(i)

$$
\left\{x \in \mathbf{R}^{n}: M f(x)>4^{n} \lambda\right\} \subset \cup_{j=1}^{\infty} 3 Q_{j}
$$

and
(ii)

$$
\cup_{j=1}^{\infty} Q_{j} \subset\left\{x \in \mathbf{R}^{n}: M f(x)>\lambda\right\}
$$

Proof. (i) The previous lemma.
(ii) $Q_{j} \in F_{\lambda}$ implies

$$
f_{Q_{j}}|f(y)| \mathrm{d} y>\lambda
$$

and thus

$$
M f(x)>\lambda
$$

for every $x \in Q_{j}$. Thus

$$
\cup_{j=1}^{\infty} Q_{j} \subset\left\{x \in \mathbf{R}^{n}: M f(x)>\lambda\right\}
$$

4.2. Connection of A_{p} to weak and strong type estimates. Now, we return to A_{p}-weights.
Theorem 4.27. Let $w \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right)$, and $1 \leq p<\infty$. Then the following are equivalent
(i) $w \in A_{p}$.
(ii)

$$
\mu\left(\left\{x \in \mathbf{R}^{n}: M f(x)>\lambda\right\}\right) \leq \frac{C}{\lambda^{p}} \int_{\mathbf{R}^{n}}|f(x)|^{p} \mathrm{~d} \mu
$$

for every $f \in L_{l o c}^{1}\left(\mathbf{R}^{n}\right), \lambda>0$.
Proof. It was shown above (4.10) in case $1<p<\infty$ and in the case $p=1$ above (4.7), that $(i i) \Rightarrow(i)$.

Then we aim at showing that $(i) \Rightarrow(i i)$. The idea is to use Lemma 4.25 and to estimate

$$
\begin{equation*}
\mu\left(\left\{x \in \mathbf{R}^{n}: M f(x)>4^{n} \lambda\right\}\right) \leq \sum_{j=1}^{\infty} \mu\left(3 Q_{j}\right), \tag{4.28}
\end{equation*}
$$

for Calderón-Zygmund cubes at the level λ and for $f \in L^{1}\left(\mathbf{R}^{n}\right)$. Further, we have shown that $w \in A_{p}$ implies that μ is a doubling measure. Thus

$$
\begin{aligned}
& \mu\left(3 Q_{j}\right) \leq \mu\left(Q_{j}\right) \\
& \stackrel{\text { Theorem }}{\leq} \\
& \\
& \\
& Q_{j} \text { is a Calderón-Zygmund cube } C\left(f_{Q_{j}}|f(x)| \mathrm{d} x\right)^{-p} \int_{Q_{j}}|f(x)|^{p} \mathrm{~d} \mu(x) \\
& \leq \int_{Q_{j}}|f(x)|^{p} \mathrm{~d} \mu(x) .
\end{aligned}
$$

Using this in (4.28), we get

$$
\begin{aligned}
\mu\left(\left\{x \in \mathbf{R}^{n}: M f(x)>4^{n} \lambda\right\}\right) & \leq \sum_{j=1}^{\infty} \mu\left(3 Q_{j}\right) \\
& \leq \frac{C}{\lambda^{p}} \sum_{j=1}^{\infty} \int_{Q_{j}}|f(x)|^{p} \mathrm{~d} \mu(x) \\
& Q_{j} \text { are disjoint } \\
& \leq \frac{C}{\lambda^{p}} \int_{\mathbf{R}^{n}}|f(x)|^{p} \mathrm{~d} \mu(x),
\end{aligned}
$$

and then replacing $4^{n} \lambda$ by λ gives the result.
However, in the statement, we only assumed that $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$ and in the above argument that $f \in L^{1}\left(\mathbf{R}^{n}\right)$. We treat this difficulty by considering

$$
f_{i}=f \chi_{B(0, i)}, i=1,2, \ldots,
$$

and then passing to a limit $i \rightarrow \infty$ with the help of Lebesgue's monotone convergence theorem. To be more precise, repeating the above argument, we get

$$
\mu\left(\left\{x \in \mathbf{R}^{n}: M f_{i}(x)>4^{n} \lambda\right\}\right) \leq \frac{C}{\lambda^{p}} \int_{\mathbf{R}^{n}}\left|f_{i}(x)\right|^{p} \mathrm{~d} \mu(x) .
$$

