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Thus∫
Rn

|(f ∗ ϕε)(x)− af(x)|p dx

=

∫
Rn

∣∣∣∣∫
Rn

(f(x− y)− f(x))ϕε(y) dy

∣∣∣∣p dx

≤
∫
Rn

(∫
Rn

|f(x− y)− f(x)| |ϕε(y)|1/p |ϕε(y)|1/p
′
dy

)p

dx

Hölder

≤
∫
Rn

∫
Rn

|(f(x− y)− f(x))|p |ϕε(y)| dy
(∫

Rn

|ϕε(y)| dy
)p/p′

dx

Fubini
= ||ϕ||p/p

′

1

∫
Rn

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy.

This confirms (3.8), and we start estimating I2 and I1.
Fix η > 0. First we estimate I1. By a well-known result in Lp-

theory, C0(R
n) (compactly supported continuous functions) are dense

in Lp(Rn) meaning that we can choose g ∈ C0(R
n) such that∫

Rn

|f(x)− g(x)|p dx < η.

Moreover, as g is uniformly continuous because it is compactly sup-
ported, so that we can choose small enough r > 0 to have∫

Rn

|g(x− y)− g(x)|p dx < η,

for any y ∈ B(0, r). Also recall that by convexity of xp, p > 1 for
some a, b ∈ R we have |a+ b|p ≤ (|a| + |b|)p = (1

2
2 |a| + 1

2
2 |b|)p ≤

1
2
(2 |a|)p + 1

2
(2 |b|)p = 2p−1 |a|p + 2p−1 |b|p. By using these tools, and by

adding and subtracting g, we can estimate∫
Rn

|f(x− y)− f(x)|p dx

≤
∫
Rn

|f(x− y)− g(x− y) + g(x− y)− g(x) + g(x)− f(x)|p dx

convexity

≤ C

∫
Rn

|f(x− y)− g(x− y)|p dx

+ C

∫
Rn

|g(x− y)− g(x)|p dx+ C

∫
Rn

|g(x)− f(x)|p dx ≤ 3η

for any y ∈ B(0, r). Thus

I1 = ||ϕ||p/p
′

1

∫
B(0,r)

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy

≤ ||ϕ||p/p
′

1

∫
B(0,r)

|ϕε(y)| 3η dy ≤ Cη.
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Next we estimate I2. By the previous lemma (Lemma 3.6 (ii)), for
any r > 0, there exists ε′ > 0 such that∫

Rn\B(0,r)

|ϕε(y)| dy < η,

for every 0 < ε < ε′. Thus since∫
Rn

|f(x− y)− f(x)|p dx ≤2p−1

∫
Rn

|f(x− y)|p dx

+ 2p−1

∫
Rn

|f(x)|p dx < ∞

for f ∈ Lp, we see that

I2 = ||ϕ||p/p
′

1

∫
Rn\B(0,r)

|ϕε(y)|
(∫

Rn

|f(x− y)− f(x)|p dx
)
dy

≤ C

∫
Rn\B(0,r)

|ϕε(y)| dy < Cη,

where C = ||ϕ||p/p
′

1 2p ||f ||pp. Thus for any η > 0 we get an estimate∫
Rn

|(f ∗ ϕε)(x)− af(x)|p dx ≤ I1 + I2 ≤ Cη

with C independent of η, by first choosing small enough r so that I1 is
small, and then for this fixed r > 0 by choosing ε small enough so that
I2 is small. �

Remark 3.9. Similarly, we can prove that for ϕ ∈ L1(Rn) and a =∫
Rn ϕ dx, we have

(i) If f ∈ C(Rn) ∩ L∞(Rn), then

f ∗ ϕε → af

as ε → 0 uniformly on compact subsets of Rn.
(ii) If f ∈ L∞(Rn) is in addition uniformly continuous, then f ∗ ϕε

converges uniformly to af in the whole of Rn, that is,

||f ∗ ϕε − af ||∞ → 0

as ε → 0.

Theorem 3.10. Let ϕ ∈ L1(Rn) be such that

(i) ϕ(x) ≥ 0 a.e. x ∈ Rn.

