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Abstract

We use a simple tight-binding model to study the magnetism of two-

dimensional quantum dot lattices with 1 to 12 electrons per dot. The results

show that in the middle of an electron shell the lattice favours antiferromag-

netism while with nearly empty or full shells ferromagnetism is favoured. The

size of the antiferromagnetic region increases with the coordination number of

the dot. A one-dimensional dot lattice shows a spin-Peierls transition. The

results for a square lattice are in good agreement with density functional

calculations of Koskinen et al. [13].

1. Introduction

During the last decades low-dimensional semiconductor
heterostructures have been a rich source of discoveries.
Analogies of quantum dots with real atoms have been
confirmed by observation of the shell structure and
magnetism due to Hund’s first rule [1–4]. Contrary to
real atoms or ions where the confining potential is fixed, in
quantum dots, or artificial atoms, the shape of the
confining potential as well as the electron number can be
designed at will (for reviews, see for example, Refs. [5,6]).
Moreover, in making lattices of quantum dots one is not
restricted to the energetically most favourable structure as
in the case of real atoms, but the lattice can have the
desired symmetry. This opens up possibilities of magnetic
structures that can not be observed with natural atoms.
In elemental solids, magnetism is observed only in the

cases where the magnetic moment of the atoms is
determined by the inner d-shell or f-shell. If the magnetic
moment of an open shell atom is determined by the sp-shell
like in sodium or boron, the magnetism disappears in the
solid phase due to metallic or covalent bonding which
favour nonmagnetic ground states. The situation could be
different if the lattice constant and structure could be
chosen at will. At large enough lattice constant the solid
would change from a nearly free electron metal to a tight-
binding system with very narrow bands. In this case, for
example sodium would resemble a Hubbard system where
the ground state is expected to be an antiferromagnet [7,8].
In quantum dot lattices the structure and lattice constant

(as well as the internal properties of the quantum dot) can
be nearly freely chosen. It is then possible to obtain
magnetism caused by the outer electronic shell. Most of the
studies of two-dimensional dot lattices relate to the simple
Hubbard model or its extensions [8–12]. In this case one is
interested in the region where each dot has less than two
electrons. In the simplest case there is only one band. When
it is half full the system is antiferromagnetic, irrespective of
the lattice structure. If the band is less (or more) than half

full the situation gets much more subtle. There are general
theories that in the limit of weak coupling between the dots
(the ratio of the Hubbard parameters, t=U; is small) the
system becomes ferromagnetic even if the departure from
the half-filling is infinitesimally small [9,8]. Similarly, when
the filling of the band is small the system becomes
paramagnetic. When the hopping parameter increases to
the region t=U � 1 the situation becomes less clear.

Increasing the number of electrons per dot, N; makes the
magnetic coupling between the dots more complicated and
the Hubbard-type models necessarily need more param-
eters. Another approach to the electronic structure of the
quantum dot lattice is the density functional approach.
Koskinen et al. [13] have recently calculated the magnetic
structure of square lattices of quantum dots containing
from 1 to 12 electrons per dot. Their result shows that
when the lattice constant is large enough the dot lattice
shows magnetic order, which in general is antiferromag-
netic for a half full electron shell and otherwise ferromag-
netic (full-shell dots naturally form a nonmagnetic lattice).

The purpose of this paper is to demonstrate that the
systematics of the results of Koskinen et al. [13] can be
understood with the simplest possible tight-binding model
with rigid energy bands. Furthermore, we use the model to
predict, for example, that the size of the antiferromagnetic
phase increases with the coordination number, i.e., the
more frustrated the system is the more antiferromagnetism
is favoured.

The structure of the paper is as follows. First we will give
the theoretical model in Section 2. In Section 3 we present
results for a square lattice and in Section 4 we discuss other
2D-lattices. The long-wave-length antiferromagnetism and
spin-Peierls transition is discussed in Section 5. A short
conclusion is given in Section 6.

2. Tight-binding model

We assume a periodic two-dimensional lattice of identical
quantum dots. Each individual dot has localized eigen-
states forming a shell structure related to that of a 2D
harmonic oscillator. The three lowest electron shells are
filled with 1s, 1p, and 2s and 1d electrons, respectively. Due
to the fact that the effective potential is usually not exactly
harmonic the 2s and 1d electron levels of the third shell are
not exactly degenerate but separated by a small energy
difference �sd: If the last occupied electron shell is partially
filled the electrons obey the first Hund’s rule and maximize
the spin. The related exchange splitting lifts the degeneracy
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of the spin-up and spin-down levels. We denote this energy
difference by �; as illustrated in Fig. 1(a). We assume a
quantum dot where the energy difference between different
shells is much larger than the exchange splitting �: With
this approximation we can consider (in the tight-binding
model) only the open shell in question and neglect the full
‘‘core’’ levels as well as the empty shells. A schematic
picture of the electronic structure of an isolated quantum
dot is shown in Fig. 1(a).
In a square lattice we have to take at least two dots per

