
SELECTED TOPICS IN CONTROL THEORY

MATS425, SPRING 2016

MIKKO PARVIAINEN
UNIVERSITY OF JYVÄSKYLÄ
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1. Introduction

This two week intensive course is an introduction to the mathematical
theory of optimal control. We mainly follow [Eva05] adding some material
from [BCD97], [FS06], [Eva10].

We also study connections to partial differential equations and present
several examples from both the practical and mathematical point of views.

Date: October 25, 2016.
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2 CONTROL THEORY

Example 1.1. Basic setup of an optimal control problem with (x, t) as a
starting point We use the following terminology and notation

(x, t) ∈ Rn × [0, T ], starting point

α : [t, T ]→ A,measurable, A a compact subset of Rn, admissible control

A, the set of admissible controls

a trajectory x(·)is given by{
x′(s) = f(x(s), α(s)), s ∈ [t, T ]

x(t) = x
dynamics given by f

f : Rn ×A→ Rn,
r : Rn ×A→ R, running cost,

g : Rn → R, terminal/cost cost.

The value for this control problem is given by

u(x, t) = inf
α∈A

Cx,t(α) := inf
α∈A

∫ T

t
r(x(s), α(s)) ds+ g(x(T )),

or we may want to maximize payoff

v(x, t) = sup
α∈A

Px,t(α) = sup
α∈A

∫ T

t
r(x(s), α(s)) ds+ g(x(T )).

A control α̃ ∈ A is optimal if for example in the first case Cx,t(α̃) =
infα∈ACx,t(α) = u(x, t).

Questions

• How to find/contruct optimal control?
• Optimal control exist?
• Value of u?

It turn out that u is a unique viscosity solution to Hamilton-Jacobi-Bellman
first order PDE {

ut +H(x,Du) = 0, in Rn × (t, T )

u(x, T ) = g(x) in Rn.

Thus finding u and α can sometimes transformed into a PDE question.

Remark 1.2. First that the above makes sense, we need some assumptions
on f , r, g, α. We return to assumptions later and first consider a few
examples.

Also t dependencies could be allowed above.
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Example 1.3 (Production planning). Factory produces n commodities.

x(s) =

x1(s)
...

xn(s)

 = inventory levels, α(s) =

α1(s)
...

αn(s)

 = production levels,

d =

d1
...
dn

 = constant demand rates.

The inventory develops according to

x′(s) = α(s)− d.

Moreover there are constraints how much factory can produce each commod-
ity

α(s) ∈ A

where A ⊂ Rn+ is a compact set. Problem: choose α to minimize

Cx,t(α) =

∫ T

t
r(x(s), α(s)) ds.

An example of r with n = 1

r(x, a) = x · h︸︷︷︸
holding cost

− rev · d︸ ︷︷ ︸
revenue

+ c · a︸︷︷︸
production cost

,

where h, rev, c ≥ 0 are given constants. Remarks:

• Case 1: we add a state constraint x(s) ≥ 0.
• Revenue is constant and plays no role.
• We can fix the endpoint x(T ) = 0 or let it be free.
• We can also put final cost.

Case 2: Alternative problem formulation. Drop state constraint,
but add shortage penalty:

r(x, a) = x+ · h︸ ︷︷ ︸
holding cost

− rev · d︸ ︷︷ ︸
revenue

+ c · a︸︷︷︸
production cost

+ x− · pen︸ ︷︷ ︸
shortage penalty

,

where x+ = max(x, 0), x− = −min(x, 0). Interpretation could now
be that you pay when placing order, but then if we are unable to
deliver there is a penalty. If x < 0, this can be though as how many
undelivered orders are standing in line.

Example 1.4 (Investment planning).

x(t) = rate of revenue of our company at time t,

α(t) = reinvestment rate into the company ∈ [0, 1].
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Revenue develops according to{
x′(s) = kα(s)x(s),

x(0) = x = initial revenue rate > 0,

where k =investment growth rate. Problem is to maximize profit (or divi-
dends for example)

Px,0(α) =

∫ T

0
x(s)(1− α(s)) ds.

• Think of CEO whose bonus only depends profit over [0, T ] and knows
that he leaves the company at time T .
• More realistic would be to have terminal condition too, e.g. share

value at the end.

The solution so called bang-bang control: first reinvestment everything
and then nothing; we return later to this in Example 2.13.

Example 1.5 (Rocket railroad car). Consider a rocket railroad car with
engines on both sides with the variables

q(t) = position at time t

v(t) = q′(t) = velocity at time t

α(t) = control i.e. thrust (force) from the rockets, α(t) ∈ [−1, 1],

m = mass of the rocket car = 1.

Q: How to operate the rockets to reach 0 at the minimum amount of time
and stop there? This problem can be formulated by using notation

x(t) =

(
x1(t)
x2(t)

)
=

(
q(t)
v(t)

)
as

x′(t) =

(
q′(t)
v′(t)

)
=

(
0 1
0 0

)
x(t) +

(
0
α(t)

)
=: f(x(t), α(t)).

Above

mv′(t) =mass·acceleration=force=α

is the law of motion. The total ’cost’ to be minimized is

Cx0,0(α) :=

∫ τ

0
1 dt

where τ := τ(α, x0)=’first time q(t) = 0 = v(t)’. The value is

u(x0) := inf
α
Cx0(α) = inf

a

∫ τ

0
1 dt.
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Example 1.6 (Rocket car continued, heuristic solution). Guess that the
optimal α only uses the extremal values −1 or 1. Some justification later.
Recall

x′(t) = f(x(t), α(t)) =

(
v
α(t)

)
=

(
x2(t)
α(t)

)
.

Whenever α ≡ 1 we have

x′(t) =

(
q′(t)
v′(t)

)
=

(
v(t)

1

)
.

