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Proof. The sketch of the proof: By a density of continuous functions
in Lp, we can choose g ∈ C0(R

n) so that ||f − g||p is small. By adding
and subtracting g, we can estimate

|(f ∗ ϕε)(x)− af(x)| ≤ |ϕε ∗ (f − g)(x)− a(f − g)(x)|
+ |(g ∗ ϕε)(x)− ag(x)| .

(3.13)

Since g ∈ C0(R
n), the second term tends to zero as ε → 0. Thus

we can focus attention on the first term on the right hand side. By
Theorem 3.10, we can estimate

|(f ∗ ϕε)(x)− af(x)| ≤ |ϕε ∗ (f − g)(x)− a(f − g)(x)|
≤ M(f − g)(x) + a |(f − g)(x)| .

Finally, we can show by using the weak type estimates that the quan-
tities on the right hand side get small almost everywhere.

Details: Case 1 ≤ p < ∞:
As sketched above the weak type estimates play a key role. Theorem
Hardy-Littlewood I (Theorem 2.12) implies

m({x ∈ Rn : Mf(x) > λ}) ≤ C

λ
||f ||1 (3.14)

for λ > 0, and Hardy-Littlewood II (Theorem 2.19) imply

m({x ∈ Rn : Mf(x) > λ})
Chebyshev

≤ C

λp
||Mf ||pp

H-L II

≤ C ||f ||pp . (3.15)

As g is continuous at x ∈ Rn it follows that for every η > 0 there
exists δ > 0 such that

|g(x− y)− g(x)| < η whenever |y| < δ.

Thus

|(g ∗ ϕε)(x)− ag(x)| ≤
∫
Rn

|g(x− y)− g(x)|ϕε(y) dy

≤ η

∫
B(0,δ)

ϕε(y) dy︸ ︷︷ ︸
≤||ϕ||1

+2 ||g||∞
∫
Rn\B(0,δ)

ϕε(x) dy︸ ︷︷ ︸
→0 as ε→0 by Lemma 3.6

.

Since η was arbitrary, it follows that

lim
ε→0

|(g ∗ ϕε)(x)− ag(x)| = 0

for all x ∈ Rn.
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This in mind we can estimate

lim sup
ε→0

|(f ∗ ϕε)(x)− af(x)|

≤ lim sup
ε→0

|((f − g) ∗ ϕε)(x)− a(f − g)(x)|

+ lim sup
ε→0

|(g ∗ ϕε)(x)− ag(x)|︸ ︷︷ ︸
=0

≤ sup
ε>0

|((f − g) ∗ ϕε)(x)|+ a |(f − g)(x)|

Theorem 3.10

≤ CM(f − g)(x) + a |(f − g)(x)| .

(3.16)

Next we define

Ai = {x ∈ Rn : lim sup
ε→0

|(f ∗ ϕε)(x)− af(x)| > 1

i
}.

By the previous estimate,

Ai ⊂ {x ∈ Rn : CM(f − g)(x) >
1

2i
} ∪ {x ∈ Rn : a |f(x)− g(x)| > 1

2i
},

for i = 1, 2, . . .. Let η > 0, and let g ∈ C0(R
n) be such that (density)

||f − g||p ≤ η.

This and the previous inclusion imply

m(Ai) ≤ m({x ∈ Rn : CM(f − g)(x) >
1

2i
}) +m({x ∈ Rn : a |f(x)− g(x)| > 1

2i
})

(3.14),(3.15)

≤ Cip ||f − g||pp + Cip ||f − g||pp
≤ Cip ||f − g||pp ≤ Cipηp

for every η, i = 1, 2, . . .. Thus

m(Ai) = 0

and

m(∪∞
i=1Ai) ≤

∞∑
i=1

m(Ai) = 0.

This gives us

m({x ∈ Rn : lim sup
ε→0

|(f ∗ ϕε)(x)− af(x)| > 0}) = 0

which proofs the claim

lim
ε→0

|(f ∗ ϕε)(x)− af(x)| = 0 a.e. x ∈ Rn.

