To establish this, we calculate

$$\begin{aligned} |x - z|^2 &\leq (|x - y| + |y - z|)^2 \\ &\leq 2(|x - y|^2 + |y - z|^2) \\ &\leq 2((\alpha t)^2 + |y - z|^2). \end{aligned}$$

Thus

$$|x - z|^{2} + t^{2} \le (2\alpha^{2} + 1)t^{2} + 2|y - z|^{2}$$
$$\le \max(2, 2\alpha^{2} + 1)(|y - z|^{2} + t^{2})$$

so that

$$\frac{|x-z|^2 + t^2}{\max(2, 2\alpha^2 + 1)} \le (|y-z|^2 + t^2).$$

We apply this and deduce

$$P_t(y-z) = C(n) \frac{t}{(|y-z|^2 + t^2)^{(n+1)/2}}$$

$$\leq C(n) \max(2, 2\alpha^2 + 1)^{(n+1)/2} \frac{t}{(|x-z|^2 + t^2)^{(n+1)/2}}$$

$$= C(n, \alpha) P_t(x-z).$$

Utilizing this result we attack the original question and estimate

This concludes the proof giving

$$\sup_{(x,t)\in\Gamma_{\alpha}(x)}|u(y,t)| \le cMf(x).$$

Corollary 3.21. If $f \in L^p(\mathbf{R}^n)$, $1 \le p \le \infty$, then $(f * P_t)(y) \to f(x)$

nontangentially for almost every $x \in \mathbf{R}^n$.

Proof. Replace in (3.16) the use of Theorem 3.10 by the above estimate. \Box

Remark 3.22. By considering a discontinuous $f \in L^p$, we see that $(f * P_{t_n})(y_n)$ does not converge to f(x) for every sequence $(y_n, t_n) \rightarrow (x, 0)$. The cone is not the whole of the half space i.e. α must be finite! Nevertheless, if $f \in C(\mathbf{R}^n) \cap L^{\infty}(\mathbf{R}^n)$, it follows that

$$u(y,t) = (f * P_t)(y) \to f(x)$$

when $(y,t) \to (x,0)$ in \mathbb{R}^{n+1}_+ without further restrictions. This is a consequence of Remark 3.9.

4. Muckenhoupt weights

A weight is a function $w \in L^1_{loc}(\mathbf{R}^n)$, such that $w \ge 0$ a.e. We have already seen that strong (p, p) property for a Hardy-Littlewood maximal function is an important tool in many applications. Next we study the question in the weighted case:

Let $1 . Which weights <math>w \in L^1_{loc}(\mathbf{R}^n)$ satisfy $\int_{\mathbf{R}^n} (Mf(x))^p w(x) \, \mathrm{d}x \le C \int_{\mathbf{R}^n} |f(x)|^p \, w(x) \, \mathrm{d}x?$

for every $f \in L^1_{\text{loc}}(\mathbf{R}^n)$. As before

$$Mf(x) = \sup_{Q \ni x} \frac{1}{m(Q)} \int_{Q} |f(y)| \, \mathrm{d}y$$

is a Hardy-Littlewood maximal function.

This estimate implies the weak (p, p) estimate. Indeed,

$$\int_{\{x \in \mathbf{R}^{n} : Mf(x) > \lambda\}} w(x) \, \mathrm{d}x \leq \int_{\{x \in \mathbf{R}^{n} : Mf(x) > \lambda\}} \left(\frac{Mf(x)}{\lambda}\right)^{p} w(x) \, \mathrm{d}x \\
\leq \frac{1}{\lambda^{p}} \int_{\mathbf{R}^{n}} (Mf(x))^{p} w(x) \, \mathrm{d}x \\
\stackrel{(4.1)}{\leq} \frac{C}{\lambda^{p}} \int_{\mathbf{R}^{n}} |f(x)|^{p} w(x) \, \mathrm{d}x.$$
(4.2)

If we define a measure

$$\mu(E) := \int_E w(x) \, \mathrm{d}x$$

then the weighted strong (p, p) estimate (4.1) can be written as

$$\int_{\mathbf{R}^n} (Mf(x))^p \,\mathrm{d}\mu \le C \int_{\mathbf{R}^n} |f(x)|^p \,\mathrm{d}\mu \tag{4.3}$$

First, we derive some consequences for the weighted **weak** (p, p) estimate. Thus we also obtain some necessary conditions for the question: Which weights $w \in L^1_{loc}(\mathbf{R}^n)$ satisfy weak (p, p) type estimate?