This implies

vv′ = q′ ⇒ 1

2
(v2)′ = q′,

and furter

v2(t)− v2(0) =

∫ t

0
(v2(s))′ ds = 2

∫ t

0
q′(s) ds = 2q(t)− 2q(0).

Rearranging

v2(t) = 2q(t) + (v2(0)− 2q(0))︸ ︷︷ ︸
known

= 2q(t) + 2b.
(1.1)

Whenever α ≡ −1

v2(t) = −2q(t) + (v2(0) + 2q(0))︸ ︷︷ ︸
known

= −2q(t) + 2b.
(1.2)

Rewriting {
1
2v

2 − b = q, α = 1

−1
2v

2 + b = q, α = −1.

By drawing the images, we can now find optimal trajectories. For example,
quite naturally, if we are on the positive side with zero initial speed we always
use α = −1 until we are close enough 0 (i.e. cross the parabola going through
(0, 0)) and then stop the car by using α = 1. This is an example of a so
called bang-bang control.

Suppose that x(0) = (1, 0). Then we first use α = −1 and then α = 1. To
calculate how long it takes to reach the origin, solve∫

dv =

∫
−1 dt⇒ v(t) = −t+ c

and since v(0) = 0 it follows that c = 0. Moreover,∫
dq =

∫
−t dt⇒ q(t) = −1

2
t2 + c.

Since q(0) = c = 1, we have

q(t) = −1

2
t2 + 1.
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By solving from (1.1) and (1.2) the time of the change in control, or argu-
ing by symmetry that the change is in the midway, we see that the control
changes at t = 1. Repeating a similar calculation or using symmetry, it
takes

t = 2

to reach the origin.

More generally, in (q, v)-plane , the curve

v =

{√
−2q, q < 0,

−
√

2q, q ≥ 0,

separates the two regions: in Region 1

v =

{
≥
√
−2q, q < 0,

> −
√

2q, q ≥ 0.
(1.3)

we start with α = −1 whereas in the complement, Region 2, we start with
α = 1.

1.1. Classification of problems.

• Fixed finite time horizon, free endpoint, Rn × [0, T ](second case of
’Production planning’, Example 1.3): find control that minimizes∫ T

t
r(x(s), α(s)) ds+ g(x(T )).

• Fixed finite time horizon and control until exit from a cylindrical
region Q× [0, T ].
• Infinite time horizon: control until exit from a domain Q. Minimize

the functional∫ τ

t
r(x(s), α(s)) ds+ g(x(τ), τ)χ{τ<∞}

where again τ := τ(α, x0). Sometimes discounted payoffs are used

r(x, t) = e−βtr̃(x, t), g(x, t) = e−βtg̃(x, t)

to ensure finiteness of the payoffs in certain problems.
• Fixed endpoint problem (cf. the rocket car which had no discount):∫ τ

t
r(x(s), α(s)) ds, x(τ) = x1.

• Final endpoint constraint. Same as previous, but the target set can
be some bigger set:∫ τ

t
r(x(s), α(s)) ds+ g(x(τ(α))), x(τ) ∈ K.
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• State constraint problem (first case of ’Production planning’, Exam-
ple 1.3). Only controls that guarantee

x(s) ∈ U ⊂ Rn.

2. Finite time horizon

2.1. Dynamic programming. We continue by looking at finite time hori-
zon.

Here are the standing assumptions. We assume that all the functions
are continuous (in all variables) Lip wrt x, and bounded

|f(x, a)| ≤ C, |r(x, a)| ≤ C, |g(x)| ≤ C
|f(x, a)− f(y, a)| ≤ C |x− y| , |r(x, a)− r(y, a)| ≤ C |x− y| ,
|g(x)− g(y)| ≤ C |x− y| .

Recall that α : [t, T ] → A is a measurable function with compact A, and
that the dynamics is given by the ODE{

x′(s) = f(x(s), α(s)) t ≤ s ≤ T
x(t) = x.

It has a unique Lipschitz continuous solution x(s) under these assumptions.

We are interested of the total costs and therefore define a value function

u(x, t) := inf
α∈A

Cx,t(α) := inf
α∈A
{
∫ T

t
r(x(s), α(s)) ds+ g(x(T ))}.

We are going to show that u is a solution to a first order terminal value PDE
of a type {

ut +H(x,Du) = 0 in Rn × (0, T )

u(x, T ) = g(x) on Rn,

where

H(x,Du) := inf
a∈A

H(x,Du, a) := inf
a∈A
{f(x, a) ·Du(x, t) + r(x, a)} (2.4)

is the Hamiltonian, and H(x,Du, a) is the control theory Hamiltonian. This
is often called Hamilton-Jacobi-Bellman (HJB) equation, and can be seen
as an infinitesimal version of so called dynamic programming principle (or
Bellman’s dynamic programming principle or optimality condition) that we
will introduce next. It is the basis of the solution technique developed by
Bellman in 1950s.

Lemma 2.1 (DPP/optimality condition). For each h > 0 small enough so
that t+ h ≤ T , we have

u(x, t) = inf
α∈A
{
∫ t+h

t
r(x(s), α(s)) ds+ u(x(t+ h), t+ h)},
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where x(·) is the trajectory with the control α.

Idea is that we can think that we play optimally from time t + h and

thus obtain u(x(t+ h)t+ h). Getting there costs
∫ t+h
t r(x(s), α(s)) ds. For

the proofs of the following theorems, see for example Section 10.3 in Evans:
Partial differential equations.

The next theorem quarantees that we remain within the uniqueness theory
in unbounded domain (See 10.2 in [Eva10]), and make sure that we take the
initial values continuously.

Theorem 2.2 (Estimates for value functions). The above value function u
satisfies

|u(x, t)| ≤ C,∣∣u(x, t)− u(x̂, t̂)
∣∣ ≤ C |x− x̂|+ C

∣∣t− t̂∣∣ ,
for x, x̂ ∈ Rn, 0 ≤ t, t̂ ≤ T .

