Observe/recall that uncountable union of zero measurable sets is not necessarily zero measurable, cf. $m\left(\cup_{x \in(0,1)}\{x\}\right)=1$. Therefore the restriction on the countable set of cubes was necessary above.

Example 4.9. $w(x)=|x|^{-\alpha}, 0 \leq \alpha<n, x \in \mathbf{R}^{n}$, belongs to A_{1}. Indeed, let $x \in \mathbf{R}^{n} \backslash\{0\}, x \in Q$. Then by choosing a radius $r=l(Q) \sqrt{n}$, we see that

$$
Q \subset B(x, r)
$$

We calculate

$$
\begin{aligned}
& \frac{1}{m(Q)} \int_{Q \ni x} w(y) \mathrm{d} y \leq \frac{C}{B(x, r)} \int_{B(x, r)} w(y) \mathrm{d} y \\
& z=\frac{y}{|x|}, y=z|x|, \mathrm{d} y=|x|^{n} \mathrm{~d} z \quad \frac{C}{r^{n}} \int_{B\left(\frac{x}{|x|}, \frac{r}{x \mid}\right)}| | x|z|^{-\alpha}|x|^{n} \mathrm{~d} z \\
&=\frac{C|x|^{-\alpha}}{\left(\frac{r}{|x|}\right)^{n}} \int_{B\left(\frac{x}{|x|}, \frac{r}{|x|}\right)}|z|^{-\alpha} \mathrm{d} z \\
& \leq C w(x) \underbrace{M w\left(\frac{x}{|x|}\right)}_{<\infty}
\end{aligned}
$$

Thus by taking a supremum over Q such that $x \in Q$, we see that

$$
M w(x) \leq C w(x)
$$

so that by Lemma 4.8, $w \in A_{1}$.
Next we derive a necessary condition for weak (p, p) estimate to hold.
Lemma 4.4 gives us the estimate

$$
\mu(Q)\left(\frac{1}{m(Q)} \int_{Q}|f(x)| \mathrm{d} x\right)^{p} \leq C \int_{Q}|f(x)|^{p} \mathrm{~d} \mu
$$

We choose $f(x)=w^{1-p^{\prime}}(x)$, where $1 / p^{\prime}+1 / p=1$ i.e. $p^{\prime}=p /(p-1)$. Recalling that $\mu(Q)=\int_{Q} w(x) \mathrm{d} x$, we get

$$
\begin{aligned}
\int_{Q} w(x) \mathrm{d} x\left(\frac{1}{m(Q)} \int_{Q} w^{1-p^{\prime}}(x) \mathrm{d} x\right)^{p} & \leq C \int_{Q} w^{\left(1-p^{\prime}\right) p}(x) w(x) \mathrm{d} x \\
& =C \int_{Q} w(x)^{\left(1-p^{\prime}\right) p+1} \mathrm{~d} x
\end{aligned}
$$

A short calculation $\left(\left(1-p^{\prime}\right) p+1=(1-p /(p-1)) p+1=((p-1-\right.$ p) $\left./(p-1)) p+1=-p /(p-1)+1=1-p^{\prime}\right)$ shows that

$$
\left(1-p^{\prime}\right) p+1=1-p^{\prime}
$$

so that if we divide by the integral on the right hand side the above inequality, we get

$$
\begin{equation*}
\frac{1}{m(Q)} \int_{Q} w(x) \mathrm{d} x\left(\frac{1}{m(Q)} \int_{Q} w^{1-p^{\prime}}(x) \mathrm{d} x\right)^{p-1} \leq C \tag{4.10}
\end{equation*}
$$

or

$$
\frac{1}{m(Q)} \int_{Q} w(x) \mathrm{d} x\left(\frac{1}{m(Q)} \int_{Q} w^{1 /(1-p)}(x) \mathrm{d} x\right)^{p-1} \leq C
$$

This is called the Muckenhoupt A_{p}-condition.
Observe that above, we implicitly use $w^{1-p^{\prime}} \in L_{\text {loc }}^{1}\left(\mathbf{R}^{n}\right)$. If this is not the case, we can consider

$$
f=(w+\varepsilon)^{1-p^{\prime}}
$$

derive the above estimate, and let finally $\varepsilon \rightarrow 0$. After this argument, as $w>0$ a.e., (4.10) implies that $w^{1-p^{\prime}} \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$.

