To establish this, we calculate

$$
\begin{aligned}
|x-z|^{2} & \leq(|x-y|+|y-z|)^{2} \\
& \stackrel{\text { convexity }}{ } \quad 2\left(|x-y|^{2}+|y-z|^{2}\right) \\
& \leq 2\left((\alpha t)^{2}+|y-z|^{2}\right)
\end{aligned}
$$

Thus

$$
\begin{array}{r}
|x-z|^{2}+t^{2} \leq\left(2 \alpha^{2}+1\right) t^{2}+2|y-z|^{2} \\
\leq \max \left(2,2 \alpha^{2}+1\right)\left(|y-z|^{2}+t^{2}\right)
\end{array}
$$

so that

$$
\frac{|x-z|^{2}+t^{2}}{\max \left(2,2 \alpha^{2}+1\right)} \leq\left(|y-z|^{2}+t^{2}\right)
$$

We apply this and deduce

$$
\begin{aligned}
P_{t}(y-z) & =C(n) \frac{t}{\left(|y-z|^{2}+t^{2}\right)^{(n+1) / 2}} \\
& \leq C(n) \max \left(2,2 \alpha^{2}+1\right)^{(n+1) / 2} \frac{t}{\left(|x-z|^{2}+t^{2}\right)^{(n+1) / 2}} \\
& =C(n, \alpha) P_{t}(x-z) .
\end{aligned}
$$

Utilizing this result we attack the original question and estimate

$$
\begin{aligned}
&|u(y, t)| \leq \int_{\mathbf{R}^{n}}|f(z)| P_{t}(y-z) \mathrm{d} z \\
& \leq C(\alpha, n) \int_{\mathbf{R}^{n}}|f(z)| P_{t}(x-z) \mathrm{d} z \\
&=C(\alpha, n)\left(|f| * P_{t}\right)(x) \\
& \leq C(\alpha, n) \sup _{t>0}\left(|f| * P_{t}\right)(x) \\
& \stackrel{\text { Theorem }}{\leq} 3.10 \\
& \leq
\end{aligned}(\alpha, n) M f(x) .
$$

This concludes the proof giving

$$
\sup _{(x, t) \in \Gamma_{\alpha}(x)}|u(y, t)| \leq c M f(x) .
$$

Corollary 3.21. If $f \in L^{p}\left(\mathbf{R}^{n}\right), 1 \leq p \leq \infty$, then

$$
\left(f * P_{t}\right)(y) \rightarrow f(x)
$$

nontangentially for almost every $x \in \mathbf{R}^{n}$.
Proof. Replace in (3.16) the use of Theorem 3.10 by the above estimate.

Remark 3.22. By considering a discontinuous $f \in L^{p}$, we see that $\left(f * P_{t_{n}}\right)\left(y_{n}\right)$ does not converge to $f(x)$ for every sequence $\left(y_{n}, t_{n}\right) \rightarrow$ $(x, 0)$. The cone is not the whole of the half space i.e. α must be finite!

Nevertheless, if $f \in C\left(\mathbf{R}^{n}\right) \cap L^{\infty}\left(\mathbf{R}^{n}\right)$, it follows that

$$
u(y, t)=\left(f * P_{t}\right)(y) \rightarrow f(x)
$$

when $(y, t) \rightarrow(x, 0)$ in \mathbf{R}_{+}^{n+1} without further restrictions. This is a consequence of Remark 3.9.

4. Muckenhoupt weights

A weight is a function $w \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$, such that $w \geq 0$ a.e. We have already seen that strong (p, p) property for a Hardy-Littlewood maximal function is an important tool in many applications. Next we study the question in the weighted case:

Let $1<p<\infty$. Which weights $w \in L_{\text {loc }}^{1}\left(\mathbf{R}^{n}\right)$ satisfy

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}(M f(x))^{p} w(x) \mathrm{d} x \leq C \int_{\mathbf{R}^{n}}|f(x)|^{p} w(x) \mathrm{d} x ? \tag{4.1}
\end{equation*}
$$

for every $f \in L_{\text {loc }}^{1}\left(\mathbf{R}^{n}\right)$. As before

$$
M f(x)=\sup _{Q \ni x} \frac{1}{m(Q)} \int_{Q}|f(y)| \mathrm{d} y
$$

is a Hardy-Littlewood maximal function.
This estimate implies the weak (p, p) estimate. Indeed,

$$
\begin{align*}
\int_{\left\{x \in \mathbf{R}^{n}: M f(x)>\lambda\right\}} w(x) \mathrm{d} x & \leq \int_{\left\{x \in \mathbf{R}^{n}: M f(x)>\lambda\right\}}\left(\frac{M f(x)}{\lambda}\right)^{p} w(x) \mathrm{d} x \\
& \leq \frac{1}{\lambda^{p}} \int_{\mathbf{R}^{n}}(M f(x))^{p} w(x) \mathrm{d} x \tag{4.2}\\
& \stackrel{(4.1)}{\leq} \frac{C}{\lambda^{p}} \int_{\mathbf{R}^{n}}|f(x)|^{p} w(x) \mathrm{d} x .
\end{align*}
$$

