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(i)

{x ∈ Rn : Mf(x) > 4nλ} ⊂ ∪∞
j=13Qj.

and
(ii)

∪∞
j=1Qj ⊂ {x ∈ Rn : Mf(x) > λ}.

Proof. (i) The previous lemma.
(ii) Qj ∈ Fλ implies ∫

Qj

|f(y)| dy > λ

and thus

Mf(x) > λ

for every x ∈ Qj. Thus

∪∞
j=1Qj ⊂ {x ∈ Rn : Mf(x) > λ}. �

4.2. Connection of Ap to weak and strong type estimates. Now,
we return to Ap-weights.

Theorem 4.27. Let w ∈ L1
loc(R

n), and 1 ≤ p < ∞. Then the following
are equivalent

(i) w ∈ Ap.
(ii)

µ({x ∈ Rn : Mf(x) > λ}) ≤ C

λp

∫
Rn

|f(x)|p dµ

for every f ∈ L1
loc(R

n), λ > 0.

Proof. It was shown above (4.10) in case 1 < p < ∞ and in the case
p = 1 above (4.7), that (ii) ⇒ (i).

Then we aim at showing that (i) ⇒ (ii). The idea is to use Lemma 4.25
and to estimate

µ({x ∈ Rn : Mf(x) > 4nλ}) ≤
∞∑
j=1

µ(3Qj), (4.28)

for Calderón-Zygmund cubes at the level λ and for f ∈ L1(Rn). Fur-
ther, we have shown that w ∈ Ap implies that µ is a doubling measure.
Thus

µ(3Qj) ≤ µ(Qj)

Theorem 4.16

≤ C
(∫

Qj

|f(x)| dx
)−p

∫
Qj

|f(x)|p dµ(x)

Qj is a Calderón-Zygmund cube

≤ C

λp

∫
Qj

|f(x)|p dµ(x).
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Using this in (4.28), we get

µ({x ∈ Rn : Mf(x) > 4nλ}) ≤
∞∑
j=1

µ(3Qj)

≤ C

λp

∞∑
j=1

∫
Qj

|f(x)|p dµ(x)

Qj are disjoint

≤ C

λp

∫
Rn

|f(x)|p dµ(x),

and then replacing 4nλ by λ gives the result.
However, in the statement, we only assumed that f ∈ L1

loc(R
n) and

in the above argument that f ∈ L1(Rn). We treat this difficulty by
considering

fi = fχB(0,i), i = 1, 2, . . . ,

and then passing to a limit i → ∞ with the help of Lebesgue’s mono-
tone convergence theorem. To be more precise, repeating the above
argument, we get

µ({x ∈ Rn : Mfi(x) > 4nλ}) ≤ C

λp

∫
Rn

|fi(x)|p dµ(x).

Since

{x ∈ Rn : Mf(x) > 4nλ} = ∪∞
i=1{x ∈ Rn : Mfi(x) > 4nλ}

the basic properties of measure and the above estimate imply

µ({x ∈ Rn : Mf(x) > 4nλ}) = lim
i→∞

µ({x ∈ Rn : Mfi(x) > 4nλ})

≤ lim
i→∞

C

λp

∫
Rn

|fi(x)|p dµ

MON
=

C

λp

∫
Rn

|f(x)|p dµ. �

Next we show that w ∈ Ap satisfies a reverse Hölder’s inequality.
First, by the usual Hölder’s inequality, we get

1

m(Q)

∫
Q

|f(x)| dx ≤ 1

m(Q)

(∫
Q

|f(x)|p dx
)1/p(∫

Q

1p
′
dx

)1/p′

≤ m(Q)
1
p′−1

(∫
Q

|f(x)|p dx
)1/p

≤
(∫

Q

|f(x)|p dx
)1/p

.

Similarly (∫
Q

|f(x)|p dx
)1/p

≤ C
(∫

Q

|f(x)|q dx
)1/q

, q > p.
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Thus it is natural, to call inequality in which the power on the left hand
side is larger the reverse Hölder inequality. Reverse Hölder inequalities
tell, in general, that a function is more integrable than it first appears.
We will need the following deep result of Gehring (1973). We skip the
lengthy proof.

Lemma 4.29 (Gehring’s lemma). Suppose that for p, 1 < p < ∞,
there exists C ≥ 1 such that(∫

Q

|f(x)|p dx
)1/p

≤ C

∫
Q

|f(x)| dx

for all cubes Q ⊂ Rn. Then there exists q > p such that(∫
Q

|f(x)|q dx
)1/q

≤ C

∫
Q

|f(x)| dx

for all cubes Q ⊂ Rn.

Theorem 4.30 (reverse Hölder’s inequality). Suppose that w ∈ Ap,
1 ≤ p < ∞. Then there exists δ > 0 and C > 0 s.t.( 1

m(Q)

∫
Q

w1+δ dx
)1/(1+δ)

≤ C

m(Q)

∫
Q

w dx

for all cubes Q ⊂ Rn.

Proof. Since w ∈ Ap, we have

1

m(Q)

∫
Q

w dx
( 1

m(Q)

∫
Q

w1/(1−p) dx
)p−1

≤ C.