Let us collect the above definitions.
Definition 4.11 (Muckenhoupt 1972). Let $w \in L_{\text {loc }}^{1}\left(\mathbf{R}^{n}\right), w>0$ a.e. Then w satisfies A_{1}-condition if there exists $C>0$ s.t.

$$
\int_{Q} w(x) \mathrm{d} x \leq C \underset{y \in Q}{\operatorname{essinf}} w(y) .
$$

for all cubes $Q \subset \mathbf{R}^{n}$. For $1<p<\infty, w$ satisfies A_{p}-condition if there exists $C>0$ s.t.

$$
\frac{1}{m(Q)} \int_{Q} w(x) \mathrm{d} x\left(\frac{1}{m(Q)} \int_{Q} w^{1-p^{\prime}}(x) \mathrm{d} x\right)^{p-1} \leq C
$$

for all cubes $Q \subset \mathbf{R}^{n}$.
Remark 4.12. (i) $1-p^{\prime}=1 /(1-p)<0, w^{1-p^{\prime}} \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$
(ii) Let $p=2$. Then

$$
\frac{1}{m(Q)} \int_{Q} w(x) \mathrm{d} x \frac{1}{m(Q)} \int_{Q} \frac{1}{w(x)} \mathrm{d} x \leq C
$$

(iii)

$$
\begin{aligned}
m(Q) & =\int_{Q} w^{1 / p} w^{-1 / p} \mathrm{~d} x \\
& \stackrel{\text { Hölder }}{\leq}\left(\int_{Q} w^{p(1 / p)} \mathrm{d} x\right)^{1 / p}\left(\int_{Q} w^{p^{\prime}(-1 / p)} \mathrm{d} x\right)^{1 / p^{\prime}} \\
& =\left(\int_{Q} w \mathrm{~d} x\right)^{1 / p}\left(\int_{Q} w^{1-p^{\prime}} \mathrm{d} x\right)^{1 / p^{\prime}}
\end{aligned}
$$

Dividing by $m(Q)=m(Q)^{1 / p} m(Q)^{1 / p^{\prime}}$ and then taking power p on both sides we get

$$
\begin{equation*}
\frac{1}{m(Q)} \int_{Q} w \mathrm{~d} x\left(\frac{1}{m(Q)} \int_{Q} w^{1-p^{\prime}} \mathrm{d} x\right)^{p-1} \geq 1 \tag{4.13}
\end{equation*}
$$

so that

$$
\left(\frac{1}{m(Q)} \int_{Q} w^{1-p^{\prime}} \mathrm{d} x\right)^{1-p} \leq \frac{1}{m(Q)} \int_{Q} w(x) \mathrm{d} x
$$

This was (a consequence of) Hölder's inequality. On the other hand, by looking at the A_{p} condition, we see that the inequality is reversed. Thus A_{p} condition is a reverse Hölder's inequality.

Theorem 4.14. $A_{p} \subset A_{q}, 1 \leq p<q$.
Proof. Case $1<p<\infty$. We recall that $q^{\prime}-1=1 /(q-1)$.

$$
\left.\begin{array}{l}
\left(\frac{1}{m(Q)}\right.
\end{array} \int_{Q}\left(\frac{1}{w}\right)^{\frac{1}{q-1}} \mathrm{~d} x\right)^{q-1} .
$$

which proves the claim in this case.
Case $p=1$.

$$
\begin{aligned}
\left(\frac{1}{m(Q)} \int_{Q}\left(\frac{1}{w}\right)^{1 /(q-1)} \mathrm{d} x\right)^{q-1} & \leq \underset{Q}{\operatorname{ess} \sup } \frac{1}{w} \\
& =\frac{1}{\operatorname{essinf}_{Q} w} \stackrel{w \in A_{1}}{\leq} \frac{C}{f_{Q} w \mathrm{~d} x}
\end{aligned}
$$