unit cell in order to describe the antiferromagnetic order.
We denote these dots with a and b; as shown in Fig. 1(b).
The figure also shows the possible hoppings of electrons
from one dot to its neighbours. Note that in a square lattice
the nearest neighbour hopping is only possible from a to b
and vice versa. The simple tight-binding Hamiltonian can
now be written for a given spin (up or down) as
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where i and j run over the unit cells and k and l over the m
electron states in a dot. "ai and "bi are the energy levels in
dots a and b; respectively. t kli j is the hopping parameter
between the electron state k in site i and state l in cell j: The
operator ali; ðb

l
iÞ is the usual fermionic annihilation (H.c. for

creation) operator for a single-particle state jaki i ðjb
k
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unit cell i; dot state k ¼ ð1s; 1p1; . . .Þ and dot a ðbÞ: The
eigenstates of the Hamiltonian can easily be obtained by the
ansatz j i ¼
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ultimately the whole band structure. The lattice symmetry
is fixed by choosing the suitable non-zero hopping
parameters t kli j (which can also depend on a and b).

We considered only nearest neighbour tunnelling and
ignored hoppings between different energy shells. This
means that when filling the dots with electrons, we can
consider only one shell at a time, i.e. ‘‘the valence shell’’,
and assume that the ‘‘core’’ does not play a dynamic role
any more, just as in the case of real atoms. With this
justification, we can solve the band structure one shell at a
time. For example, if we have slightly more than two
electrons per dot, so that we are filling the 1p-states, the
energy bands arise only from the p1 and p2 states as
schematically shown in Fig. 1(c).

In the antiferromagnetic case we assume a spin splitting
� to exist between neighbouring atoms. If an electron with
spin up is located at the dot a; all the dots b assume a
higher energy for spin-up state. Correspondingly, the spin-
down states in b-dots have the same energy as the spin-up
states in dots a: In the ferromagnetic case the spin-up
(majority spin) energies are the same for all the dots,
whereas for the minority spin the energy is higher by �:
Thus in antiferromagnetic case the bands are identical for
both spins, whereas in ferromagnetic case the spin-down-
bands are lifted by �:We will use � as the unit of energy in
our model. In reality, the spin splitting will depend on the
number of electrons in the dot and on the interdot distance.
However, since we look at the magnetic properties as a
function of the hopping parameters t; the relevant
parameter determining the qualitative features is in any
case t=� or its inverse.

Figure 1(c) shows schematically the single particle
orbitals of individual dots. The first energy shell has only
one state and one t-parameter. The second shell has two
orthogonal p-states. Due to the symmetry of the square
lattice hopping is forbidden from 1p1 to 1p2: Within this
shell we have then two nonzero hopping parameters, tp1p1

and tp2p2 : In the third shell the possible nonzero hopping
integrals are t s2s2 ; t d1d1 ; t d2d2 ; and t s2d2 :

The band structure for a given energy shell is obtained
by solving the Hamiltonian of Eq. (1). Since we fix � to be
independent of the number of electrons the model is a
‘‘fixed band model’’ [14], i.e., the bands do not depend on
the number of electrons. After the calculation of the band
structure for the antiferromagnetic (AF) and ferromagnetic
(F) cases, we determine the total energies by integrating the
band energies over the occupied parts of the bands. For a
given electron number N the magnetism of the ground state
is simply determined by which structure gives the lower
total energy. Note that in our model the open shell
structures are always either ferro- or antiferromagnetic. A
nonmagnetic solution is energetically not favourable since
we postulate that there is an exchange splitting �:

3. Results for a square lattice

The main results for a square lattice are shown in Fig. 2,
where we show the ‘‘phase diagram’’ of the quantum dot
lattice as a function of t=� and the number of electrons per
dot. In this case we have, for simplicity, chosen all nonzero
t-parameters to have the same value. The ground state is
ferromagnetic, except close to the middle of any electron
shell ðN ¼ 1; 4; 9Þ: When t goes to zero (corresponding to
the large lattice constant limit in a real lattice), the width of
the antiferromagnetic area goes to zero. The small