Next we connect the value function to the PDE. The PDE then provides
(existence, uniqueness, solvers available...) us the way to access the value
function and the optimal control.

The heuristics is that the PDE is an infinitesimal version of DPP. Formally
supposing u is a smooth value we can start from the DPP

0 = inf
α∈A
{
∫ t+h

t
r(x(s), α(s)) ds+ u(x(t+ h), t+ h)− u(x, t)},

and assume that we are only using controls such that limh→0+ α(t+h) = a.
Then taking limit, changing order of lim and inf and dividing by h, we
formally obtain

0 = inf
a∈A
{r(x, a) +

d

dt
(u(x(t), t))}

= inf
a∈A
{r(x, a) +Du(x(t), t) · x′(t) + ut(x(t), t))}

= inf
a∈A
{r(x, a) +Du(x, t) · f(x, a)}+ ut(x, t))

= H(x,Du(x, t)) + ut(x, t).

The value should thus be related to the problem{
H(x,Du(x, t)) + ut(x, t) = 0

u(x, T ) = g(x)
(2.5)

We recall the viscosity solutions, for more details see for example the
lecture note of ’Viscosity theory’.

Definition 2.3 (Parabolic viscosity solution). A function u : Rn× (0, T )→
(−∞,∞), u ∈ C(Rn × (0, T )) is a viscosity solution to (2.5) if u takes the
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final values continuously and whenever ϕ ∈ C1(Rn × (0, T )) touches u at
(x, t) ∈ Rn × (0, T ) from below, it holds that

ϕt(x, t) +H(x,Dϕ) ≤ 0,

(this is supersolution condition) as well as whenever ϕ ∈ C1(Rn × (0, T ))
touches u at (x, t) ∈ Rn × (0, T ) from above, it holds that

ϕt(x, t) +H(x,Dϕ) ≥ 0,

(subsolution condition).

Remark 2.4. • If there is no such test function ϕ, then the condition
is automatically satisfied.
• The name viscosity solution is for historical reasons. The origins of

the above definition is in the method of vanishing viscosity, i.e. one
adds a smoothing, viscosity term, +ε∆u and let ε→ 0.

Example 2.5. Consider time independent case

F (ux) = − |ux|+ 1 = 0.

Then u is a supersolution if a function ϕ ∈ C1 touching from below at x
satisfies

− |ϕx(x)|+ 1 ≤ 0

and subsolution if from above

− |ϕx(x)|+ 1 ≥ 0.

Then

u(x) = 1− |x|

is the unique viscosity solution to{
− |ux|+ 1 = 0 x ∈ (−1, 1)

u(±1) = 0.

Theorem 2.6. Let u be the value for the control problem in the above setup.
Then u is a viscosity solution to{

ut(x, t) +H(x,Du) = 0 in Rn × (0, T )

u(x, T ) = g(x).

Proof. Let u be a value. Thriving for a contradiction, assume that the
subsolution property does not hold i.e. there is ϕ ∈ C1(Rn×(0, T )) touching
u at (x, t) from above

ϕt(x, t) +H(x,Dϕ(x, t)) = ϕ(x, t)t + inf
a∈A
{f(x, a) ·Dϕ(x, t) + r(x, a)} < 0.

Then by continuity there is a ∈ A and θ > 0 such that

ϕt(y, s) + f(y, a) ·Dϕ(y, s) + r(y, a) < −θ (2.6)
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for all points (y, s) sufficiently close to (x, t).

Choose a fixed control α(s) ≡ a and the corresponding trajectory{
x′(s) = f(x(s), a), t ≤ s ≤ T,
x(t) = x.

By continuity of the trajectory and (2.6), it holds for small enough h, t ≤
s ≤ t+ h that

ϕt(x(s), s) + f(x(s), a) ·Dϕ(x(s), s) + r(x(s), a) < −θ (2.7)

Thus, since ϕ touches u from above

u(x(t+ h), t+ h)− u(x(t), t)

≤ ϕ(x(t+ h), t+ h)− ϕ(x(t), t)

=

∫ t+h

t

d

ds
ϕ(x(s), s) ds

=

∫ t+h

t
Dϕ(x(s), s) · x′(s)︸ ︷︷ ︸

=f(x(s),a)

+ϕt(x(s), s) ds.

On the other hand, by the DPP

u(x, t) = inf
α∈A
{
∫ t+h

t
r(x(s), α(s)) ds+ u(x(t+ h), t+ h)}

≤
∫ t+h

t
r(x(s), a) ds+ u(x(t+ h), t+ h).

Combining the previous two inequalities, we end up with

u(x(t+ h), t+ h)− (

∫ t+h

t
r(x(s), a) ds+ u(x(t+ h), t+ h))

≤ u(x(t+ h), t+ h)− u(x(t), t)

≤
∫ t+h

t
Dϕ(x(s), s) · f(x(s), a) + ϕt(x(s), s) ds

i.e.

0 ≤
∫ t+h

t
r(x(s), a) +Dϕ(x(s), s) · f(x(s), a) + ϕt(x(s), s) ds

(2.7)
< −hθ,

a contradiction.

