1 isquasisymmetri that Ω1 is LLC. Then the Riemann mapping theorem givesus a onformal mapping h : R2
+ → Ω1 and g is quasisymmetri by the usualarguments (we may assume that h maps bounded sets to bounded sets; seethe proof of Theorem 5.1). We an then extend h to a quasisymmetrimapping h̃ : R2

+ → Ω1. Now h̃−1 ◦ f : R → R is also quasisymmetri. Bylifting, there is a quasionformal mapping g : R2 → R2 so that g|R = h̃−1 ◦ f .Then f1 = h̃ ◦ g : R2
+ → Ω1 is quasisymmetri and f1|R = f . Repeat thesame proedure to obtain a quasisymmetri mapping f2 : R2

− → Ω2 so that
f2|R = f , and de�ne f̂ in piees.10.6 Remark. There are quasisymmetri mappings f : Rn → f(Rn) ⊂
Rn+1 that do not extend to a homeomorphism f̃ : Rn+1 → Rn+1, when
n ≥ 2.10.7 De�nition. A Jordan urve γ ⊂ Ĉ is a quasiirle if there is a quasi-onformal mapping f : C → C so that γ = f(S1) or γ \ {∞} = f(R).Above, Ĉ refers to the Riemann sphere (the one-point ompati�ationof C.) One an hek that eah quasionformal mapping f : C → C extendsto a homeomorphism f̂ : Ĉ → Ĉ; this extension is also quasionformal onthe Riemann sphere.10.8 Remark. The following are equivalent:(1) γ is a quasiirle(2) one of the omponents of C \ γ is LLC(3) both omponents are LLC 89



(4) If z, w, y ∈ γ and y is �between� z and w, then
|z − y| + |w − y| ≤ C|z − w|with C > 0 independent of z, w and y.

z

y w

γ

10.9 Example. (The snow�ake mapping) Take pieewise linear mappings
fk : [0, 1] → C as in Figure 16. Then extend the onstrution to entire R as

10 0 1

f
1

f
2

10 0 1

Figure 16: First iterations of the snow�ake mapin Figure 17 to obtain pieewise linear mappings f̂k : R → C. The mappings
0 1 3

f
2

0 1 3Figure 17: Extension of f2 to R
f̂k are uniformly quasisymmetri. By Arzela-Asoli, we obtain a quasisym-metri mapping f : R → γ ⊂ C, where γ is a version of the von Kohsnow�ake urve. The mapping f satis�es the estimate

1

C
|x− y|

log 3
log 4 ≤ |f(x) − f(y)| ≤ C |x− y|

log 3
log 4for x, y ∈ [0, 1]. Eventually, take a quasionformal extension f̃ : C → C of f .90



10.10 Remarks. 1) One an hange the onstrution so that, for a given
1
2
< α ≤ 1, there is fα so that

1

C
|x− y|α ≤ |f(x) − f(y)| ≤ C |x− y|αfor x, y ∈ R.2) In higher dimensions, similar onstrutions have been made by David andToro for α lose to 1 [10℄.Referenes[1℄ Ahlfors, L.: Extension of quasionformal mappings from two to threedimensions. Pro. Nat. Aad. Si. U.S.A. 51 (1964) 768�771.[2℄ Astala, K.: Area distortion of quasionformal mappings. Ata Math.173 (1994), no. 1, 37�60.[3℄ Astala, K. and Heinonen J.: On quasionformal rigidity in spae andplane. Ann. Aad. Si. Fenn. Ser. A I Math. 13 (1988), no. 1, 81�92.[4℄ Astala, K., Iwanie, T. and Martin, G.: Ellipti Partial Di�erentialEquations and Quasionformal Mappings in Plane. Prineton Univer-sity Press, 2009.[5℄ Balogh, Z.M., Koskela, P. and Rogovin, S.: Absolute ontinuity ofquasionformal mappings on urves. Geom. Funt. Anal. 17 (2007),no. 1, 645�664.[6℄ Beurling, A. and Ahlfors, L.: The boundary orrespondene underquasionformal mappings. Ata Math. 96 (1956), 125�142.[7℄ Bojarski, B.: Remarks on Sobolev imbedding inequalities. Com-plex Analysis, Joensuu 1987, 52�68. Leture Notes in Math., 1351,Springer, Berlin, 1988.[8℄ Bojarski, B. and Iwanie, T.: Analytial foundations of the theory ofquasionformal mappings in Rn. Ann. Aad. Si. Fenn. Ser. A I Math.8 (1983), no. 2, 257�324.[9℄ Carleson, L.: The extension problem for quasionformal mappings.Contributions to analysis (a olletion of papers dediated to LipmanBers), pp. 39�47. Aademi Press, New York, 1974.91