(4.1)

Lemma 4.4. Suppose that the weighted weak (p, p) estimate (4.2) holds for some $p, 1 \le p < \infty$. Then

$$\left(\frac{1}{m(Q)}\int_{Q}|f(x)|\,\mathrm{d}x\right)^{p} \leq \frac{C}{\mu(Q)}\int_{Q}|f(x)|^{p}\,\mathrm{d}\mu$$

for all cubes $Q \subset \mathbf{R}^n$ and $f \in L^1_{loc}(\mathbf{R}^n)$.

Proof. Fix a cube. If $\int_Q |f(x)| dx = 0$ or $\int_Q |f(x)| d\mu(x) = \infty$ then the result immediately follows. Thus we may assume

$$\frac{1}{m(Q)} \int_{Q} |f(x)| \, \mathrm{d}x > \lambda > 0$$

which implies according to the definition of the maximal function that

$$Mf(x) > \lambda > 0$$

for every $x \in Q$. In other words,

$$Q \subset \{x \in \mathbf{R}^n \ : \ Mf(x) > \lambda\}$$

so that

$$\mu(Q) \le \mu(\{x \in \mathbf{R}^n : Mf(x) > \lambda\})$$

$$\stackrel{(4.2)}{\le} \frac{C}{\lambda^p} \int_{\mathbf{R}^n} |f(x)|^p \, \mathrm{d}\mu.$$

If we replace f by $f\chi_Q$ then this gives

$$\mu(Q) \le \frac{C}{\lambda^p} \int_Q |f(x)|^p \, \mathrm{d}\mu,$$

and by recalling the definition of λ we get the claim.

Remark 4.5. By analyzing the previous result, we see some of the properties of weights we are studying. Let us choose $f = \chi_E, E \subset Q$ a measurable set, in the previous lemma. Then the lemma gives

$$\mu(Q)\left(\frac{m(E)}{m(Q)}\right)^p \le C\mu(E). \tag{4.6}$$

This implies

(i) Either w = 0 a.e. or w > 0 a.e. in Q

Indeed, otherwise it would hold for

$$E = \{ x \in Q : w(x) = 0 \}$$

that

$$m(E), m(Q \setminus E) > 0$$

(if "w = 0 a.e. in Q" is false, then $m(Q \setminus E) > 0$ and similarly for the other case) and further by $m(Q \setminus E) > 0$ it follows that

$$\mu(Q) > 0.$$

30

Then the right hand side would be zero (clearly $\mu(E) = \int_E w(x) dx = \int_{\{w=0\}} w dx = 0$) whereas the left hand side would be positive. A contradiction.

(ii) By choosing Q = Q(x, 2l) and E = Q(x, l), we see that

$$\mu(Q(x,2l)) \le C\mu(Q(x,l)),$$

because $m(Q(x, l))/m(Q(x, 2l)) = 2^n$. Measures with this property are called *doubling measures*.

(iii) Either $w = \infty$ a.e. or $w \in L^1_{\text{loc}}(\mathbf{R}^n)$.

If there would be a set

$$E \subset Q$$
 such that $w(x) < \infty$ and $m(E) > 0$

by (4.6) it follows that $\mu(Q) = \int_Q w(x) \, dx$ is finite, and thus

 $w \in L^1(Q)$

and by choosing larger cubes, we get $w \in L^1_{\text{loc}}(\mathbf{R}^n)$. Thus the result follows.