To prove that supersolution property holds for u, let ϕ touch u at (x, t)
from below, and suppose that supersolution property does not hold. By
continuity,

ϕ(x(s), s)t + f(x(s), α(s)) ·Dϕ(x(s), s) + r(x(s), α(s)) > θ. (2.8)

for any α ∈ A and s close enough t.
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Thus for any control α ∈ A, not necessarily constant, and the correspond-
ing trajectory x(s). Further, since ϕ touches u from below

u(x(t+ h), t+ h)− u(x(t), t)

≥ ϕ(x(t+ h), t+ h)− ϕ(x(t), t)

=

∫ t+h

t

d

ds
ϕ(x(s), s) ds

=

∫ t+h

t
Dϕ(x(s), s) · f(x(s), α(s)) + ϕt(x(s), s) ds,

for any strategy. Further by the DPP and definition of inf, for θ/2 > 0,
there is α ∈ A such that

u(x, t) ≥
∫ t+h

t
r(x(s), α(s)) ds+ u(x(t+ h), t+ h)− hθ/2

and combining the previous two inequalities

u(x(t+ h), t+ h)− (

∫ t+h

t
r(x(s), α(s)) ds+ u(x(t+ h), t+ h)− hθ/2)

≥
∫ t+h

t
Dϕ(x(s), s) · f(x(s), α(s)) + ϕt(x(s), s) ds.

implying

hθ/2 ≥
∫ t+h

t
r(x(s), α(s)) +Dϕ(x(s), s) · f(x(s), α(s)) + ϕt(x(s), s) ds

(2.8)
> hθ,

a contradiction. �

2.1.1. Using dynamic programming in designing optimal controls.

(1) Find unique solution to the Hamilton-Jacobi-Bellman equation{
ut(x, t) = H(x,Du) in Rn × (0, T )

u(x, T ) = g(x), x ∈ Rn.

According to Theorem 2.6, this is the value function.
(2) Solve feedback control by setting α(x, s) = ã where

r(x, ã) +Du(x, s) · f(x, ã) = inf
a∈A
{r(x, a) +Du(x, s) · f(x, a)}.

(3) Solve ODE {
x̃′(s) = f(x̃(s), α(x̃(s), s))

x̃(t) = x
(2.9)

Define

α̃(s) := α(x̃(s), s)
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a feedback control so that

ut(x̃(s), s) + r(x̃(s), α̃(s)) +Du(x̃(s), s) · f(x̃(s), α̃(s)) = 0. (2.10)

Remark 2.7. There are serious problems in the above procedure. There
might be multiple solutions α, measurable selection theorem might be needed.
Solving x′(s) = f(x̃(s), α(x̃(s), s)) requires reqularity for α and does not
always work, consider Example 2.9 in Reg II.

Nonetheless in case all the problems indicated above can be solved, then
the produced control α̃ is optimal: Since the value and a solution to PDE
coincide

Cx,t(α̃) =

∫ T

t
r(x̃(s), s) ds+ g(x̃(T ))

(2.10)
=

∫ T

t
−ut(x̃(s), s)−Du(x̃(s), s) · f(x̃(s), α̃(s)) ds+ g(x̃(T ))

(2.9)
=

∫ T

t
−ut(x̃(s), s)−Du(x̃(s), s) · x̃′(s) ds+ g(x̃(T ))

= −
∫ T

t

d

ds
u(x̃(s), s) ds+ g(x̃(T ))

= −u(x̃(T ), T )︸ ︷︷ ︸
−g(x̃(T ))

+u(x̃(t), t) + g(x̃(T ))

= u(x, t) = inf
α∈A

Cx,t(α).

Example 2.8. Consider a problem in R × [0, T ] with controls α : [t, T ] →
[−1, 1] and dynamics{

x′(s) = f(x(s), α(s)) = α(s), t ≤ s ≤ T
x(t) = x,

and minimize (no running payoff)

Cx,t(α) = g(x(T )) := e−x(T )2 .

We guess that the optimal control is

α̃ =

{
1, x ≥ 0

−1, x < 0.

(At x = 0, we are free to choose α̃ = 1 or α̃ = −1. Obviously optimal
controls are not unique. ) In any case

x̃(T ) =

{∫ T
t 1 ds+ x, x ≥ 0,∫ T
t −1 ds+ x, x < 0

=

{
T − t+ x, x ≥ 0,

t− T + x, x < 0
(2.11)
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and

u(x, t) = g(x̃(T )) =

{
e−(T−t+x)2 , x ≥ 0,

e−(t−T+x)2 , x < 0.

Observe that

lim
y→0+

ux(y, t) = −2(T − t)e−(T−t)2 6= −2(t− T )e−(t−T )2 = lim
y→0−

ux(y, t),

so that u /∈ C1 even if the data is smooth.

To different direction, suppose that we are first able to solve u from the
corresponding HJB equation ut − |ux| = 0. Assume x 6= 0 and solve ã from

ux(x, t)ã = inf
a∈A
{ux(x, t)a} = − |ux|

i.e. ã = − sgn(ux(x, t)). Since

ux(x, t) =

{
−2(T − t+ x)e−(T−t+x)2 , x > 0

−2(t− T + x)e−(t−T+x)2 , x < 0,

we have

α(x, t) = ã =

{
1, x > 0

−1, x < 0.

Then we solve the full control by putting in trajectory{
x̃′(s) = α(x̃(s), s),

x̃(t) = x,

Thus the optimal control related to the point (x, t) is

α̃(s) = α̃(x̃(s), s) =

{
1, x > 0,

−1, x < 0.

This already indicates that there is problem of interpreting Du(0).

Example 2.9 (Dynamics with three velocities). Let us consider the problem{
x′(s) = α(s), 0 ≤ t ≤ s ≤ 1

x(t) = x,

where the control parameter takes values in

A = {−1, 0, 1}.

Our problem is to minimize

u(x, t) := Cx,t(α̃) =

∫ 1

t
|x(s)| ds.
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To this end, we consider three regions

I = {(x, t) : x ≤ t− 1, 0 ≤ t ≤ 1},
II = {(x, t) : t− 1 < x < 1− t, 0 ≤ t ≤ 1},
III = {(x, t) : x ≥ −t+ 1, 0 ≤ t ≤ 1}.

The value is

u(x, t) := Cx,t(α̃) =


1
2(−x+ (−x− (1− t)))(1− t), I
1
2x

2, II
1
2(x+ (x− (1− t)))(1− t), III

=


1
2(−2x− 1 + t)(1− t), I
1
2x

2, II
1
2(2x− 1 + t)(1− t), III.

(2.12)

Then the Hamilton-Jacobi-Bellman equation is

0 = ut + inf
a∈A
{f(x, a) · ux(x, t) + |x|}

= ut + inf
a∈A
{a · ux(x, t) + |x|}.

