HARMONIC ANALYSIS, 4. EXERCISE

1. Show that if $m = \operatorname{ess\,inf}_{x \in \mathbf{R}^n} |f(x)| < \infty$, then

$$|f(x)| \ge m$$
 a.e. $x \in \mathbf{R}^n$.

Further, let $f \in L^1_{\text{loc}}(\mathbf{R}^n)$. Check that the previous result implies that for each $\varepsilon > 0$ there exists a set $E_{\varepsilon} \subset Q$ such that $m(E_{\varepsilon}) > 0$ and

$$|f(x)| < \operatorname*{ess\,inf}_{y \in Q} |f(y)| + \varepsilon$$

for every $x \in E_{\varepsilon}$.

2. Suppose that $f \in L^1(\mathbf{R}^n)$ and that

$$\int_{\mathbf{R}^n} f(x)g(x)\,\mathrm{d}x = 0$$

for every $g \in C_0(\mathbf{R}^n)$. Show that f(x) = 0 a.e. $x \in \mathbf{R}^n$. Hint: Consider ϕ_{ε} .

3. Let $\Omega \subset \mathbf{R}^n$ be an open set with the following property: there is $\gamma, \ 0 < \gamma < 1$ such that

$$m(B(x,r) \cap \Omega) \ge \gamma m(B(x,r))$$

for every $x \in \partial \Omega$ and r > 0. Show that $m(\partial \Omega) = 0$.

- 4. Show that $w \in A_p \Leftrightarrow w^{1-p'} \in A_{p'}$.
- 5. Show that if $w_1, w_0 \in A_1$ then $w_0 w_1^{1-p} \in A_p$.
- 6. Show for a doubling measure that there are constants C, N > 0 such that

$$\frac{\mu(Q(x,L))}{\mu(Q(x,l))} \le C\left(\frac{L}{l}\right)^N$$

for every $x \in \mathbf{R}^n$ and $0 < l < L < \infty$. What is N for the Lebesgue measure?

Date: 30.9.2010, deadline 14.10.2010.