[10℄ David, G. and Toro, T.: Reifenberg �at metri spaes, snowballs, andembeddings. Math. Ann. 315 (1999), no. 4, 641�710.[11℄ Gehring, F.W.: Symmetrization of rings in spae. Trans. Amer. Math.So. 101 (1961) 499�519.[12℄ Gehring, F.W.: The Lp-integrability of the partial derivatives of aquasionformal mapping. Ata Math. 130 (1973), 265�277.[13℄ Hajªasz, P. and Malý, J.: Approximation in Sobolev spaes of non-linear expressions involving the gradient. Ark. Mat. 40 (2002), no. 2,245�274.[14℄ Heinonen, J. and Koskela, P.: Quasionformal maps in metri spaeswith ontrolled geometry. Ata Math. 181 (1998), no. 1, 1�61.[15℄ Iwanie, T.: The failure of lower semiontinuity for the linear dilata-tion. Bull. London Math. So. 30 (1998), no. 1, 55�61.[16℄ Iwanie, T.: Nonlinear Cauhy-Riemann operators in Rn. Trans.Amer. Math. So. 354 (2002), no.5, (2002), 1961�1995.[17℄ Iwanie, T. and Martin, G.: Geometri funtion theory and non-linearanalysis. Oxford Mathematial Monographs. The Clarendon Press,Oxford University Press, New York, 2001.[18℄ Koskela, P. and Wildrik, K.: Exeptional sets for the de�nition ofquasionformal mappings in metri spaes. Int. Math. Res. Noties 16(2008).[19℄ Lehto, O., Virtanen, K.I. and Väisälä, J.: Contributions to the distor-tion theory of quasionformal mappings. Ann. Aad. Si. Fenn. Ser. AI No. 273 (1959), 14 pp.[20℄ Mattila, P.: Geometry of sets and measures in Eulidean spaes. Fra-tals and reti�ability. Cambridge Studies in Advaned Mathematis,44. Cambridge University Press, Cambridge, 1995.[21℄ Mukenhoupt, B.: Weighted norm inequalities for the Hardy maximalfuntion. Trans. Amer. Math. So. 165 (1972), 207�226.[22℄ Reshetnyak, Yu. G.: Stability theorems in geometry and analysis.Mathematis and its Appliations, 304. Kluwer Aademi PublishersGroup, Dordreht, 1994. 92