Since

$$
\left\{x \in \mathbf{R}^{n}: M f(x)>4^{n} \lambda\right\}=\cup_{i=1}^{\infty}\left\{x \in \mathbf{R}^{n}: M f_{i}(x)>4^{n} \lambda\right\}
$$

the basic properties of measure and the above estimate imply

$$
\begin{aligned}
\mu\left(\left\{x \in \mathbf{R}^{n}: M f(x)>4^{n} \lambda\right\}\right) & =\lim _{i \rightarrow \infty} \mu\left(\left\{x \in \mathbf{R}^{n}: M f_{i}(x)>4^{n} \lambda\right\}\right) \\
& \leq \lim _{i \rightarrow \infty} \frac{C}{\lambda^{p}} \int_{\mathbf{R}^{n}}\left|f_{i}(x)\right|^{p} \mathrm{~d} \mu \\
& \stackrel{\operatorname{MON}}{=} \frac{C}{\lambda^{p}} \int_{\mathbf{R}^{n}}|f(x)|^{p} \mathrm{~d} \mu .
\end{aligned}
$$

Next we show that $w \in A_{p}$ satisfies a reverse Hölder's inequality. First, by the usual Hölder's inequality, we get

$$
\begin{aligned}
\frac{1}{m(Q)} \int_{Q}|f(x)| \mathrm{d} x & \leq \frac{1}{m(Q)}\left(\int_{Q}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}\left(\int_{Q} 1^{p^{\prime}} \mathrm{d} x\right)^{1 / p^{\prime}} \\
& \leq m(Q)^{\frac{1}{p^{\prime}-1}}\left(\int_{Q}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p} \\
& \leq\left(f_{Q}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}
\end{aligned}
$$

Similarly

$$
\left(f_{Q}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p} \leq C\left(f_{Q}|f(x)|^{q} \mathrm{~d} x\right)^{1 / q}, q>p
$$

Thus it is natural, to call inequality in which the power on the left hand side is larger the reverse Hölder inequality. Reverse Hölder inequalities tell, in general, that a function is more integrable than it first appears. We will need the following deep result of Gehring (1973). We skip the lengthy proof.

Lemma 4.29 (Gehring's lemma). Suppose that for $p, 1<p<\infty$, there exists $C \geq 1$ such that

$$
\left(f_{Q}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p} \leq C f_{Q}|f(x)| \mathrm{d} x
$$

for all cubes $Q \subset \mathbf{R}^{n}$. Then there exists $q>p$ such that

$$
\left(f_{Q}|f(x)|^{q} \mathrm{~d} x\right)^{1 / q} \leq C f_{Q}|f(x)| \mathrm{d} x
$$

for all cubes $Q \subset \mathbf{R}^{n}$.
Theorem 4.30 (reverse Hölder's inequality). Suppose that $w \in A_{p}$, $1 \leq p<\infty$. Then there exists $\delta>0$ and $C>0$ s.t.

$$
\left(\frac{1}{m(Q)} \int_{Q} w^{1+\delta} \mathrm{d} x\right)^{1 /(1+\delta)} \leq \frac{C}{m(Q)} \int_{Q} w \mathrm{~d} x
$$

for all cubes $Q \subset \mathbf{R}^{n}$.
Proof. Since $w \in A_{p}$, we have

$$
\frac{1}{m(Q)} \int_{Q} w \mathrm{~d} x\left(\frac{1}{m(Q)} \int_{Q} w^{1 /(1-p)} \mathrm{d} x\right)^{p-1} \leq C .
$$