Then in Region II, it holds

0 = ut, ux = x,

inf
a∈A
{a · ux(x, t) + |x|} = inf

a∈A
{ax+ |x|} = − |x|+ |x| = 0.

in Region I

ut =
1

2
(1− t)− 1

2
(−2x− 1 + t) = 1− t+ x, ux = −(1− t)

inf
a∈A
{a · ux(x, t) + |x|} = inf

a∈A
{−a(1− t) + |x|} = −(1− t+ x)

so that HJB equation holds; the boundaries will have to be checked separately.

Example 2.10. Consider the previous example with A = {−1, 1}. Then it
is an exercise to show that there is no optimal control in Region II.

However, value still exists and is the same as in (2.12), and it still satisfies
the HJB.

2.2. Pontryagin max principle for finite time horizon, free end-
point. Next we encounter a necessary conditions for optimality (named
after a soviet mathematician Lev Pontryagin 1908-1988) formulated in 50’s.

Consider again the control problem{
x′(s) = f(x(s), α(s)),

x(0) = x ,
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and try to find a control α̃ such that (this time we maximize to get what is
called max principle instead of minimum principle)

Px,t(α̃) = sup
α∈A

Px,t(α) = sup
α∈A

∫ T

0
r(x(s), α(s)) ds+ g(x(T )) =: u(x, 0)

and with the additional assumptions f(·, a), r(·, a), g ∈ C1(Rn).

Recall

H(x,Du) := sup
a∈A

H(x,Du, a) := sup
a∈A

(f(x, a) ·Du(x, t) + r(x, a))

is the Hamiltonian, and H(x,Du, a) is the control theory Hamiltonian. After
the calculation in Section 2.1.1, the following is rather natural.

Theorem 2.11 (Pontryagin max principle). Let α̃ be optimal for the above
problem and x̃ the corresponding trajectory. Then there exists a function
(called costate or adjoint variable) p̃(t) : [0, T ] → Rn such that for a.e.
0 ≤ t ≤ T

x̃′(t) = DpH(x̃(t), p̃(t), α̃(t)) (ODE)

p̃′(t) = −DxH(x̃(t), p̃(t), α̃(t)) (adjoint equations)=(ADJ)

H(x̃(t), p̃(t), α̃(t)) = sup
a∈A

H(x̃(t), p̃(t), a) (maximization princ)=(M),

p̃(T ) = Dg(x̃(T )) (terminal/transversality condition).

Recalling the control theory Hamiltonian we have

x̃′(t) = DpH(x̃(t), p̃(t), α̃(t)) = f(x̃(t), α̃(t))

for (ODE), so this is just the usual dynamics.

Remark 2.12. Observe that Pontryagin max principle might very well give
false control candidates.

It is rather a design tool not characterization: it is of course desirable
whenever it only gives a small set of controls or only a single control.

Nonetheless, in principle, if we can make up a reasonable candidate for
optimal control and thus derive a candidate as a value function, then we
can check whether this is the unique viscosity solution to the corresponding
PDE.

Next we see how to use Pontryagin max principle.

Example 2.13 (Investment planning). Recall the model:

x(t) = profit rate,

α(t) = reinvestment rate ∈ [0, 1].

Profit develops according to{
x′(s) = α(s)x(s) := f(x(s), α(s)),

x(0) = x = initial profit rate > 0.
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. Problem is to maximize the profit

Px,0(α) =

∫ T

0
r(x(s), α(s)) ds+ 0 =

∫ T

0
x(s)(1− α(s)) ds.

Thus the control theory Hamiltonian is

H(x, p, a) = f(x, a)p+ r(x, a) = axp+ x(1− a) = x(a(p− 1) + 1).

and equations from Pontryagin max principle

x̃′(s) = α̃(s)x̃(s) (ODE)

p̃′(s) = −α̃(s)(p̃(s)− 1)− 1, (adjoint equations)

x̃(s)(α̃(s)(p̃(s)− 1) + 1) = sup
a∈A
{x̃(s)(a(p̃(s)− 1) + 1)} (maximization princ),

p̃(T ) = 0 (terminal/transversality condition).

From the maximization principle, since x̃ > 0 by (ODE), we have

α(s) =

{
1, p̃(s) > 1

0, p̃(s) ≤ 1.

We are looking for a continuous costate function, and thus by terminal con-
dition

p̃(s) ≤ 1 for s close to t.

Thus by (ADJ) for s ∈ [T − 1, T ] (assume T > 1) we have

p̃(s) = T − s,

and by (ADJ) p′ remains a.e. strictly negative and by (M) the control swith-
ces at T − 1, and there won’t be further changes in the control. The optimal
control is a.e. thus

α̃(s) =

{
1, 0 ≤ s < T − 1

0, T − 1 ≤ s ≤ T,

x̃(s) =

{
xes, 0 ≤ s < T − 1,

xeT−1, T − 1 ≤ s ≤ T.
The payoff is

Px,0(α̃) =

∫ T

T−1
xeT−1 ds = xeT−1.

22.1.2016

Theorem 2.14 (Costate and gradient). Assume that α(s) = αx,t(s) and
x(s) = xx,t(s) solve the control problem at x, t. If the value function u ∈ C2,
then the costate p in Pontryagin is given by

p(s) = Du(x(s), s), t ≤ s ≤ T.
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Proof. Let p(s) := Du(x(s), s), then we claim that p satisfies (ADJ) and
(M). With the optimal control it holds that

ut(x(s), s) + r(x(s), α(s)) + f(x(s), α(s)) ·Du(x(s), s) = 0 (2.13)

for a.e. t ≤ s ≤ T . Indeed, first observe that xxx,t(s),s(s̃) = xx,t(s̃) for
t ≤ s ≤ s̃ ≤ T when using the same control (or part of it) in both the cases.
Thus a.e. s

d

ds
u(xx,t(s), s) =

d

ds

(
g(xx,t(T )) +

∫ T

s
r(xx,t(s̃), α(s̃)) ds̃

)
= −r(xx,t(s), α(s)).

and

d

ds
u(xx,t(s), s) = Du(xx,t(s), s) · x′x,t(s) + ut(xx,t(s), s)

= Du(xx,t(s), s) · f(xx,t(s), αx,s(s)) + ut(xx,t(s), s)

implying (2.13). Fix s where (2.13) holds, and define

h(y) := ut(y, s) + r(y, α(s)) + f(y, α(s)) ·Du(y, s)
dropped max
≤ 0.