[23℄ Rikman, S.: Quasiregular mappings. Ergebnisse der Mathematik undihrer Grenzgebiete (3) [Results in Mathematis and Related Areas(3)℄, 26. Springer-Verlag, Berlin, 1993.[24℄ Rudin, W.: Real and omplex analysis. Third edition. MGraw-HillBook Co., New York, 1987.[25℄ Staples, S.: Maximal funtions, A∞-measures and quasionformalmaps. Pro. Amer. Math. So. 113 (1991), no. 3, 689�700.[26℄ Stein, E.M.: Harmoni analysis: real-variable methods, orthogonality,and osillatory integrals. With the assistane of Timothy S. Murphy.Prineton Mathematial Series, 43. Monographs in Harmoni Analy-sis, III. Prineton University Press, Prineton, NJ, 1993.[27℄ Trotsenko, D. A.: Continuation of spatial quasionformal mappingsthat are lose to onformal. Sibirsk. Mat. Zh. 28 (1987), no. 6, 126�133, 219.[28℄ Tukia, S. and Väisälä, J.: Quasisymmetri embeddings of metrispaes. Ann. Aad. Si. Fenn. Ser. A I Math. 5 (1980), no. 1, 97�114.[29℄ Tukia, S. and Väisälä, J.: Quasionformal extension from dimension
n to n+ 1. Ann. of Math. (2) 115 (1982), no. 2, 331�348.[30℄ Väisälä, J.: Letures on n-dimensional quasionformal mappings. Le-ture Notes in Mathematis, Springer-Verlag, Berlin, 1971.[31℄ Väisälä, J.: Quasionformal maps and positive boundary measure.Analysis 9 (1989), no. 1-2, 205�216.11 Appendix11.1 Conformal mappings of a square onto a retangleLet us explain why one annot map a square onformally to a retanglewhih is not a square, so that the verties get mapped to the verties. Notiethat this statement is a bit ambiguous. Indeed, the onformal mapping isa priori only de�ned in the open square and thus the meaning of vertiesbeing mapped to verties is not lear. Beause of the simple geometry ofboth of these domains, one an easily verify that any onformal mappingneessarily extends to a homeomorphism of the losed square onto the losedretangle. Thus, we are laiming that there is no homeomorphism between93



a losed square and and a losed, non-square retangle whih is onformal inthe open square and maps the sides of the square to the sides of the retangle.Let us all the square Q and the retangle R and the mapping f. Bytranslating and saling, we may assume without loss of generality that Q =
]0, 1[×]0, 1[ and that R =]0, 1[×]0, L[ for some L > 0.We may further assumethat the vertial sides of Q get mapped to the vertial sides of R. Considerthe line segment Iy = {(t, y) : 0 ≤ t ≤ 1} for 0 < y < 1. Beause f(Iy) joinsthe vertial sides of R, we onlude that

∫

Iy

|Df(x, y)| dx ≥ L.By Hölder's inequality we dedue that
L2 ≤

∫

Iy

|Df(x, y)|2 dx.Integrating with respet to y and using the inequality
|Df(x, y)|2 ≤ Jf(x, y)that follows from the Cauhy-Riemann equations (f. Setion 1) we arrive at

L2 ≤
∫

Q

|Df(x, y)|2 dx dy ≤
∫

Q

Jf (x, y) dx dy ≤ |R|,where |R| is the area of R. Sine |R| = L, we onlude that L ≤ 1. Theopposite inequality follows by reversing the roles of Q and R in the aboveargument.11.2 Some linear algebraLet A be a n× n-matrix. The operator norm of A is de�ned by
|A| = sup

|h|=1

|Ah|,where |h|, |Ah| are the eulidean lengths of the given vetors. Sometimes onealso uses the norm
||A||HS =

√
∑

i,j

a2
ijalled the Hilbert-Shmidt norm. These two norms are learly equivalent.94



11.1 Proposition. For eah h ∈ Rn, we have that
|hA| ≤ |A||h|.To see that this estimate holds, notie �rst that
|hA| = |Atht|.It thus su�es to show that |At| ≤ |A|. To this end, hoose a unit vetor

h ∈ Rn so that |Ath| = |A|. Now
|At|2 =< Ath,Ath >=< AAth, h >≤ |A||Ath||h| ≤ |A||At|,and the laim follows.Notie that we aually proved above that |At| ≤ |A|. Realling that

(At)t = A, we arrive at the equality
|At| = |A|. (36)We ontinue with a result aording to whih linear mappings an alwaysbe represented by diagonal matries.11.2 Proposition. Let L : Rn → Rn be a linear mapping. Then there areorthonormal bases {v1, . . . , vn} and {w1, . . . , wn} so that the matrix of L withrespet to these bases is diagonal.