Case p = ∞: Now f ∈ L∞(Rn). We show that

lim
ε→0

(f ∗ ϕε)(x) = af(x)
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for almost every x ∈ B(0, r), r > 0. Let

f1(x) = fχB(0,r+1)(x) =

{
f(x), x ∈ B(0, r + 1)

0, otherwise,

and f2 = f − f1. Now f1 ∈ L1(Rn) and by the previous case

lim
ε→0

(f1 ∗ ϕε)(x) = af1(x)

for almost every x ∈ Rn. By utilizing this, we obtain for almost every
x ∈ B(0, r) that

lim
ε→0

(f ∗ ϕε)(x) = lim
ε→0

(f1 ∗ ϕε)(x) + lim
ε→0

(f2 ∗ ϕε)(x)

= af(x) + lim
ε→0

(f2 ∗ ϕε)(x),

and it remains to show that limε→0(f2 ∗ ϕε)(x) = 0 for almost all x ∈
B(0, r). To this end, let x ∈ B(0, r) so that f2(x−y) = 0 for y ∈ B(0, 1)
and calculate

|(f2 ∗ ϕε)(x)| =
∣∣∣∣∫

Rn

f2(x− y)ϕε(y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn\B(0,1)

f2(x− y)ϕε(y) dy

∣∣∣∣
= ||f2||∞

∫
Rn\B(0,1)

ϕε(y) dy → 0

as ε → 0. �

By choosing

ϕ(x) = χB(0,1)(x)/m(B(0, 1)),

so that

ϕε(x) = χB(0,ε)/(ε
nm(B(0, 1))) = χB(0,ε)/m(B(0, ε)),

we immediately obtain

Theorem 3.17 (Lebesgue density theorem). If f ∈ L1
loc(R

n), then

lim
r→0

∫
B(x,R)

f(y) dy = f(x)

for almost every x ∈ Rn.

Example 3.18. Let

ϕ(x) = P (x) =
C(n)

(1 + |x|2)(n+1)/2

where the constant is chosen so that∫
Rn

P (x) dx = 1.
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Next we define

Pt(x) =
1

tn
P (

x

t
) = C(n)

t

(|x|2 + t2)(n+1)/2
, t > 0

and

u(x, t) = (f ∗ Pt)(x) =

∫
Rn

Pt(x− y)f(y) dy.

This is called the Poisson integral for f . It has the following properties

(i) ∆u = ∂2u
∂t2

+ ∂2u
∂x2

1
+ . . .+ ∂2u

∂x2
2
= 0 and

(ii) limt→0 u(x, t) = f(x) for almost every x ∈ Rn by Theorem 3.12.

Let

Rn+1
+ = {(x1, x2, . . . , t) ∈ Rn+1 : t > 0}

denote the upper half space. As stated above u is harmonic in Rn+1
+ so

that u(x, t) =
∫
Rn Pt(x− y)f(y) dy solves{

∆u(x, t) = 0, (x, t) ∈ Rn+1
+

u(x, 0) = f(x), , x ∈ ∂Rn+1
+ = Rn,

where the boundary condition is obtained in the sense

lim
t→0

u(x, t) = f(x)

almost everywhere on Rn. As (x, t) → (x, 0) along a perpendicular
axis, we call this radial convergence.

Question Does the Poisson integral converge better than radially?

Definition 3.19. Let x ∈ Rn and α > 0. Then

(i) We define a cone

Γα(x) = {(y, t) ∈ Rn+1
+ : |x− y| < αt}.

(ii) Function u(x, t) converges nontangentially, if u(y, t) → f(x) and
(y, t) → (x, 0) so that (y, t) remains inside the cone Γα(x).

Theorem 3.20. Let f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and u(x, t) = (f ∗Pt)(x).
Then for every α > 0, there exists C = C(n, α) such that

u∗
α(x) := sup

(y,t)∈Γα(x)

|u(y, t)| ≤ CMf(x)

for every x ∈ Rn.

u∗ is called a nontangential maximal function. 23.9.2010

Proof. First we show that

Pt(y − z) ≤ C(α, n)Pt(x− z) for every (y, t) ∈ Γα(x), z ∈ Rn.