Fig. 1. (a) A schematic picture of the electronic structure of an individual

quantum dot with 4 electrons. The black arrows indicate the filled states

and the grey arrows the empty levels. � is the spin splitting assumed to be

the same for all shells and �sd the energy difference between the 2s and 1d

levels. (b) The antiferromagnetic square lattice with the unit shell (dashed

line) and possible nearest neighbour hoppings (solid lines). (c) Symmetries

of the energy levels of the three shells considered.
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antiferromagnetic area at N ¼ 7 is caused by half-filling of
the subband of 2s-electrons which are separated by �sd

from the d-electrons (�sd ¼ �=2 in Fig. 2). In this case the
total spin of an individual dot is S ¼ 1=2: Similarly the
antiferromagnetism at N ¼ 10 (in the small t limit) is
caused by a full 2s band separated from the half-full d-
band. In this case the total spin of a single dot is S ¼ 1: For
N ¼ 9 the antiferromagnetism corresponds to the total
polarization of the sd-shell, with total spin of a single dot
being S ¼ 3=2:
An increase of t=� eventually makes the narrow bands

of the of separate dot levels to merge to a wide
antiferromagnetic region centered at half-full sd-shell.
Interestingly, the N ¼ 7 case changes from antiferromag-
netism to ferromagnetism when t=� ingreases. The
opposite happens for N ¼ 8: Qualitatively the magnetic
phase diagram of the sd-band is insensitive to the ratio
�sd=� as shown in Fig. 3. In all cases shown the electron
numbers N ¼ 7; 9 or 10 show antiferromagnetism at the
limit of small t=� and the antiferromagnetic region at large
t=� approaches to the same width. In the intermediate
values of t=� the details are different.
In the above results we assumed that all the t-parameters

have the same value. We have also studied the effect of
changing the ratios of different t-parameters as well as the
signs of them. The general conclusion is that while the
detailed positions of the phase boundaries change slightly,
the overall phase diagram remains the same. The ratio
�sd=� has a much larger effect (shown in Fig. 3) to the
phase diagram than the ratios of different t-parameters.
The reason that the sign of t does not affect the results
much is due to the fact that the rigid density of states of our
model is nearly symmetric with respect of the band center,
irrespective of the ratios of the different t-parameters.
Recently, Koskinen et al. [13] have studied magnetism of

dot lattices using density functional theory with the local
spin density approximation. They have computed the
ground state of square lattices with 1 to 12 electrons as a

function of the lattice constant. The results of our simple
tight-binding model are in excellent agreement with the
magnetic structures obtained by Koskinen et al. for large
values of the lattice constant. At small values of lattice
constant, corresponding to large values of t=� they
obtained nonmagnetic ground states. This is not possible
in our model since we assume a fixed nonzero exchange
splitting. Koskinen et al. only considered integer number of
electrons per dot and found that filled and half-filled shells
are insulators while the ferromagnetic states are metallic
(no band-gap). If the occupation number is not an integer
number, even the antiferromagnetic phase is always
metallic. Note especially, that strictly speaking the closed
shells (and other integer occupation numbers) are only
singular points when increasing the occupation number.

Hartree–Fock results for the Hubbard model [10,14] for
the 1s-band, i.e., for N ¼ 0; . . . ; 2; result in a phase
diagram very similar to ours. The main difference being a
paramagnetic phase at large values of t=� and at nearly
empty or full 1s-band. The Hartree–Fock approximation
takes the electron–electron interaction into account in
determining the exchange splitting while we assume it to be
fixed.

4. Antiferromagnetism in other lattices

Using the simple tight-binding model it is easy to calculate
the phase diagrams also for other lattices. Figure 4 shows
phase diagram for 1s and 1p shells for different two-
dimensional lattices: square, honeycomb and hexagonal.
Again we assume the t-parameters between all possible
transitions between the p-electrons to be the same (note
that in principle the t-parameters for p-electrons are angle-
dependent). The mid-shell antiferromagnetic area is nar-
rower in the case of the square lattice than in the case of the
hexagonal lattice. It actually seems quite counter-intuitive
that a frustrated system like a hexagonal lattice would

Fig. 2. Magnetic phase diagram for a square lattice showing antiferro-

magnetic (AF, grey) and ferromagnetic (F, white) regions. N is the number

of atoms per dot and t=� is the ratio of the hopping parameter and the

exchange splitting. �sd=� ¼ 1=2: The hopping parameter is assumed to be

the same between all states (t ¼ 0 if symmetry prevents the hopping).

Fig. 3. Dependence of magnetism of a square lattice on the energy

difference between the 2s and 1d levels. The different lines show the

boundaries between the antiferromagnetic and ferromagnetic regions.