Proof . Pik v1, with |v1| = 1, so that |Lv1| = sup|h|=1 |Lh|. If |Lv1| = 0,then the zero matrix will do (use then the standard bases). We will take
w1 = Lv1

|Lv1|
. Assume for simpliity that |Lv1| = 1.Claim: If v⊥v1, then Lv⊥Lv1.Suppose not. We an assume that |v| = 1 and that 〈Lv, Lv1〉 > 0. Then

Lv = cLv1 +w for some c > 0, where w⊥Lv1. Thus |L(v1 + εv)| ≥ 1 + cε for
ε > 0. Now

|L(v1 + εv)|
|v1 + εv| ≥ 1 + cε√

1 + ε2
=

1 + 2cε+ c2ε2

1 + ε2
> 1,when ε > 0 is small, whih ontradits the fat 1 = |Lv1| = sup|h|=1 |Lh|.This proves the above laim.Then pik v2 with |v2| = 1 and so that

|Lv2| = sup
|h|=1,h⊥v1

|Lh|.Repeat the argument as in the �rst step. After n steps, we have found therequired basis. 2We dedue the following familiar property of linear transformations.95



11.3 Proposition. If L : Rn → Rn is linear and one-to-one, then L mapsballs to ellipsoids.
Proof . By the linearity of L, it su�es to show that L(B

n
(0, 1)) is an ellip-soid. Relying on the preeding proposition, we may assume that the matrixorresponding to L is diagonal. Sine L is one-to-one, the diagonal entries ofthis matrix are non-zero. The laim follows. 2Let us reall the standard fat that, under a linear transformation, themeasure of the image of a set E is obtained by multiplying the measure of

E by the absolute value of the determinant of the matrix representing thelinear transformation.11.4 Proposition. We have
|AE| = | detA||E|for eah measurable set E.Notie that our laim is trivial when A is diagonal. Thus the previousproposition essentially gives our laim. The only problem is that one wouldneed the fat that the determinant does not depend on the hoie of theorthonormal bases involved. A rigorous elementary proof of our laim anbe found in [24℄.To eah n × n- matrix A we assoiate the adjunt matrix adA, de�nedby setting
(adA)ji = detA′

ij ,where (adA)ji refers to the entry of adA at row i and olumn j and A′
ij isthe matrix obtained from A by replaing the entry at row i and olumn jwith 1 and all the other entries in the orresponding row and olumn by 0.If A is invertible, then adA = A−1 detA, and, more generally,

A adA = I detA, (37)where I is the identity matrix.11.5 Proposition. Let λ > 0 and suppose that A satis�es
|Ah| = λ|h|for all h ∈ Rn. Then

adA = (detA)1−2/nAt.96



Proof . Clearly |AE| = λn|E| for eah measurable set. Thus Proposition11.4 shows that
λ = (detA)1/n. (38)Write B = 1

λ
A. Then |Bh| = |h| for all h ∈ Rn, and so |B| = 1. From (36)we onlude that also |Bt| = 1.Fix h with |h| = 1. Then

1 =< Bh,Bh >=< BtBh, h >,and beause
|BtBh| ≤ |Bt||B||h| = 1,we onlude that BtBh = h. It follows that B−1 = Bt.Now

At = λBt = λB−1 = λ2A−1. (39)Combining (39) with (37) and (38) we onlude that
adA = A−1 detA = (detA)1−2/nAt,as desired. 2

11.3 Lp-spaesReall that Lp(Ω), 1 ≤ p <∞, onsists of (equivalene lasses) of measurablefuntions u with ∫

Ω

|u|p <∞.We write
||u||Lp = ||u||p :=

(∫

Ω

|u|p
)1/p

.Furthermore, L∞(Ω) onsists of those measurable funtions on Ω that areessentially bounded. Then ||u||L∞ = ||u||∞ is the essential supremum of |u|over Ω. If 1 < p <∞, we set p′ = p/(p−1), and we de�ne 1′ = ∞.With thisnotation, we have the Minkowski
||u+ v||p ≤ ||u||p + ||v||pand Hölder

||uv||1 ≤ ||u||p||v||p′97



inequalities.One often needs the following spherial oordinates. Given a Borel fun-tion u ∈ L1(Bn(0, 1)) we have that
∫

B(0,1)

u =

∫

Sn−1(0,1)

