HARMONIC ANALYSIS, 6. EXERCISE

1. (i) Find a Fourier transform for $g(x)=x e^{-\pi x^{2}}$.
(ii) Find a Fourier transform for $g(x)=x^{2} e^{-\pi x^{2}}$.
2. Show that if $f \in L^{1}(\mathbf{R})$, then \hat{f} is uniformly continuous. Hint: It holds (why?)

$$
\left|e^{\theta i}-1\right| \leq \begin{cases}|\theta|, & |\theta|<R \\ 2, & \text { otherwise }\end{cases}
$$

3. Let us consider the Fourier transform in \mathbf{R}^{n} i.e.

$$
\int_{\mathbf{R}^{n}} f(x) e^{-2 \pi i \mathbf{x} \cdot \xi} \mathrm{~d} x .
$$

Find out how $S\left(\mathbf{R}^{n}\right)$ is defined. Show for $f \in S\left(\mathbf{R}^{n}\right)$ that

$$
\widehat{\left(\frac{\partial f}{\partial x_{j}}\right)}(\xi)=2 \pi i \xi_{j} \hat{f}(\xi)
$$

4. Let us consider the Fourier transform and convolution $\int_{\mathbf{R}^{n}} f(x-$ $y) g(y) \mathrm{d} y$ in \mathbf{R}^{n}. Show that (and give suitable assumptions on the functions)

$$
\widehat{f * g}=\hat{f} \hat{g}
$$

5. Consider

$$
\begin{cases}\Delta u(x, t)=0, & (x, t) \in \mathbf{R}_{+}^{n+1} \\ u(x, 0)=f(x), & x \in \partial \mathbf{R}_{+}^{n+1}=\mathbf{R}^{n}\end{cases}
$$

Derive formally by using the Fourier transform wrt. $x \in \mathbf{R}^{n}$ the equation

$$
\left\{\begin{array}{l}
\frac{\partial^{2} \hat{u}}{\partial t^{2}}-4 \pi^{2}|\xi|^{2} \hat{u}=0 \\
\hat{u}(\xi, 0)=\hat{f}(\xi) .
\end{array}\right.
$$

The solution to this ordinary differential equation is

$$
\hat{u}(\xi, t)=\hat{f}(\xi) \hat{P}(\xi, t),
$$

where $\hat{P}(\xi, t)=e^{-2 \pi|\xi| t}$. It then holds that

$$
P(x, t)=C(n) \frac{t}{\left(|x|^{2}+t^{2}\right)^{(n+1) / 2}} .
$$

What is (again formally) u ?
6. (Bonus) At the first lecture, we wanted to recover a signal f_{1} with a certain frequency that was mixed with other signals (we only knew the mixed signal f). This was done by multiplying the Fourier transform by a filter i.e. $a_{1} \hat{f}(\xi)$. We stated that formally f_{1} is given by

$$
c \int_{\mathbf{R}} \frac{\sin (C y)}{y} f(x-y) \mathrm{d} y .
$$

Let $a_{1}=\chi_{\left(-\frac{1}{2}, \frac{1}{2}\right)}(x)$ and derive formally the above formula. What are the values c and C ? Give a suitable assumption for f and justify your steps.
7. (Bonus) Write down the details (skipped during the lectures) to the fact that if $f \in L^{2}(\mathbf{R})$ then

$$
f(x)=\lim _{R \rightarrow \infty} \int_{\{|\xi|<R\}} \hat{f}(\xi) e^{2 \pi i x \xi} \mathrm{~d} \xi .
$$