Moreover, h(x(s)) = 0 and thus h obtains its max at y = x(s) so that

0 = hxi(x(s)) = utxi(x(s), s) + rxi(x(s), α(s))

+ fxi(x(s), α(s)) ·Du(x(s), s) + f(x(s), α(s)) ·Duxi(x(s), s).

On the other hand, by definition of p and the above equation

p′i(s) =
d

ds
uxi(x(s), s)

= uxit(x(s), s) +Duxi(x(s), s) · x′(s)
= uxit(x(s), s) +Duxi(x(s), s) · f(x(s), α(s))

= −rxi(x(s), α(s))− fxi(x(s), α(s)) ·Du(x(s), s)

− f(x(s), α(s)) ·Duxi(x(s), s) +Duxi(x(s), s) · f(x(s), α(s))

= −rxi(x(s), α(s))− fxi(x(s), α(s)) ·Du(x(s), s).

This is (ADJ).

Then comparing

ut(x(s), s) + sup
a∈A
{r(x(s), s) + f(x(s), a) ·Du(x(s), s)} = 0

with (2.13), we obtain (M). �
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2.3. Viscosity solutions and Pontryagin max principle. Next we make
few comments on how Barron and Jensen, 1986, TAMS used ideas of The-
orem 2.14 in a rigorous proof using viscosity solutions.

We continue under the assumptions of the Pontryagin max principle. Fix
the optimal control

α̃x,t : [t, T ]→ A

related to the starting point (x, t) and{
x̃′x,t(s) = f(x̃x,t(s), α̃x,t(s)

x̃x,t(t) = x.

Then define w : Rn × [t, T ]→ R by

w(ξ, τ) = g(xξ,τ (T )) +

∫ T

τ
r(xξ,τ (s), α̃x,t(s)) ds,

where t ≤ τ ≤ s ≤ T and{
x′ξ,τ (s) = f(xξ,τ (s), α̃x,t(s))

xξ,τ (τ) = ξ.

Idea is now to show that the ’value’ w with the frozen control has enough
regularity (which we take for granted) and this gives us (M) with p̃(s) :=
Dw(x̃x,t(s), s).

Theorem 2.15. It holds that

Dw(x̃x,t(s), s) · f(x̃x,t(s), α̃x,t(s)) + r(x̃x,t(s), α̃x,t(s))

= supa∈A{Dw(x̃x,t(s), s) · f(x̃x,t(s), a) + r(x̃x,t(s), a)},

for almost every s ∈ [t, T ].

Proof. It holds that

w(y, T ) = g(y)

w(x, t) = u(x, t)

w(x̃x,t(s), s) = u(x̃x,t(s), s)

and

u(ξ, τ) ≥ w(ξ, τ) for (ξ, τ) ∈ Rn × [t, T ]

since u is the largest payoff at each point. That is, on each point on the
trajectory x̃x,t(s) the function w touches u from below. Since u is known to
be viscosity supersolution it holds, assuming w is differentiable on a point
(x̃x,t(s), s), on the trajectory, that

wt(x̃x,t(s), s) + sup
a∈A
{Dw(x̃x,t(s), s) · f(x̃x,t(s), a) + r(x̃x,t(s), a)} ≤ 0.

The next lemma proves the reverse inequality. �
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Lemma 2.16. At almost every (s, xξ,τ (s)), t ≤ τ ≤ s ≤ T , we have

wt(xξ,τ (s), s) +Dw(xξ,τ (s), s) · f(xξ,τ (s), α̃x,t(s)) + r(xξ,τ (s), α̃x,t(s)) = 0.

Proof. Idea is the same as in Theorem 2.14. Again assume enough regularity
for w. By definition of w it holds that

d

ds
w(xξ,τ (s), s) =

d

ds

(
g(xξ,τ (T )) +

∫ T

s
r(xξ,τ (s̃), α̃x,t(s̃)) ds̃

)
= −r(xξ,τ (s), α̃x,t(s)).

where we also used the fact xxξ,τ (s),s(s̃) = xξ,τ (s̃) for s̃ ≥ s. On the other
hand, by the chain rule

d

ds
w(xξ,τ (s), s) = Dw(xξ,τ (s), s) · x′ξ,τ (s) + wt(xξ,τ (s), s)

= Dw(xξ,τ (s), s) · f(xξ,τ (s), α̃x,t(s)) + wt(xξ,τ (s), s). �

2.4. Pontryagin max principle and PDEs. Next we look how to come
close to (ODE) and (ADJ)

x̃′(t) = DpH(x̃(t), p̃(t), α̃(t)) (ODE)

p̃′(t) = −DxH(x̃(t), p̃(t), α̃(t)) (ADJ).

from the point of view of the PDE theory. They arise through the method
of characteristics, i.e. we try to find such trajectories that we can calculate
the solution for the Hamilton-Jacobi PDE{

ut +H(x,Du(x, t)) = 0 in Rn × (0, T )

u(x, 0) = g(x) in Rn.

We assume that u is smooth and denote

x(s) :=

x1(s)
...

xn(s)

 ,

p(s) := Dxu(x(s), s) =

p1(s)
...

pn(s)

 =

ux1(x(s), s)
...

uxn(x(s), s)

 .