∫ 1

0

u(tw)tn−1 dtdw.We say that a sequene (ui)i onverges to u in Lp(Ω) if all these funtionsbelong to Lp(Ω) and if ||u−ui||p → 0 when i→ ∞.We then write ui → u in
Lp(Ω). If ui → u in Lp(Ω), then there is a subsequene (uii)k of (ui)i whihonverges to u pointwise almost everywhere. For 1 ≤ p < ∞, ontinuousfuntions are dense in Lp(Ω) : given u ∈ Lp(Ω) one an �nd ontinuous uiwith ui → u both in Lp(Ω) and almost everywhere. This an easily seen by�rst approximating u by simple funtions, then approximating the assoiatedmeasurable sets by ompat sets and �nally approximating the harateristifuntions of the ompat sets by ontinuous funtions.The dual of Lp(Ω) is Lp/(p−1)(Ω) when 1 < p <∞. Then

||u||p = sup
||ϕ|| p

p−1
=1

||uϕ||1.One of the inequalities easily follows by Hölder's inequality and the other byhoosing ϕ to be a suitable onstant multiple of |u|p−1.We also need the following weak ompatness property: if (uj)j is abounded sequene in Lp(Ω), 1 < p < ∞, then there is a subsequene (ujk)kand a funtion u ∈ Lp(Ω) so that
lim
k→∞

∫

Ω

ujkϕ =

∫

Ω

uϕfor eah ϕ ∈ Lp/(p−1)(Ω). We then write
uuk

⇀ u.This notation should in priniple inlude the exponent p, but the exponentin question is typially only indiated when its value is not obvious. Thisfuntion u, alled the weak limit, is unique and satis�es
||u||p ≤ lim inf

k→∞
||ujk||p.The existene of the weak limit u follows from the fat that Lp(Ω), 1 <

p < ∞, is re�exive. Furthermore, the norm estimate on u is a onsequeneof a general result aording to whih a norm is lower semiontinuous with98



respet to the assoiated weak onvergene. In general, weak onvergene isde�ned by onsidering bounded linear mappings T : X → R; in the ase of
Lp(Ω), 1 < p < ∞, they an be identi�ed with elements of Lp/(p−1)(Ω). If
vj = (vj1, · · · , vjn) ∈ Lp(Ω), then

vj ⇀ umeans that
vji → uifor eah 1 ≤ i ≤ n.When we apply the above to a sequene Aj(x) of n×n-matrix funtions,we onlude that the boundedness in Lp(Ω), 1 < p < ∞ of the sequene

(|Aj(x)|)j guarantees the existene of an n×n-matrix funtion A(x) ∈ Lp(Ω)so that the rows (or olumns) of a subsequene of (|Aj(x)|)j onverge weaklyto the orresponding rows (or olumns) of A(x). Notie that boundednessabove is independent of the initial norm (like the operator or Hilbert-Shmidtone).Then ||A||p ≤ Cn lim infk→infty ||Ajk||p. In fat, one an show that
||A||p ≤ lim inf

k→infty
||Ajk||p;the Lp-norms generated by the operator or Hilbert-Shmidt norms are equiv-alent and so the assoiated onepts of weak onvergene oinide.11.4 Regularity of p-harmoni funtionsLet Ω ⊂ Rn be a domain. We say that a ontinuous funtion u ∈W 1,p

loc (Ω) is
p-harmoni, 1 < p <∞, if

∫

Ω

< |∇u|p−2∇u(x),∇ϕ > dx = 0for eah ϕ ∈ C∞
0 (Ω).11.6 Proposition. Eah funtion u, p-harmoni funtion in Ω, is (loally)

C1,α-smooth, where α = α(p, n).Notie that when p = 2, our p-harmoni funtion is in fat harmoni andthen C∞-smooth. In general, for p 6= 2, this is not true. The di�ulty lies inthe fat that our equation is the degenerate. This is in fat the only obstaleas the the next proposition asserts.11.7 Proposition. Let u be p-harmoni in Ω and C1 with |∇u(x)| > 0(loally). Then u is C∞-smooth. 99