On the other hand Hölder’s inequality implies for any measurable f > 0
(choose p = p′ = 2 in (4.14)) that

1

m(Q)

∫
Q

f dx
( 1

m(Q)

∫
Q

1

f
dx

)
≥ 1.

Then we set f = w1/(p−1) and get

1 ≤ 1

m(Q)

∫
Q

w1/(p−1) dx
( 1

m(Q)

∫
Q

( 1

w

)1/(p−1)

dx
)
.

Combining the inequalities for w , we get

1

m(Q)

∫
Q

w dx
( 1

m(Q)

∫
Q

w1/(1−p) dx
)p−1

≤
( C

m(Q)

∫
Q

w1/(p−1) dx
)p−1( 1

m(Q)

∫
Q

w1/(1−p) dx
)p−1

.

so that

1

m(Q)

∫
Q

w dx ≤
( C

m(Q)

∫
Q

w1/(p−1) dx
)p−1
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or recalling f( 1

m(Q)

∫
Q

fp−1 dx
)1/(p−1)

≤ C

m(Q)

∫
Q

f dx.

Now, we may suppose that p > 2 because due to Theorem 4.15, we
have Ap ⊂ Aq, 1 ≤ p < q, and by this assumption p − 1 > 1. By
Gehring’s lemma Lemma 4.29, there exists q > p− 1 such that( 1

m(Q)

∫
Q

f q dx
)1/q

≤ C

m(Q)

∫
Q

f dx

or again recalling f and taking power p− 1 on both sides( 1

m(Q)

∫
Q

wq/(p−1) dx
)(p−1)/q

≤
( C

m(Q)

∫
Q

w1/(p−1) dx
)p−1

.

The right hand side is estimated by using Hölder’s inequality as( 1

m(Q)

∫
Q

w1/(p−1) dx
)p−1

≤ 1

m(Q)

∫
Q

w dx

and the proof is completed by choosing δ such that 1+δ = q/(p−1). �

Theorem 4.31. If w ∈ Ap, then w ∈ Ap−ε for some ε > 0.

Proof. First we observe that if w ∈ Ap, then (4. Exercise, problem 4)

w1−p′ ∈ Ap′ .

Utilizing the previous theorem (Theorem 4.30) for
(

1
w

)p′−1

=
(

1
w

)1/(p−1)

,

we see that( 1

m(Q)

∫
Q

( 1

w

)(1+δ)/(p−1)

dx
)(p−1)/(1+δ)

≤
( C

m(Q)

∫
Q

( 1

w

)1/(p−1)

dx
)p−1

.

Now we can choose ε > 0 such that

p− 1

1 + δ
= (p− ε)− 1

We utilize this and multiply the previous inequality by 1
m(Q)

∫
Q
w dx to

have

1

m(Q)

∫
Q

w dx
( 1

m(Q)

∫
Q

( 1

w

)1/((p−ε)−1)

dx
)(p−ε)−1

≤ 1

m(Q)

∫
Q

w dx
( C

m(Q)

∫
Q

( 1

w

)1/(p−1)

dx
)p−1

w ∈ Ap

≤ C.

Thus w ∈ Ap−ε. �

Next we answer the original question.
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Theorem 4.32 (Muckenhoupt). Let 1 < p < ∞. Then there exists
C > 0 s.t. ∫

Rn

(
Mf(x)

)p

w(x) dx ≤ C

∫
Rn

|f(x)|p w(x) dx

if and only if w ∈ Ap.

Proof. ”⇒” has already been proven.

”⇐” We know that w > 0 a.e. so that

0 = µ(E) =

∫
E

w(x) dx ⇔ m(E) = 0.

and thus

||f ||L∞(µ)

def
= inf{λ : µ({x ∈ Rn : |f(x)| > λ}) = 0}
= inf{λ : m({x ∈ Rn : |f(x)| > λ}) = 0}
= ||f ||∞ .

Then

||Mf ||L∞(µ) = ||Mf ||∞
Lemma 2.8

≤ ||f ||∞ = ||f ||L∞(µ)

so that M is of a weighted strong type (∞,∞). On the other hand,
by Theorem 4.27 implies that M is of weak type (p, p). Moreover, the
Marcinkiewicz interpolation theorem Theorem 2.21 holds for all the
measures. Thus M is of strong type (q, q) with q > p

||Mf ||Lq(µ) ≤ C ||f ||Lq(µ) .

By the previous theorem w ∈ Ap implies that w ∈ Ap−ε. Thus we can
repeat the above argument starting with p− ε to see that

||Mf ||Lp(µ) ≤ C ||f ||Lp(µ)

with the original p. �
7.10.2010

5. Fourier transform

5.1. On rapidly decreasing functions. We define a Fourier trans-
form of f ∈ L1(R) as

F (f) = f̂(ξ) =

∫
R

f(x)e−2πixξ dx. (5.1)

Remark 5.2. (i) e−2πixξ = cos(2πxξ) − i sin(2πxξ), (even part in
real, and odd in imaginary).

(ii) Theory generalizes to Rn (then x · ξ =
∑n

i=1 xiξi and e−2πix·ξ).