(2.14)

We differentiate Hamilton-Jacobi equation wrt xk to get

utxk(x, t) +Hxk(x,Du(x, t)) +
∑
i

Hpi(x,Du)uxkxi(x, t) = 0. (2.15)
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Using the notation introduced above

p′k(t) =
d

dt
uxk(x(t), t)

= utxk(x(t), t) +
∑
i

uxkxi(x(t), t)x′i(t)

(2.15)
= −Hxk(x(t), Du(x(t), t))−

∑
i

Hpi(x(t), Du(x(t), t))uxkxi(x(t), t)

+
∑
i

uxkxi(x(t), t)x′i(t)

= −Hxk(x(t), Du(x(t), t)) +
∑
i

(−Hpi(x(t), Du(x(t), t)) + x′i(t))uxkxi(x(t), t)

= −Hxk(x(t), p(t)) +
∑
i

(−Hpi(x(t), p(t)) + x′i(t))uxkxi(x(t), t).

We want to simplify, and to this end get rid of second derivatives, by choosing

x′i(t) = Hpi(x(t), p(t)).

Then the above further yields

p′k(t) = −Hxk(x(t), p(t)).

These are Hamilton’s equations. If we can solve these with suitable initial
conditions x(0) = x0, p(0) := p0 := Dg(x0), then when can calculate the
solution along the trajectories:

u(x(t), t) =

∫ t

0

d

ds
u(x(s), s) ds+ u(x(0), 0)

=

∫ t

0

(
Du(x(s), s) · x′(s) + ut(x(s), s)

)
ds+ u(x(0), 0)

(ADJ),(ODE),(2.14)
=

∫ t

0

(
p(s) ·DpH(x(s), p(s))−H(x(s), p(s))

)
ds+ u(x(0), 0).

Example 2.17. Consider{
ut + |ux| = 0

u(x, 0) = g(x) = e−x
2

.

Then away from p = 0 we use method of characteristic,

H(x, p) = |p| , Hp = sgn p,Hx = 0

p(t) = p0 = Dg(x0) = −2x0e
−x20 ,

x′(t) = Hp(x(t), p(t)) = sgn(−2x0e
−x20) = − sgn(x0)
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so that

u(x(t), t) =

∫ t

0

(
p(s) ·DpH(x(s), p(s))−H(x(s), p(s))

)
ds+ u(x(0), 0)

=

∫ t

0

(
− p0 sgn(x0)− |p0|

)
ds+ g(x0)

= t(2 |x0| e−x
2
0 − 2 |x0| e−x

2
0) + e−x

2
0

= e−x
2
0 .

On the other hand we might consider through Pontryagin the 1D mini-
mization problem we already solved before (related to ut − |ux| = 0)

g(x(T )) = e−x(T )2

under {
x′(s) = α(s),

x(t) = x.

This time we have Pontryagin minimization principle

p′(t) = 0,

p(T ) = Dg(x(T )) = −2x(T )e−x(T )2 ,

p(s) · α(s) = min
a∈[−1,1]

p(s)a.

If X(T ) > 0 then p(t) = p0 < 0 and by (M), α(s) ≡ 1. If X(T ) < 0, then
α(s) ≡ −1.

3. Heuristic discussions and warnings on Pontryagin

The following ’argument’ leaves a lot to be desired, but might still provide
some insight.

Consider a problem with exit time constrained to exit on a set ∂T , (like
the rocket car example, we return to this in Section 5). Let τ = τ(x, α) be
the first hitting time of the set. Add the trajectory as a penalty term and
integrate by parts∫ τ

0
r(x(t), α(t)) + p(t) · (f(x(t), α(t))− x′(t)) dt+ g(x(τ))

=

∫ τ

0
r(x(t), α(t)) + p(t) · f(x(t), α(t)) dt+ g(x(τ))

− p(τ) · x(τ) + p(0) · x(0) +

∫ τ

0
p′(t)x(t) dt.

Max of quantity

−p(τ) · x(τ) + g(x(τ))
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where x(τ) ∈ ∂T , under the condition h(x(τ)) = 0(where h is the equation
of the boundary, assume smooth, Dh(x(τ)) 6= 0) is according to Lagrange
multipliers (see Evans’ lecture note) requires

−p(τ) +Dg(x(τ)) = cDh(x(τ))

i.e.

(−p(τ) +Dg(x(τ))) · t = 0

where t is a vector in a tangent plane to ∂T at x(τ). This gives the
transversality condition; also in the fixed endpoint or free endpoint problems.

Remark 3.1. Also it should be noted that the version of the Pontryagin
stated is not exactly accurate. There are so called abnormal problems for
which the control Hamiltonian reads as H(x, p, a) = f · p + 0 · r and for
which Pontryagin is not useful.

Following example is due to Arytyonov, Differential Equations, 2010.
Consider the rocket car example, take the essentially unique optimal con-
trol α steering us from x0 ∈ R2 to 0 in optimal time T . Choose x0 so that
the control has a unique switching time τ < T for the control. Then consider
the following control problem: minimize∫ T

0
α(t)

√
|τ − s| ds

with fixed starting x0 and end point 0. This is fixed time, fixed starting
and fixed endpoint problem. The above α is (essentially) the only admissible
control and thus optimal. Try to follow Pontryagin with

H(x, p, a, s) = f(x, a) · p+ r(x, a, s)

= a
√
|τ − s|

= x2p1 + p2a+ a
√
|τ − s|.

so that (
p′1(s)
p′2(s)

)
= −

(
0

p1(s)

)
(ADJ),

x2(s)p1(s) + p2(s)α(s) + α(s)
√
|τ − s|

= min
a∈[−1,1]

{x2(s)p1(s) + p2(s)a+ a
√
|τ − s|} (M)

and no (T). (M) can be rewritten

α(s)(p2(s) +
√
|τ − s|) = min

a∈[−1,1]
{a(p2(s) +

√
|τ − s|)}

By (ADJ) p2 is linear. Since the square root grows faster at the vicinity of
τ (p2(t) must also be zero at τ , otherwise it is clearly not a switching point

for control coverned by (M)), then p2(s) +
√
|τ − s| is positive in U \ {τ}
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for some neighborhood U , and this again contradicts the switching property
of α.