Observe that $w \in L^1_{loc}(\mathbf{R}^n)$ was one of our assumptions when defining weights, but it would be possible to take the weak type estimate as a starting point and then derive this as a result as shown above.

Next we derive a necessary condition for weak (1, 1) estimate to hold.

Case p = 1: We shall use notation

$$\operatorname{ess\,inf}_{x \in Q} w(x) := \sup\{m \in \mathbf{R} : w(x) \ge m \text{ a.e. } x \in Q\}$$

and define a set

$$E_{\varepsilon} = \{ x \in Q : w(x) < \operatorname{essinf}_{y \in Q} w(y) + \varepsilon \}$$

for some $\varepsilon > 0$. By definition of essinf, we have $m(E_{\varepsilon}) > 0$. Now by (4.6),

$$\frac{\mu(Q)}{m(Q)} \le C \frac{\mu(E_{\varepsilon})}{m(E_{\varepsilon})}$$
$$\stackrel{\text{def of } \mu}{=} \frac{C}{m(E_{\varepsilon})} \int_{E_{\varepsilon}} w(x) \, \mathrm{d}x \le C(\operatorname*{ess inf}_{y \in Q} w(y) + \varepsilon)$$

By passing to a zero with ε , and recalling that $\mu(Q) = \int_Q w(x) dx$, we get *Muckenhoupt A*₁-condition

$$\frac{1}{m(Q)} \int_{Q} w(x) \, \mathrm{d}x \le C \operatorname{ess\,inf}_{y \in Q} w(y). \tag{4.7}$$

If this condition holds we denote $w \in A_1$.

Lemma 4.8. A weight w satisfies Muckenhoupt A_1 -condition if and only if

$$Mw(x) \le Cw(x)$$

for almost every $x \in \mathbf{R}^n$.

On the other hand from the Lebesgue density theorem, we get $w(x) \leq Mw(x)$ for almost every $x \in \mathbf{R}^n$ so that

$$w(x) \le Mw(x) \le Cw(x).$$

Proof. " \Leftarrow " Suppose that $Mw(x) \leq Cw(x)$ for almost every $x \in \mathbf{R}^n$. Then

$$\frac{1}{m(Q)} \int_Q w(y) \, \mathrm{d}y \le C w(x) \text{ a.e. } x \in Q,$$

and thus

$$\frac{1}{m(Q)} \int_Q w(y) \, \mathrm{d}y \le C \operatorname{ess\,inf}_{x \in Q} w(x).$$

"⇒" Suppose that $w \in A_1$ so that $\frac{1}{m(Q)} \int_Q w(y) \, \mathrm{d}y \leq C \operatorname{ess\,inf}_{x \in Q} w(x)$. We shall show that

$$m(\{x \in \mathbf{R}^n : Mw(x) > Cw(x)\}) = 0.$$

Choose a point $x \in \{x \in \mathbb{R}^n : Mw(x) > Cw(x)\}$ so that Mw(x) > Cw(x). Then there exists a cube $Q \ni x$ such that

$$\frac{1}{m(Q)} \int_Q w(y) \,\mathrm{d}y > Cw(x).$$

Without loss of generality we may choose this cube so that the corners lie in the rational points. Thus

$$Cw(x) < \frac{1}{m(Q)} \int_Q w(y) \, \mathrm{d}y \stackrel{A_1}{\leq} C \operatorname{ess\,inf}_{y \in Q} w(y)$$

so that

$$w(x) < \operatorname{ess\,inf}_{y \in Q} w(y).$$

For this cube, we denote by

$$E_Q = \{ x \in Q : w(x) < \text{essinf } w(y) \}$$

which is of measure zero. Now we repeat the process for each $x \in \{x \in \mathbb{R}^n : Mw(x) > Cw(x)\}$ and as we restricted ourselves to a countable family of cubes with corners at rational points, we have

$$m(\bigcup E_Q) = 0$$

because countable union of zero measurable sets has a measure zero. $\hfill\square$

28.9.2010