(ii) ϕ is radial, i.e. ϕ(x) = ϕ̃(|x|)
(iii) ϕ is radially decreasing, i.e.,

|x| > |y| ⇒ ϕ(x) ≤ ϕ(y).
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Then there exists C = C(n, ϕ) such that

sup
ε

|((f ∗ ϕε)(x)| ≤ CMf(x)

for all x ∈ Rn and f ∈ Lp, 1 ≤ p ≤ ∞.

Proof. First we will show by a direct computation utilizing the defini-
tion of convolution, that this holds for radial functions with relatively
simple structure. Then we obtain the general case by approximation
argument. To this end, let us first assume that ϕ is a radial function
of the form

ϕ(x) =
k∑

i=1

aiχB(0,ri), ai > 0.

Then ∫
Rn

ϕ(x) dx =
k∑

i=1

aim(B(0, ri))

Thus we can calculate

|(f ∗ ϕε)(x)| =
∣∣∣∣∫

Rn

f(x− y)ϕε(y) dy

∣∣∣∣
=

∣∣∣∣ 1εn
∫
Rn

f(x− y)ϕ(
y

ε
) dy

∣∣∣∣
z=y/ε, dy=εn dz

=

∣∣∣∣∫
Rn

f(x− εz)ϕ(z) dz

∣∣∣∣
=

∣∣∣∣∣
k∑

i=1

∫
B(0,ri)

f(x− εz)ai dz

∣∣∣∣∣
≤

k∑
i=1

ai

∫
B(0,ri)

|f(x− εz)| dz

=
k∑

i=1

aim(B(0, ri))

∫
B(0,ri)

|f(x− εz)| dz.

By a change of variables y = x − εz, z = (x − y)/ε, dz = dy/εn we
see that∫
B(0,ri)

|f(x− εz)| dz =
1

εnm(B(0, ri))

∫
B(x,εri)

|f(y)| dy

=
1

m(B(0, εri))

∫
B(x,εri)

|f(y)| dy

≤ m(Q(x, 2εri))

m(B(0, εri))

1

m(Q(x, 2εri))

∫
Q(x,2εri)

|f(y)| dy

≤ C(n)Mf(x).
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Combining the facts, we get

|(f ∗ ϕε)(x)| ≤
k∑

i=1

aim(B(0, ri))C(n)Mf(x)

= C(n) ||ϕ||1Mf(x).

Next we go to the general case. As ϕ is nonnegative, radial, and
radially decreasing, there exists a sequence ϕj, j = 1, 2, . . . of function
as above such that ϕ1 ≤ ϕ2 ≤ . . . and

ϕj(x) → ϕ(x) a.e. x ∈ Rn,

as j → ∞. Now

|(f ∗ ϕε)(x)| ≤
∫
Rn

|f(x− y)|ϕε(x) dx

=

∫
Rn

|f(x− y)| lim
j→∞

(ϕj)ε(y) dy

MON
= lim

j→∞

∫
Rn

|f(x− y)| (ϕj)ε(y) dy

≤ C(n) lim
j→∞

||ϕj||1Mf(x)

MON
= C(n) ||ϕ||1Mf(x)

for every x ∈ Rn. In the calculation above, MON stands for the
Lebesgue monotone convergence theorem. �

Remark 3.11. If ϕ is not radial or nonnegative, then we can use radial
majorant

ϕ̃(x) = sup
|y|≥|x|

|ϕ(y)|

which is nonnegative, radial and radially decreasing. Thus if ϕ̃ ∈
L1(Rn), then the previous theorem, as well as the next theorem holds.

Theorem 3.12. Let ϕ ∈ L1(Rn) be as in Theorem 3.10 that is

(i) ϕ(x) ≥ 0 a.e. x ∈ Rn.

(ii) ϕ is radial, i.e. ϕ(x) = ϕ̃(|x|)
(iii) ϕ is radially decreasing, i.e.,

|x| > |y| ⇒ ϕ(x) ≤ ϕ(y).

and a = ||ϕ||1. If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then

lim
ε→0

(f ∗ ϕε)(x) = af(x)

for almost all x ∈ Rn.
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