HARMONIC ANALYSIS, 3. EXERCISE

- 1. Show by a formal calculation that for $f, g, h \in L^1(\mathbf{R}^n)$
 - (i) f * g = g * f(ii) f * (q * h) = (f * g) * h.

(1)
$$f * (g * h) = (f * g) * h$$

2. Let

$$f = \chi_{(-1,1)}$$
 $g = \chi_{(-\varepsilon,\varepsilon)}.$

with $0 < \varepsilon < 1$. Calculate (f * g)(x) and draw a picture.

- 3. Let $f, g \in C_0(\mathbf{R}^n)$. Show that $f * g \in C_0(\mathbf{R}^n)$.
- 4. Let $f \in L^{p}(\mathbf{R}^{n})$ and $g \in L^{p'}(\mathbf{R}^{n}), 1$ Show that $f * g \in L^{\infty}(\mathbf{R}^n)$ and that f * g is uniformly continuous. Hint: Hölder, the proof of Theorem 3.7 (where we estimated $\int |f(x-y) - f(x)|^p \, \mathrm{d}x).$
- 5. Show that there is no a function $g \in L^1(\mathbf{R}^n)$ such that f * g = f for every $f \in L^1(\mathbf{R}^n)$. Hint: Problem 4.
- 6. Let $P_t(x), t > 0, x \in \mathbf{R}^n$ be a Poisson kernel. Show that (i) $P_t \in L^1(\mathbf{R}^n)$ for t > 0.
 - (ii) $(x,t) \mapsto P_t(x)$ is harmonic (i.e. $\Delta P_t(x) = 0$) in \mathbf{R}^{n+1}_+ .

Date: 23.9.2010, deadline 7.10.2010.