If we define a measure

$$
\mu(E):=\int_{E} w(x) \mathrm{d} x
$$

then the weighted strong (p, p) estimate (4.1) can be written as

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}(M f(x))^{p} \mathrm{~d} \mu \leq C \int_{\mathbf{R}^{n}}|f(x)|^{p} \mathrm{~d} \mu \tag{4.3}
\end{equation*}
$$

First, we derive some consequences for the weighted weak (p, p) estimate. Thus we also obtain some necessary conditions for the question: Which weights $w \in L_{\text {loc }}^{1}\left(\mathbf{R}^{n}\right)$ satisfy weak (p, p) type estimate?

Lemma 4.4. Suppose that the weighted weak (p, p) estimate (4.2) holds for some $p, 1 \leq p<\infty$. Then

$$
\left(\frac{1}{m(Q)} \int_{Q}|f(x)| \mathrm{d} x\right)^{p} \leq \frac{C}{\mu(Q)} \int_{Q}|f(x)|^{p} \mathrm{~d} \mu
$$

for all cubes $Q \subset \mathbf{R}^{n}$ and $f \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right)$.
Proof. Fix a cube. If $\int_{Q}|f(x)| \mathrm{d} x=0$ or $\int_{Q}|f(x)| \mathrm{d} \mu(x)=\infty$ then the result immediately follows. Thus we may assume

$$
\frac{1}{m(Q)} \int_{Q}|f(x)| \mathrm{d} x>\lambda>0
$$

which implies according to the definition of the maximal function that

$$
M f(x)>\lambda>0
$$

for every $x \in Q$. In other words,

$$
Q \subset\left\{x \in \mathbf{R}^{n}: M f(x)>\lambda\right\}
$$

so that

$$
\begin{aligned}
\mu(Q) & \leq \mu\left(\left\{x \in \mathbf{R}^{n}: M f(x)>\lambda\right\}\right) \\
& \stackrel{(4.2)}{\leq} \frac{C}{\lambda^{p}} \int_{\mathbf{R}^{n}}|f(x)|^{p} \mathrm{~d} \mu
\end{aligned}
$$

If we replace f by $f \chi_{Q}$ then this gives

$$
\mu(Q) \leq \frac{C}{\lambda^{p}} \int_{Q}|f(x)|^{p} \mathrm{~d} \mu,
$$

and by recalling the definition of λ we get the claim.
Remark 4.5. By analyzing the previous result, we see some of the properties of weights we are studying. Let us choose $f=\chi_{E}, E \subset Q$ a measurable set, in the previous lemma. Then the lemma gives

$$
\begin{equation*}
\mu(Q)\left(\frac{m(E)}{m(Q)}\right)^{p} \leq C \mu(E) \tag{4.6}
\end{equation*}
$$

This implies
(i) Either $w=0$ a.e. or $w>0$ a.e. in Q

Indeed, otherwise it would hold for

$$
E=\{x \in Q: w(x)=0\}
$$

that

$$
m(E), m(Q \backslash E)>0
$$

(if " $w=0$ a.e. in Q " is false, then $m(Q \backslash E)>0$ and similarly for the other case) and further by $m(Q \backslash E)>0$ it follows that

$$
\mu(Q)>0 .
$$

Then the right hand side would be zero (clearly $\mu(E)=\int_{E} w(x) \mathrm{d} x=$ $\left.\int_{\{w=0\}} w \mathrm{~d} x=0\right)$ whereas the left hand side would be positive. A contradiction.
(ii) By choosing $Q=Q(x, 2 l)$ and $E=Q(x, l)$, we see that

$$
\mu(Q(x, 2 l)) \leq C \mu(Q(x, l))
$$

because $m(Q(x, l)) / m(Q(x, 2 l))=2^{n}$. Measures with this property are called doubling measures.
(iii) Either $w=\infty$ a.e. or $w \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$.

If there would be a set

$$
E \subset Q \text { such that } w(x)<\infty \text { and } m(E)>0,
$$

by (4.6) it follows that $\mu(Q)=\int_{Q} w(x) \mathrm{d} x$ is finite, and thus

$$
w \in L^{1}(Q)
$$

and by choosing larger cubes, we get $w \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$. Thus the result follows.

