Differential geometry 2023

Exercises 5
1. Prove that the mapping ®: S'xE! — TS', ®(p, s) = s |, is a smooth diffeomorphism.

Solution. The tangent space T),S' is 1-dimensional for all p € S*. Thus, T,S* is generated
by the tangent vector %|p. This implies that the mapping ® is a bijection with inverse
®~(s &],) = (p,s). Therefore, it suffices to show that ® is a local diffeomorphism. Let
(U, ) be an angle chart on S', use the canonical chart of E!, the product chart on U x E!,
and the chart associated with (U, ¢) on T'S'. In these charts ® corresponds to the identity
mapping (z, s) — (x, s), which is a diffeomorphism.

2. Let M be a smooth n-manifold. Let X, Xs,...,X,, € X(M) be smooth vector fields
such that the tangent vectors Xi(p), Xa(p), ..., Xn(p) € T, M are linearly independent for
all p € M. Prove that there is a smooth diffeomorphism F': M x E* — TM.

Solution. Set H(p,v) = 27—, v*Xi(p). To check its smoothness, fix p € M, v € E" and
use the chart (U x E™ ¢ X idgn) of M x E™ around (p,v), as well as the chart (TU, 1) of
TM associated to (U, ¢) around H(p,v). We compute, for all (z,u) € ¢(U) x E",

Yo H o (67! x idge)(w, u) = (H (6™ (x), 1)) = z S ACR))
= (2, d1(u znj uF X (67 (2))))
(3 3 s (Ko™ ),

which is smooth (since its first coordinate clearly is, and its second one is a combination of
smooth coordinates, since Xy, ..., X, are smooth, with coordinates given by the smooth
projections u — u*). Set A(z,u) the nxn matrix of columns given by dgs—1(,) (Xi (¢~ (x)))
for 1 < k < n. By the hypothesis on Xi,...,X,, this matrix is always 1nvert1ble. And
since matrix inversion is a smooth map of GL,(R), the local inverse of H on ¢(U) x E"
is smooth. Finally, since H is globally a bijection, it is indeed a diffeomorphism.

3. Let M be a smooth manifold. Let p € M and let v, € T,M. Prove that there is a
smooth vector field X € X(M) such that X, = v,.

Solution. Let (U, ¢) be a chart centered at p. Let v, = > p_, ¢ aak

and let Y € X(U) be

the constant vector field Y = 37, c* W‘ Let n € §(M) be a smooth bump at p such
that its support is contained in U. Then Z = n|yY |y € X(U) and Z, = v,. Let X be the
vector field defined by

Z(q) ifqeU, and

0 otherwise.

X(g) = {

If g € M — U, then there is an open neighbourhood V' 3 ¢ such that X|,, = 0. Thus X is
smooth.



4. Let M be a smooth n-manifold. Prove that X(M) is a real vector space and an §(M)-
module.

Solution. Let p € M. Take (U, ¢) a chart containing p and (7U, ) the associated map
of TM. We recall the definition

U (q,0) = (0(q), dog(v)) € 9(U) x E" C E*",

where the derivation d¢y(v) is identified with a vector in E™ by the bijection v" + Oy|4(q)-
Let X,Y € X(M) and a € R. Then, we compute, for all u € ¢(U),

77/) (¢) (aX) O gb_l(u) = Qﬁ(OéX(zg—l(u)) = (u, d¢¢—1(u) (QX¢—1(U))) = (u, Ozdgbd)—l(u)(OéXd)—l(u)),
and ¢ o (X +Y) 067 (u) = (4, ddg-1(u)(Xg-1() + dbg1(u)(Yo-1(u));

because of the linearity of d¢y-1(,). These two formulae give smooth maps since they come
from linear combinations of the coordinates of

Yo X oo (u) = (u,dpg1(w)(Xe1(n)

and
poY od M (u) = (u,dpy1(u)(Yo-1(u))

(which are smooth by definition of vector fields). This proves that XM is a real vector
space.

Forall f € F(M) (= C*(M)), we define fX : M — TM by the formula, for all p € M,
(fX)(p) = f(p)X, € T,M. With this definition, all the axioms of an §(M )-module are
verified for the space X(M). It only remains to show that (f, X) — fX is well defined
from X(M) to X(M). Fix f € §F(M). In other words, we want to show that fX is smooth.
Take the charts (U, ¢) and (T'U, ) defined above. Then we compute

Yo (fX) o ¢ (u) = ¥(f(¢7 () Xo-10) = (4, dg-11) (f (&7 (u) Xy-1w))
= (u, f(&~" () ddy1()(Xs-1w))),

since dgg-1(y) is linear. This is the formula of a smooth map since X and f are smooth.

5. (1) Let v be a derivation of an algebra A. Prove that v(1) = 0.

(2) Let v; and vy be derivations of an algebra A. Prove that vvy — vov; is a derivation.

Solution. (1) v(1) =v(1-1) = 1v(1) +v(1)1 = 2v(1) implies v(1) = 0.
(2) Let f € A. Then

(v1v9 — vou1)(ab) = vive(ab) — vavy(ab) = vi(ve(a)b + avy(b)) — va(v1(a)b + avi(b)
= (v1v2(a)b + vo(a)v1(b) + v1(a)va(b) + avyv2(b))
— (vov1(@)b + vi(a)va(b) 4+ vo(a)vy(b) + avevy (D)
= (v1v2(a)b + aviv2(b)) — (vev1(a)b + avevy (b))

= (V109 — vov1)(a)b + a(v1ve — vov1) () .



