
Differential geometry 2023

Exercises 5

1. Prove that the mapping Φ: S1×E1 → TS1, Φ(p, s) = s ∂
∂θ

|p is a smooth diffeomorphism.

Solution. The tangent space TpS1 is 1-dimensional for all p ∈ S1. Thus, TpS1 is generated
by the tangent vector ∂

∂θ
|p. This implies that the mapping Φ is a bijection with inverse

Φ−1(s ∂
∂θ

|p) = (p, s). Therefore, it suffices to show that Φ is a local diffeomorphism. Let
(U, ϕ) be an angle chart on S1, use the canonical chart of E1, the product chart on U×E1,
and the chart associated with (U, ϕ) on TS1. In these charts Φ corresponds to the identity
mapping (x, s) 7→ (x, s), which is a diffeomorphism.

2. Let M be a smooth n-manifold. Let X1, X2, . . . , Xn ∈ X(M) be smooth vector fields
such that the tangent vectors X1(p), X2(p), . . . , Xn(p) ∈ TpM are linearly independent for
all p ∈ M . Prove that there is a smooth diffeomorphism F : M × En → TM .

Solution. Set H(p, v) = ∑n
k=1 v

kXk(p). To check its smoothness, fix p ∈ M , v ∈ En and
use the chart (U × En, ϕ× idEn) of M × En around (p, v), as well as the chart (TU, ψ) of
TM associated to (U, ϕ) around H(p, v). We compute, for all (x, u) ∈ ϕ(U) × En,

ψ ◦H ◦ (ϕ−1 × idEn)(x, u) = ψ(H(ϕ−1(x), u)) = ψ
( n∑

k=1
ukXk(ϕ−1(x))

)
=

(
x, dϕϕ−1(u)

( n∑
k=1

ukXk(ϕ−1(x))
))

=
(
x,

n∑
k=1

ukdϕϕ−1(u)(Xk(ϕ−1(x)))
)
,

which is smooth (since its first coordinate clearly is, and its second one is a combination of
smooth coordinates, since X1, . . . , Xn are smooth, with coordinates given by the smooth
projections u 7→ uk). Set A(x, u) the n×nmatrix of columns given by dϕϕ−1(u)(Xk(ϕ−1(x)))
for 1 ≤ k ≤ n. By the hypothesis on X1, . . . , Xn, this matrix is always invertible. And
since matrix inversion is a smooth map of GLn(R), the local inverse of H on ϕ(U) × En

is smooth. Finally, since H is globally a bijection, it is indeed a diffeomorphism.

3. Let M be a smooth manifold. Let p ∈ M and let vp ∈ TpM . Prove that there is a
smooth vector field X ∈ X(M) such that Xp = vp.

Solution. Let (U, ϕ) be a chart centered at p. Let vp = ∑n
k=1 c

k ∂
∂xk

∣∣∣
p

and let Y ∈ X(U) be
the constant vector field Y = ∑n

k=1 c
k ∂

∂xk . Let η ∈ F(M) be a smooth bump at p such
that its support is contained in U . Then Z = η|UY |U ∈ X(U) and Zp = vp. Let X be the
vector field defined by

X(q) =
{
Z(q) if q ∈ U , and
0 otherwise.

If q ∈ M − U , then there is an open neighbourhood V ∋ q such that X|V = 0. Thus X is
smooth.



4. Let M be a smooth n-manifold. Prove that X(M) is a real vector space and an F(M)-
module.

Solution. Let p ∈ M . Take (U, ϕ) a chart containing p and (TU, ψ) the associated map
of TM . We recall the definition

ψ : (q, v) 7→ (ϕ(q), dϕq(v)) ∈ ϕ(U) × En ⊂ E2n,

where the derivation dϕq(v) is identified with a vector in En by the bijection v′ 7→ ∂v′|ϕ(q).
Let X, Y ∈ X(M) and α ∈ R. Then, we compute, for all u ∈ ϕ(U),

ψ ◦ (αX) ◦ ϕ−1(u) = ψ(αXϕ−1(u)) = (u, dϕϕ−1(u)(αXϕ−1(u))) = (u, αdϕϕ−1(u)(αXϕ−1(u)),
and ψ ◦ (X + Y ) ◦ ϕ−1(u) = (u, dϕϕ−1(u)(Xϕ−1(u) + dϕϕ−1(u)(Yϕ−1(u)),

because of the linearity of dϕϕ−1(u). These two formulae give smooth maps since they come
from linear combinations of the coordinates of

ψ ◦X ◦ ϕ−1(u) = (u, dϕϕ−1(u)(Xϕ−1(u))

and
ψ ◦ Y ◦ ϕ−1(u) = (u, dϕϕ−1(u)(Yϕ−1(u))

(which are smooth by definition of vector fields). This proves that XM is a real vector
space.

For all f ∈ F(M) (= C∞(M)), we define fX : M → TM by the formula, for all p ∈ M ,
(fX)(p) = f(p)Xp ∈ TpM . With this definition, all the axioms of an F(M)-module are
verified for the space X(M). It only remains to show that (f,X) 7→ fX is well defined
from X(M) to X(M). Fix f ∈ F(M). In other words, we want to show that fX is smooth.
Take the charts (U, ϕ) and (TU, ψ) defined above. Then we compute

ψ ◦ (fX) ◦ ϕ−1(u) = ψ(f(ϕ−1(u))Xϕ−1(u)) = (u, dϕϕ−1(u)(f(ϕ−1(u))Xϕ−1(u)))
= (u, f(ϕ−1(u)) dϕϕ−1(u)(Xϕ−1(u))),

since dϕϕ−1(u) is linear. This is the formula of a smooth map since X and f are smooth.

5. (1) Let v be a derivation of an algebra A. Prove that v(1) = 0.
(2) Let v1 and v2 be derivations of an algebra A. Prove that v1v2 − v2v1 is a derivation.

Solution. (1) v(1) = v(1 · 1) = 1v(1) + v(1)1 = 2v(1) implies v(1) = 0.
(2) Let f ∈ A. Then

(v1v2 − v2v1)(ab) = v1v2(ab) − v2v1(ab) = v1(v2(a)b+ av2(b)) − v2(v1(a)b+ av1(b)
= (v1v2(a)b+ v2(a)v1(b) + v1(a)v2(b) + av1v2(b))

− (v2v1(a)b+ v1(a)v2(b) + v2(a)v1(b) + av2v1(b)
= (v1v2(a)b+ av1v2(b)) − (v2v1(a)b+ av2v1(b))
= (v1v2 − v2v1)(a)b+ a(v1v2 − v2v1)(b) .


