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1. Introduction

This lecture note contains a sketch of the lectures. More illustrations
and examples are presented during the lectures.

The tools of the harmonic analysis have a wide spectrum of ap-
plications in mathematical theory. The theory has strong real world
applications at the background as well:

• Signal processing: Fourier transform, Fourier multipliers, Sin-
gular integrals.

• Solving PDEs: Poisson integral, Hilbert transform, Singular
integrals.

• Regularity of PDEs: Hardy-Littlewood maximal function, ap-
proximation by convolution, Calderón-Zygmund decomposition,
BMO.

Example 1.1. We consider a problem

∆u = f in Rn

where f ∈ Lp(Rn). The solution u is of the form

u(x) = C

∫
Rn

f(y)

|x− y|n−2 dy.

One of the questions in the regularity theory of PDEs is, does u have
the second derivatives in Lp i.e.

∂2u

∂xi∂xj

∈ Lp(Rn)?

If we formally differentiate u, we get

∂2u

∂xi∂xj

= C

∫
Rn

f(y)
∂2

∂xi∂xj

1

|x− y|n−2︸ ︷︷ ︸
| · |≤C/|x−y|n

dy.

It follows that
∫
Rn f(y)

∂2

∂xi∂xj

1
|x−y|n−2 dy defines a singular integral Tf(x).

A typical theorem in the theory of singular integrals says

||Tf ||p ≤ C ||f ||p

and thus we can deduce that ∂2u
∂xi∂xj

∈ Lp(Rn).

Example 1.2. Suppose that we have three different signals f1, f2, f3
with different frequencies but only one channel, and that we receive

f = f1 + f2 + f3

from the channel. The Fourier transform F(f) gives us a spectrum of
the signal f with three spikes in |F(f)|. We would like to recover the
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signal f1. Thus we take a multiplier (filter)

a1(y) := χ(a,b)(y) =

{
1, y ∈ (a, b),

0, otherwise,

where the interval (a, b) contains the frequency of f1. Thus formally by
taking the inverse Fourier transform, we get

f1 = F−1(a1F(f)) =: Tf(x).

This, again formally, defines an operator T which turns out to be of
the form

c

∫
R

sin(Cy)

y
f(x− y) dy

with some constants c, C. This operator is of a convolution type. How-
ever, sin(Cy)/y is not integrable over the whole R, so this requires
some care!

2. Hardy-Littlewood maximal function

Definition 2.1. Let f ∈ L1
loc(R

n) and m a Lebesgue measure. A
Hardy-Littlewood maximal function Mf : Rn 7→ [0,∞] is

Mf(x) = sup
Q∋x

1

m(Q)

∫
Q

|f(y)| dy =: sup
Q∋x

∫
Q

|f(y)| dy,

where the supremum is taken over all the cubes Q with sides parallel
to the coordinate axis and that contain the point x. Above we used
the shorthand notation∫

Q

f(x) dx =
1

m(Q)

∫
Q

f(x) dx

for the integral average.

Notation 2.2. We denote an open cube by

Q = Q(x, l) = {y ∈ Rn : max
1≤i≤n

|yi − xi| < l/2},

l(Q) is a side length of the cube Q,

m(Q) = l(Q)n,

diam(Q) = l(Q)
√
n.

Example 2.3. f : R → R, f(x) = χ(0,1)(x)

Mf(x) =


1
x
, x > 1,

1, 0 ≤ x ≤ 1,
1

1−x
, x < 0.

Observe that f ∈ L1(R) but Mf /∈ L1(R).
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Remark 2.4. (i) Mf is defined at every point x ∈ Rn and if f = g
almost everywhere (a.e.), then Mf(x) = Mg(x) at every x ∈ Rn.

(ii) It may well be that Mf = ∞ for every x ∈ Rn. Let for example
n = 1 and f(x) = x2.

(iii) There are several definitions in the literature which are often
equivalent. Let

M̃f(x) = sup
l>0

∫
Q(x,l)

|f(y)| dy,

where the supremum is taken over all cubes Q(x, l) centered at x.
Then clearly

M̃f(x) ≤ Mf(x)

for all x ∈ Rn. On the other hand, if Q is a cube such that x ∈ Q,
then Q = Q(x0, l0) ⊂ Q(x, 2l0) and∫

Q

|f(x)| dy ≤ m(Q(x, 2l0))

m(Q(x, l0))

1

m(Q(x, 2l0))

∫
Q(x,2l0)

|f(y)| dy

≤ 2nM̃f(x)

because
m(Q(x, 2l0))

m(Q(x, l0))
=

(2l0)
n

ln0
= 2n.

It follows that Mf(x) ≤ 2nM̃f(x) and

M̃f(x) ≤ Mf(x) ≤ 2nM̃f(x)

for every x ∈ Rn. We obtain a similar result, if cubes are replaced
for example with balls.

