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Thus

/Rn I(f % ¢e)(x) — af ()| da
:/ . / (fle =) = F@)o:(y) dy
= /n (/ [f(x—y) = F@)] o= |e=(n)[ " dy>pdg;

- Jr
Hblder p/p

< we—n-s@rieia [ ewla)" a
"ol [ ol ([ 1@ =)= f)l da)dy

This confirms (3.8), and we start estimating Io and I;.

Fix n > 0. First we estimate I;. By a well-known result in LP-
theory, Co(R™) (compactly supported continuous functions) are dense
in LP(R™) meaning that we can choose g € Co(R"™) such that

| 5@ - g@)l e <

p

dx

Moreover, as ¢ is uniformly continuous because it is compactly sup-
ported, so that we can choose small enough r > 0 to have

/n lg(x —y) — g(x)]" dz < n,

for any y € B(0,r). Also recall that by convexity of z?,p > 1 for
some a,b € R we have |a+b]" < (Ja| + [b])P = (32]a] + 32[b])P <
2(2al)P + (2 1b])P = 2¢7 |a]” + 2P [b]". By using these tools, and by
adding and subtracting g, we can estimate

| 1= @ a

< [ 1o =)= gle =)+ 9le =)~ 9le) + 9(a) - F@) da
ConvﬁeXityC/n [z —y) —gle—y)l’ do
0 [ o =)= 9@ de+C [ o) = )l da < 3

for any y € B(0,r). Thus
_ p/p P
L=l [ el ([ 150~ e @) ay

< Il / 16.(9)| 3ndy < Cn.
B(0,r)
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Next we estimate I. By the previous lemma (Lemma 3.6 (ii)), for
any r > 0, there exists ¢’ > 0 such that

/ |p<(y)| dy <,
R"\B(0,r)

for every 0 < & < &’. Thus since

[ 1=~ f@p do <t [ ff@ -yl do

n

+2p_1/n\f(x)|p dr < o0

for f € LP, we see that
Lol [ ol ([ 15— 0) - f@l do)dy
R™\B(0,r) n
<c [ Jedylday<cn
R™\B(0,r)
where C' = Hng’l’/p/ 22([f][>. Thus for any 1 > 0 we get an estimate

|1 %00@) =~ af@P o < L+ < Cy

with C' independent of n, by first choosing small enough r so that I is
small, and then for this fixed r > 0 by choosing ¢ small enough so that
15 is small. O

Remark 3.9. Similarly, we can prove that for ¢ € L*(R") and a =
Jan ¢ dz, we have

(i) If f € C(R™) N L=(R"), then
[*¢. —af

as € — 0 uniformly on compact subsets of R".
(ii) If f € L>(R") is in addition uniformly continuous, then f * ¢,
converges uniformly to af in the whole of R", that is,

as € — 0.

Theorem 3.10. Let ¢ € L*(R™) be such that
(i) ¢(x) > 0 a.e. z € R".
(i1) ¢ is radial, i.e. ¢p(x) = ¢(|z|)

(1ii) ¢ is radially decreasing, i.e.,

2] >yl = o(zx) < o(y).
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Then there ezists C' = C(n, ¢) such that
sup [((f * ¢)(2)| < OM f(x)

forallz e R" and f € LP, 1 <p < 0.

Proof. First we will show by a direct computation utilizing the defini-
tion of convolution, that this holds for radial functions with relatively
simple structure. Then we obtain the general case by approximation
argument. To this end, let us first assume that ¢ is a radial function
of the form

= ZaiXB(O,ri); a; > 0.
Then

dx—Zal B(0,1;))

Thus we can calculate

|(f * de)(2)] =

[t o)

1
8”

[ o= nodha)

z=y/57g=5n dz flx —e2)p(z)dz

Rn

k

Z/B(o,n) flz —ez)a; dz

i=1
k

szai/B(On)w(x—ez)r dz

i=1

k
Z B(0,r;) ][ |f(x —e2)| dz.
i=1 B(O,’f‘l)

By a change of variables y = z — ez, 2z = (x —y)/e, dz = dy/e" we
see that

1
]{3(07”) ’f(l’ — 82)‘ dz = m /B(%Wi) |f(y)] dy

= B fo W
m(Q(z, 2er;)) 1

= m(B(0,2r,)) m(Q(x, 2:17) /Q@,ng‘f(y)' dy
< C(n)Mf(x).
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Combining the facts, we get

k
(% 00)(a)| < 3 am(BO,r)C(w)M f (@)
= C(n) 161}, M f(@).

Next we go to the general case. As ¢ is nonnegative, radial, and
radially decreasing, there exists a sequence ¢;,j = 1,2, ... of function
as above such that ¢; < ¢ < ... and

oj(x) = ¢(x) ae. ze€R",

as j — 0o. Now

(Fo)@I < [ 1)o@y

n

_ /R |flz — y)|jli_glo(¢j)e(y) dy

Y him [ (@ — )] (¢)<(y) dy

< C(n) Jim [Joyll, M ()

Y2¥ o) l|ell, Mf(x)

for every x € R". In the calculation above, MON stands for the
Lebesgue monotone convergence theorem. O

Remark 3.11. If ¢ is not radial or nonnegative, then we can use radial
majorant

o(x) = sup |o(y)|

ly|>]z|

which is nonnegative, radial and radially decreasing. Thus if <;~5 €
L'(R™), then the previous theorem, as well as the next theorem holds.
Theorem 3.12. Let ¢ € L'(R™) be as in Theorem 5.10 that is

(i) ¢(x) >0 a.e. x € R".

(i1) ¢ is radial, i.e. ¢p(x) = ¢(|z|)

(11i) ¢ is radially decreasing, i.e.,

z[ >yl = o(z) < o).

and a = ||¢||,. If f € LP(R™), 1 <p < oo, then

m(f *¢e)(x) = af(x)

li
e—0

for almost all x € R".
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