On the other hand Hölder's inequality implies for any measurable $f>0$ (choose $p=p^{\prime}=2$ in (4.14)) that

$$
\frac{1}{m(Q)} \int_{Q} f \mathrm{~d} x\left(\frac{1}{m(Q)} \int_{Q} \frac{1}{f} \mathrm{~d} x\right) \geq 1
$$

Then we set $f=w^{1 /(p-1)}$ and get

$$
1 \leq \frac{1}{m(Q)} \int_{Q} w^{1 /(p-1)} \mathrm{d} x\left(\frac{1}{m(Q)} \int_{Q}\left(\frac{1}{w}\right)^{1 /(p-1)} \mathrm{d} x\right)
$$

Combining the inequalities for w, we get

$$
\begin{aligned}
& \frac{1}{m(Q)} \int_{Q} w \mathrm{~d} x\left(\frac{1}{m(Q)} \int_{Q} w^{1 /(1-p)} \mathrm{d} x\right)^{p-1} \\
& \quad \leq\left(\frac{C}{m(Q)} \int_{Q} w^{1 /(p-1)} \mathrm{d} x\right)^{p-1}\left(\frac{1}{m(Q)} \int_{Q} w^{1 /(1-p)} \mathrm{d} x\right)^{p-1}
\end{aligned}
$$

so that

$$
\frac{1}{m(Q)} \int_{Q} w \mathrm{~d} x \leq\left(\frac{C}{m(Q)} \int_{Q} w^{1 /(p-1)} \mathrm{d} x\right)^{p-1}
$$

or recalling f

$$
\left(\frac{1}{m(Q)} \int_{Q} f^{p-1} \mathrm{~d} x\right)^{1 /(p-1)} \leq \frac{C}{m(Q)} \int_{Q} f \mathrm{~d} x
$$

Now, we may suppose that $p>2$ because due to Theorem 4.15, we have $A_{p} \subset A_{q}, 1 \leq p<q$, and by this assumption $p-1>1$. By Gehring's lemma Lemma 4.29, there exists $q>p-1$ such that

$$
\left(\frac{1}{m(Q)} \int_{Q} f^{q} \mathrm{~d} x\right)^{1 / q} \leq \frac{C}{m(Q)} \int_{Q} f \mathrm{~d} x
$$

or again recalling f and taking power $p-1$ on both sides

$$
\left(\frac{1}{m(Q)} \int_{Q} w^{q /(p-1)} \mathrm{d} x\right)^{(p-1) / q} \leq\left(\frac{C}{m(Q)} \int_{Q} w^{1 /(p-1)} \mathrm{d} x\right)^{p-1}
$$

The right hand side is estimated by using Hölder's inequality as

$$
\left(\frac{1}{m(Q)} \int_{Q} w^{1 /(p-1)} \mathrm{d} x\right)^{p-1} \leq \frac{1}{m(Q)} \int_{Q} w \mathrm{~d} x
$$

and the proof is completed by choosing δ such that $1+\delta=q /(p-1)$.
Theorem 4.31. If $w \in A_{p}$, then $w \in A_{p-\varepsilon}$ for some $\varepsilon>0$.
Proof. First we observe that if $w \in A_{p}$, then (4. Exercise, problem 4)

$$
w^{1-p^{\prime}} \in A_{p^{\prime}}
$$

Utilizing the previous theorem (Theorem 4.30) for $\left(\frac{1}{w}\right)^{p^{\prime}-1}=\left(\frac{1}{w}\right)^{1 /(p-1)}$, we see that

$$
\left(\frac{1}{m(Q)} \int_{Q}\left(\frac{1}{w}\right)^{(1+\delta) /(p-1)} \mathrm{d} x\right)^{(p-1) /(1+\delta)} \leq\left(\frac{C}{m(Q)} \int_{Q}\left(\frac{1}{w}\right)^{1 /(p-1)} \mathrm{d} x\right)^{p-1}
$$