Next we state some immediate properties of the maximal function.
The proofs are left for the reader.

Lemma 2.5. Let f, g ∈ L1
loc(R

n). Then

(i)
Mf(x) ≥ 0 for all x ∈ Rn (positivity).

(ii)
M(f + g)(x) ≤ Mf(x) +Mg(x) (sublinearity)

(iii)
M(αf)(x) = |α|Mf(x), α ∈ R (homogeneity).

(iv)

M(τyf) = (τyMf)(x) = Mf(x+ y) (translation invariance).

Lemma 2.6. If f ∈ C(Rn), then

|f(x)| ≤ Mf(x)

for all x ∈ Rn.
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Proof. Let f ∈ C(Rn), x ∈ Rn. Then

∀ε > 0 ∃δ > 0 s.t. |f(x)− f(y)| < ε whenever |x− y| < δ.

From this and the triangle inequality, it follows that∣∣∣∣∫
Q

|f(x)| dy − |f(x)|
∣∣∣∣ ∫

Q 1 dy = 1
=

∣∣∣∣∫
Q

(
|f(y)| − |f(x)|

)
dy

∣∣∣∣
≤

∫
Q

||f(y)| − |f(x)|| dy ≤
∫
Q

|f(y)− f(x)| dy < ε

whenever diam(Q) =
√
n l(Q) < δ. Thus

|f(x)| = lim
Q∋x,l(Q)→0

∫
Q

|f(x)| dy ≤ sup
Q∋x

∫
Q

|f(x)| dy = Mf(x). �

Remember that f : Rn → [−∞,∞] is lower semicontinuous if

{x ∈ Rn : f(x) > λ} = f−1((λ,∞])

is open for all λ ∈ R. Thus for example, χU is lower semicontinuous
whenever U ⊂ Rn is open. It also follows that if f is lower semicontin-
uous then it is measurable.

Lemma 2.7. Mf is lower semicontinuous and thus measurable.

Proof. We denote

Eλ = {x ∈ Rn : Mf(x) > λ}, λ > 0.

Whenever x ∈ Eλ it follows that there exists Q ∋ x such that∫
Q

|f(y)| dy > λ.

Further

Mf(z) ≥
∫
Q

|f(y)| dy > λ

for every z ∈ Q, and thus

Q ⊂ Eλ. �

Lemma 2.8. If f ∈ L∞(Rn), then Mf ∈ L∞(Rn) and

||Mf ||∞ ≤ ||f ||∞ .

Proof. ∫
Q(x)

|f(y)| dy ≤ ||f ||∞
∫
Q

1 dx = ||f ||∞ ,

for every x ∈ Rn. From this it follows that

||Mf ||∞ ≤ ||f ||∞ . �



6 HARMONIC ANALYSIS

Lemma 2.9. Let E be a measurable set. Then for each 0 < p < ∞,
we have∫

E

|f(x)|p dx = p

∫ ∞

0

λp−1m({x ∈ E : |f(x)| > λ}) dλ

Proof. Sketch:∫
E

|f(x)|p dx =

∫
Rn

χE(x)p

∫ |f(x)|

0

λp−1 dλ dx

Fubini
= p

∫ ∞

0

λp−1

∫
Rn

χ{x∈E : |f(x)|>λ}(x) dx dλ

= p

∫ ∞

0

λp−1m({x ∈ E : |f(x)| > λ}) dλ. �

Definition 2.10. Let f : Rn → [−∞,∞] be measurable. The function
f belongs to weak L1(Rn) if there exists a constant C such that 0 ≤
C < ∞ such that

m({x ∈ Rn : |f(x)| > λ}) ≤ C

λ

for all λ > 0.
7.9.2010

Remark 2.11. (i) L1(Rn) ⊂ weak L1(Rn) because

m({x ∈ Rn : |f(x)| > λ}) =
∫
{x∈Rn : |f(x)|>λ}

1 dx

≤
∫
{x∈Rn : |f(x)|>λ}

|f(x)|
λ︸ ︷︷ ︸
≥1

dx ≤ ||f ||1
λ

,

for every λ > 0.
(ii) weak L1(Rn) is not included into L1(Rn). This can be seen by

considering

f : Rn → [0,∞], f(x) = |x|−n .

Indeed,∫
B(0,1)

|f(x)| dx =

∫
B(0,1)

|x|−n dx =

∫ 1

0

∫
∂B(0,r)

r−n dS(x) dr

=

∫ 1

0

r−n

∫
∂B(0,r)

1 dS(x)︸ ︷︷ ︸
ωn−1rn−1

dr

= ωn−1

∫ 1

0

1

r
dr = ∞,