Observe that $w \in L_{\text {loc }}^{1}\left(\mathbf{R}^{n}\right)$ was one of our assumptions when defining weights, but it would be possible to take the weak type estimate as a starting point and then derive this as a result as shown above.

Next we derive a necessary condition for weak $(1,1)$ estimate to hold.
Case $p=1$: We shall use notation

$$
\underset{x \in Q}{\operatorname{ess} \inf } w(x):=\sup \{m \in \mathbf{R}: w(x) \geq m \text { a.e. } x \in Q\}
$$

and define a set

$$
E_{\varepsilon}=\{x \in Q: w(x)<\underset{y \in Q}{\operatorname{ess} \inf } w(y)+\varepsilon\}
$$

for some $\varepsilon>0$. By definition of ess inf, we have $m\left(E_{\varepsilon}\right)>0$.
Now by (4.6),

$$
\begin{aligned}
\frac{\mu(Q)}{m(Q)} & \leq C \frac{\mu\left(E_{\varepsilon}\right)}{m\left(E_{\varepsilon}\right)} \\
& \stackrel{\operatorname{def} \text { of } \mu}{=} \frac{C}{m\left(E_{\varepsilon}\right)} \int_{E_{\varepsilon}} w(x) \mathrm{d} x \leq C(\underset{y \in Q}{\operatorname{ess} \inf } w(y)+\varepsilon) .
\end{aligned}
$$

By passing to a zero with ε, and recalling that $\mu(Q)=\int_{Q} w(x) \mathrm{d} x$, we get Muckenhoupt A_{1}-condition

$$
\begin{equation*}
\frac{1}{m(Q)} \int_{Q} w(x) \mathrm{d} x \leq C \underset{y \in Q}{\operatorname{ess} \inf } w(y) . \tag{4.7}
\end{equation*}
$$

If this condition holds we denote $w \in A_{1}$.

Lemma 4.8. A weight w satisfies Muckenhoupt A_{1}-condition if and only if

$$
M w(x) \leq C w(x)
$$

for almost every $x \in \mathbf{R}^{n}$.
On the other hand from the Lebesgue density theorem, we get $w(x) \leq$ $M w(x)$ for almost every $x \in \mathbf{R}^{n}$ so that

$$
w(x) \leq M w(x) \leq C w(x)
$$

Proof. " \Leftarrow " Suppose that $M w(x) \leq C w(x)$ for almost every $x \in \mathbf{R}^{n}$. Then

$$
\frac{1}{m(Q)} \int_{Q} w(y) \mathrm{d} y \leq C w(x) \text { a.e. } x \in Q
$$

and thus

$$
\frac{1}{m(Q)} \int_{Q} w(y) \mathrm{d} y \leq C \underset{x \in Q}{\operatorname{ess} \inf } w(x)
$$

$" \Rightarrow "$ Suppose that $w \in A_{1}$ so that $\frac{1}{m(Q)} \int_{Q} w(y) \mathrm{d} y \leq C \operatorname{ess} \inf _{x \in Q} w(x)$. We shall show that

$$
m\left(\left\{x \in \mathbf{R}^{n}: M w(x)>C w(x)\right\}\right)=0 .
$$

Choose a point $x \in\left\{x \in \mathbf{R}^{n}: M w(x)>C w(x)\right\}$ so that $M w(x)>$ $C w(x)$. Then there exists a cube $Q \ni x$ such that

$$
\frac{1}{m(Q)} \int_{Q} w(y) \mathrm{d} y>C w(x)
$$

Without loss of generality we may choose this cube so that the corners lie in the rational points. Thus

$$
C w(x)<\frac{1}{m(Q)} \int_{Q} w(y) \mathrm{d} y \stackrel{A_{1}}{\leq} C \underset{y \in Q}{\operatorname{essinf}} w(y)
$$

so that

$$
w(x)<\underset{y \in Q}{\operatorname{ess} \inf } w(y)
$$

For this cube, we denote by

$$
\left.E_{Q}=\{x \in Q: w(x)<\underset{y \in Q}{\operatorname{essinf}} w(y)\}\right)
$$

which is of measure zero. Now we repeat the process for each $x \in\{x \in$ $\left.\mathbf{R}^{n}: M w(x)>C w(x)\right\}$ and as we restricted ourselves to a countable family of cubes with corners at rational points, we have

$$
m\left(\bigcup E_{Q}\right)=0
$$

because countable union of zero measurable sets has a measure zero.