Solid line: �sd=� ¼ 1=4; dashed line �sd=� ¼ 1=2 (same as in Fig. 2),

dotted line �sd=� ¼ 1.
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exhibit antiferromagnetism to the largest extent. A closer
examination reveals that a more important ingredient to
the antiferromagnetic behaviour is the coordination number
c of the lattice. The structure of the 1s-band can be easily
derived analytically. For example, for a D-dimensional
cubic lattice we get

" qð Þ ¼ 1
2 "a þ "bð Þ 
 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"a � "bð Þ

2
þ4t2jA qð Þj2

q
; ð2Þ

where AðqÞ ¼
Pn:n:
i e�iq 	 ri describes all the possible nearest-

neighbour hoppings. The essential point here is, that with
zero or small wave-vector (or band extrema in general)
jAðqÞj � c: Expanding (2) for small t; we get for the lowest
bands

" 0ð Þ ¼ �
�

2
�

1

�
jAjtð Þ

2; for antiferromagnetic case;

" 0ð Þ ¼ �
�

2
� jAjt; for ferromagnetic case.

ð3Þ

The lowest-lying states for the antiferromagnetic case are
lower in energy than those for the ferromagnetic case if
ct > �. For a fixed t the electron number N; where the
system becomes antiferromagnetic, is the smaller the larger
is the coordination number. This explains the wider
antiferromagnetic regions for lattices with larger c (for a
simple cubic c ¼ 2D). It may be mentioned that in an
infinite-dimensional lattice the system would be antiferro-
magnetic for any number of electrons.

5. Spin-Peierls transition in one-dimensional quatum dot

lattice

In the previous sections we have studied the antiferro-
magnetic phase only in its simplest form where the
neighbouring dots have opposite spins (in the hexagonal
lattice two of the neighbours have parallel spins). In

reality the ‘‘spin-wave’’ of the antiferromagnetic phase
can have much longer wavelength. We will study this
possibility only in the case of the one-dimensional lattice
which is expected to exhibit a spin-Peierls transition. To
this end we calculated the band structures and the tight
binding total energies for one-dimensional dot lattices
with 2, 4, 6, and 8 dots in the unit cell and the spin
configuration being ð"#Þ; ð""##Þ; ð"""###Þ; and
ð""""####Þ; respectively.

Figure 5 shows the ground magnetic structure for a one-
dimensional dot lattice as a function of t=� and N. The
spin-Peierls transition is clearly seen for large values of t=�
where strips corresponding to different spin density waves
appear. The energetically most favourable occupation
number for a given wavelength of the spin density wave
is N ¼ 2=n; where n is the number of dots in the unit cell
(wavelength). It is interesting to note that for small t=�
also small regions of long wavelength antiferromagnetism
appear.

In the limit of small t=� antiferromagnetic order exists
only for the half-filled band, with a wavelength of two unit
cells. When t=� increases antiferromagnetism with longer
wavelength starts to exist, according to the spin-Peierls
transition. The longer the wavelength the larger t=� has to
be in order for the spin-Peierls transition to win the
ferromagnetism.

6. Conclusions

We have investigated the spontaneous magnetism of
quantum dot lattices with up to 12 electrons per dot
using a tight-binding approach with rigid energy bands.
This, perhaps the simplest possible model, shows qualita-
tively the same results as the previously obtained density-
functional calculations [13], when the lattice constant is
sufficiently large. Lattices made of dots with half-filled
shells are antiferromagnetic insulators and those made of
dots with filled shells are non-magnetic insulators. Close to

Fig. 4. Phase diagram for honeycomb (solid line), square (dashed line)

and hexagonal (dotted line) lattice. The lines separate the antiferromag-

netic and ferromagnetic regions. Note that the antiferromagnetic region is

larger for frustrated hexagonal lattice than for the square lattice.

Fig. 5. Spin-Peierls transition in one-dimensional dot lattice. N is the

number of electron in the dot and t=� is the ratio between the hopping

parameter and the exchange splitting. The grey areas from dark to light

correspond to spin orders ð"#Þ; ð""##Þ; ð"""###Þ; and ð""""####Þ;

respectively.
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the half-filling of each shell the dot lattice is a metallic
antiferromagnet. When the electron shell is only slightly
filled or almost full ferromagnetic order is obtained. These
general results are not sensitive to the parameters of the
tight-binding model.
The region of antiferromagnetism increases with the

coordination number of the dots. This means that even the
frustrated hexagonal lattice has a larger region of
ferromagnetism than the unfrustrated square lattice.
The one-dimensional lattice shows spin-Peierls transi-

tions at sufficiently large values of the hopping parameters.
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