Theorem 4.15. Let $1 \leq p<\infty$, and $w \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right), w<0$ a.e. Then $w \in A_{p}$ if and only if

$$
\left(\frac{1}{m(Q)} \int_{Q}|f(x)| \mathrm{d} x\right)^{p} \leq \frac{C}{\mu(Q)} \int_{Q}|f(x)|^{p} \mathrm{~d} \mu
$$

for every $f \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right)$ and $Q \subset \mathbf{R}^{n}$.
Proof. Case $1<p<\infty$.
$" \Leftarrow "$ was already proven before (4.10).
$" \Rightarrow$ " First we use Hölder's inequality

$$
\begin{aligned}
\frac{1}{m(Q)} \int_{Q}|f(x)| \mathrm{d} x & =\frac{1}{m(Q)} \int_{Q}|f(x)| w(x)^{1 / p}\left(\frac{1}{w(x)}\right)^{1 / p} \mathrm{~d} x \\
& \leq \frac{1}{m(Q)}\left(\int_{Q}|f(x)|^{p} w(x) \mathrm{d} x\right)^{1 / p}\left(\int_{Q}\left(\frac{1}{w(x)}\right)^{p^{\prime} / p} \mathrm{~d} x\right)^{1 / p^{\prime}}
\end{aligned}
$$

for $1 / p^{\prime}+1 / p=1$. By taking the power p on both sides, using the definition of μ, arranging terms, using $p / p^{\prime}=p-1,-p^{\prime} / p=1 /(1-p)$, and A_{p} condition, we get

$$
\begin{aligned}
\mu(Q)\left(\frac{1}{m(Q)} \int_{Q}|f(x)| \mathrm{d} x\right)^{p} \leq & \frac{1}{m(Q)^{p}}\left(\int_{Q}|f(x)|^{p} w(x) \mathrm{d} x\right) \\
& \cdot \underbrace{\int_{Q} w(x) \mathrm{d} x\left(\int_{Q} w(x)^{1 /(1-p)} \mathrm{d} x\right)^{p-1}}_{w \in A_{p}} \\
\leq & C \int_{Q}|f(x)|^{p} \mathrm{~d} \mu .
\end{aligned}
$$

Case $p=1$.
$" \Leftarrow "$ was already proven before (4.7).
$" \Rightarrow "$ Let $w \in A_{1}$ i.e.

$$
\frac{1}{m(Q)} \int_{Q} w(x) \mathrm{d} x \leq C \underset{x \in Q}{\operatorname{ess} \inf } w(x) .
$$

Then

$$
\begin{aligned}
\mu(Q) \frac{1}{m(Q)} \int_{Q}|f(x)| \mathrm{d} x & \leq \frac{1}{m(Q)} \int_{Q}|f(x)| \mu(Q) \mathrm{d} x \\
& \begin{array}{l}
w \in A_{1} \\
\leq
\end{array}|f(x)| \underset{x \in Q}{\operatorname{ess} \inf } w(x) \mathrm{d} x \\
& \leq C \int_{Q}|f(x)| w(x) \mathrm{d} x \\
& \leq C \int_{Q}|f(x)| \mathrm{d} \mu
\end{aligned}
$$

We aim at proving that the weighted weak/strong type estimate and A_{p} condition are equivalent. To establish this, we next study CalderónZygmund decomposition. It is an important tool both in harmonic analysis and in the theory of PDEs.
4.1. Calderón-Zygmund decomposition. Next we introduce dyadic cubes, which are generated using powers of 2 .
Definition 4.16 (Dyadic cubes). In this section we integrate with respect to the measure m only, and thus we recall the notation $f_{Q}=$ $\frac{1}{m(Q)} \int_{Q}$.

A dyadic interval on \mathbf{R} is

$$
\left[m 2^{-k},(m+1) 2^{-k}\right)
$$