Proofs for the regularity results above an be found for example in thepaper �Regularity of the derivatives of solutions to ertain degenerate elliptiequations� by J.L.Lewis in Indiana Math. J. 32 (1983), pp. 849�858.In the planar setting, the oordinate funtions of a onformal mappingare harmoni. In higher dimensions, they turn out to be n-harmoni. Thisis based on the following result.11.8 Proposition. Let f ∈ W 1,n−1
loc (Ω,Rn) and ϕ ∈ C∞

0 (Ω), where Ω ⊂ Rnis a domain. Let ej be one of the oordinate vetors. Then
∫

Ω

< adDf(x)ej,∇ϕ(x) > dx = 0.If f is C2-smooth, the laim follows from a diret omputation usingthe de�nition of adDf(x) and the fat that, for a C2-smooth funtion u,
∂j∂ju(x) = ∂i∂ju(x). To relax the regularity assumption to f ∈W 1,n−1

loc (Ω,Rn),approximate f by smooth mappings and observe that the entries of adDf(x)ane (n−1)-fold produts of the partial derivatives of the oordinate mappingsof f.11.5 Fixed point theorem and related resultsThe following result is the Brouwer �xed point theorem.11.9 Theorem. If G : B(0, 1) → B(0, 1) is ontinuous, then there is at leastone �xed point x ∈ B(0, 1) (i.e. G(x) = x).Notie that, in dimension one, the laim easily follows from the meanvalue theorem. The higher dimensional version an be rather easily reduedto the �Hairly Ball Theorem� aording to to whih an even dimensionalsphere does not admit any ontinuous �eld of non-zero tangent vetors. Thisredution and a surprisingly simple analyti proof of this lassial topologialresult an be found in the paper �Analyti proofs of the `hairy ball theorem'and the Brouwer �xed point theorem,� by John Milnor in the AmerianMathematial Montly, Vol. 85, No. 7, pp. 521�524.We employ the �xed point theorem to prove the following result thatould also be established using degree theory.11.10 Lemma. Let h : B
n
(0, 1) → Rn be a ontinuous mapping satisfying

|h(x) − x| ≤ ε when |x| = 1.Then B(0, 1 − ε) ⊂ h
(
B(0, 1)

). 100



Proof . Assume that there is x0 ∈ B(0, 1 − ε) \ h(B(0, 1)) and de�ne
F (x) =

{

h(2x) when |x| < 1
2

(
2|x| − 1

)
x
|x|

+ 2
(
1 − |x|

)
h
(
x
|x|

) when 1
2
≤ |x| ≤ 1 .Then F is ontinuous, F (B(0, 1/2)

)
= h

(
B(0, 1)

) and F (x) = x if |x| = 1.Also, for 1
2
≤ |x| ≤ 1 we see that F (x) ∈

[
x
|x|
, h(x)
|h(x)|

], and so |F (x)| > 1−ε (seeFigure 18). Thus x0 /∈ F
(
B(0, 1)

). Let g : Rn → Rn be a homeomorphism
| |
x
x

| |
x
xh

1

x

F(x)

1− ε

Figure 18: F (x) when 1
2
≤ |x| ≤ 1.so that g(x) = x if |x| = 1 and g(x0) = 0 and de�ne for x ∈ B(0, 1)

G(x) = − g
(
F (x)

)

∣
∣g
(
F (x)

)∣
∣
.Then G : B(0, 1) → {x : |x| = 1} is ontinuous, and if |x| = 1, then

G(x) = −x. This means that G does not have a �xed point, whih ontra-dits the previous Brouwer's �xed point theorem. 2The tehniques from algebrai topology that are usually used to provethe Brouwer �xed point theorem also yield related results. One of them is�invariane of domain� whih is a stronger version of the previous lemma.11.11 Theorem. Let Ω ⊂ Rn be a domain and f : Ω → Rn be ontinuousand one-to-one. Then f(Ω) is a domain and f : Ω → f(Ω) is a homeomor-phism.Notie that the laim is trivial when n = 1. Indeed, then f is eitherstritly inreasing or strily dereasing.101