Now we can choose $\varepsilon>0$ such that

$$
\frac{p-1}{1+\delta}=(p-\varepsilon)-1
$$

We utilize this and multiply the previous inequality by $\frac{1}{m(Q)} \int_{Q} w \mathrm{~d} x$ to have

$$
\begin{aligned}
& \frac{1}{m(Q)} \int_{Q} w \mathrm{~d} x\left(\frac{1}{m(Q)} \int_{Q}\left(\frac{1}{w}\right)^{1 /((p-\varepsilon)-1)} \mathrm{d} x\right)^{(p-\varepsilon)-1} \\
& \quad \leq \frac{1}{m(Q)} \int_{Q} w \mathrm{~d} x\left(\frac{C}{m(Q)} \int_{Q}\left(\frac{1}{w}\right)^{1 /(p-1)} \mathrm{d} x\right)^{p-1} \\
& \quad \begin{array}{l}
w \in A_{p} \\
\end{array} . \quad .
\end{aligned}
$$

Thus $w \in A_{p-\varepsilon}$.
Next we answer the original question.

Theorem 4.32 (Muckenhoupt). Let $1<p<\infty$. Then there exists $C>0$ s.t.

$$
\int_{\mathbf{R}^{n}}(M f(x))^{p} w(x) \mathrm{d} x \leq C \int_{\mathbf{R}^{n}}|f(x)|^{p} w(x) \mathrm{d} x
$$

if and only if $w \in A_{p}$.
Proof. " $\Rightarrow "$ has already been proven.
$" \Leftarrow "$ We know that $w>0$ a.e. so that

$$
0=\mu(E)=\int_{E} w(x) \mathrm{d} x \quad \Leftrightarrow \quad m(E)=0
$$

and thus

$$
\begin{aligned}
\|f\|_{L^{\infty}(\mu)} & \stackrel{\text { def }}{=} \inf \left\{\lambda: \mu\left(\left\{x \in \mathbf{R}^{n}:|f(x)|>\lambda\right\}\right)=0\right\} \\
& =\inf \left\{\lambda: m\left(\left\{x \in \mathbf{R}^{n}:|f(x)|>\lambda\right\}\right)=0\right\} \\
& =\|f\|_{\infty} .
\end{aligned}
$$

Then

$$
\|M f\|_{L^{\infty}(\mu)}=\|M f\|_{\infty} \stackrel{\text { Lemma } 2.8}{\leq}\|f\|_{\infty}=\|f\|_{L^{\infty}(\mu)}
$$

so that M is of a weighted strong type (∞, ∞). On the other hand, by Theorem 4.27 implies that M is of weak type (p, p). Moreover, the Marcinkiewicz interpolation theorem Theorem 2.21 holds for all the measures. Thus M is of strong type (q, q) with $q>p$

$$
\|M f\|_{L^{q}(\mu)} \leq C\|f\|_{L^{q}(\mu)}
$$

By the previous theorem $w \in A_{p}$ implies that $w \in A_{p-\varepsilon}$. Thus we can repeat the above argument starting with $p-\varepsilon$ to see that

$$
\|M f\|_{L^{p}(\mu)} \leq C\|f\|_{L^{p}(\mu)}
$$

with the original p.

5. Fourier transform

5.1. On rapidly decreasing functions. We define a Fourier transform of $f \in L^{1}(\mathbf{R})$ as

$$
\begin{equation*}
F(f)=\hat{f}(\xi)=\int_{\mathbf{R}} f(x) e^{-2 \pi i x \xi} \mathrm{~d} x \tag{5.1}
\end{equation*}
$$

Remark 5.2. (i) $e^{-2 \pi i x \xi}=\cos (2 \pi x \xi)-i \sin (2 \pi x \xi)$, (even part in real, and odd in imaginary).
(ii) Theory generalizes to \mathbf{R}^{n} (then $\mathbf{x} \cdot \xi=\sum_{i=1}^{n} x_{i} \xi_{i}$ and $e^{-2 \pi i \mathbf{x} \cdot \xi}$).