We observe that the usual Pontryagin (without recalling the extra 0 mul-
tiplier) produces a false control.

4. Infinite time horizon

Use the standing assumptions. Consider problem of minimizing

u(x) := inf
α
Cx(α) = inf

α

∫ ∞
0

r(x(s), α(s))e−λs ds

λ > 0, with otherwise the same setup as before. Then u bounded, and Lip
or Hölder continuous depending on the ratio of λ/L, where L is Lip constant
of dynamics f . See [BCD97] Prop III.2.1.

Theorem 4.1 (DPP). Let u be a value, (x, t) ∈ Rn × (0,∞), and standing
assumptions hold. Then

u(x) = inf
α∈A
{
∫ t

0
r(x(s), α(s))e−λs ds+ e−λtu(x(t))}

Proof. Aim: Define a control

α(s) =

{
α1(s), 0 ≤ s ≤ t
α2(s), t < s.

Given α1 and related trajectory x1(s) with x1(t) = x, choose α2 (and related
trajectory with x2(t) = x1(t)) so that∫ ∞

t
r(x2(s), α2(s))e−λ(s−t) ds− η ≤ u(x1(t))

which implies

u(x)
use α
≤

∫ t

0
r(x1(s), α1(s))e−λs ds+ e−λt

∫ ∞
t

r(x2(s), α2(s))e−λ(s−t) ds

≤
∫ t

0
r(x1(s), α1(s))e−λs ds+ e−λtu(x1(t)) + η.

Taking infα1 implies

u(x) ≤ w(x),



24 CONTROL THEORY

where w(x) := infα∈A{
∫ t

0 r(x(s), α(s))e−λs ds + e−λtu(x(t))}. To prove a
reverse, choose α3, x3(0) = x such that

u(x) ≥
∫ ∞

0
r(x3(s), α3(s))e−λs ds− η

≥
∫ t

0
r(x3(s), α3(s))e−λs ds+ e−λt

∫ ∞
t

r(x3(s), α3(s))e−λ(s−t) ds− η

≥
∫ t

0
r(x3(s), α3(s))e−λs ds+ e−λtu(x3(s))− η.

≥ w(x)− η.
�

We guess by formal derivation that the related HJB PDE is

inf
α∈A
{1

t

∫ t

0
r(x(s), α(s))e−λs ds+

1

t
(e−λtu(x(t))− u(x))}

→ inf
a∈A
{r(x, a)− λe0u(x) + e0Du(x) · x′(0)}

= inf
a∈A
{r(x, a) +Du(x) · f(x, a)} − λu(x)

= H(x,Du(x))− λu(x) = 0

The rigorous proof that value function is a viscosity solution runs along the
same lines as before.

5. Problems with exit times

Under the standing assumptions. Consider a problem of minimizing

Cx(α) =

{∫ τ
0 r(x(s), α(s))e−λs ds+ e−λτg(x(τ)), τ <∞∫∞
0 r(x(s), α(s))e−λs ds, τ =∞,

where τ := τ(α, x) is the first hitting time a given closed target T with
compact boundary ∂T , and we assume r ≥ 1 and λ ≥ 0, and if λ = 0, then
we assume infα τ < ∞ for every point, in addition to the usual standing
assumptions.

Theorem 5.1 (DPP). Let u be a value, x ∈ Rn \ T , and the above assump-
tions hold. Then

u(x) = inf
α∈A
{
∫ t∧τ

0
r(x(s), α(s))e−λs ds+ χ{τ≤t}e

−λτg(x(τ))

+ χ{τ>t}e
−λtg(x(t))}.

The proof uses the usual techniques.
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Again formally, for x ∈ Rn \ T ,

0 = inf
α∈A
{ 1

t ∧ τ

∫ t∧τ

0
r(x(s), α(s))e−λs ds+

1

t ∧ τ
χ{τ≤t}(e

−λτg(x(τ))− u(x))

+
1

t ∧ τ
χ{τ>t}(e

−λtu(x(t))− u(x))}

→ inf
a∈A
{r(x, a)− λu(x) +Du(x) · f(x, a)}

= inf
a∈A
{r(x, a) +Du(x) · f(x, a)} − λu(x)

=: H(x,Du(x, t))− λu(x)

since eventually t < τ .

If the value u is continuous up to the ∂T (we do not pursue this question
further), in addition to the above assumptions, then u is a viscosity solution
to the Dirichlet problem{

H(x,Du(x, t))− λu(x) = 0, in Rn \ T ,
u(x) = g(x), on ∂T .

Example 5.2 (Warning). Consider a ball B(0, 1), the dynamics{
x′(s) = α(s),

x(0) = x.

where α : [0, τ ] → B(0, 1). This violates r ≥ 1. Suppose we pay according
to the path length i.e. minimize

Px(α) =

∫ τ

0
|α(s)| ds+ 0.

Never moving gives a value 0, even if we take some bdr values g > 0. The
corresponding HJB is

H(x,Du)

= inf
a∈B(0,1)

{f(x, a) ·Du(x) + r(x, a)}

= inf
a∈B
{a ·Du(x) + |a|}

= min{0,− |Du|+ 1} = 0,

but this has no unique solution.

The DPP considerations also work for the constrained endpoint problems.

Example 5.3 (Rocket car). Recall the formulation

x(t) =

(
q(t)
v(t)

)
as

x′(t) =

(
q′(t)
v′(t)

)
=

(
0 1
0 0

)
x(t) +

(
0
α(t)

)
.
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Denote (
q
v

)
=:

(
x1

x2

)
=: x, f(x, a) =

(
x2

a

)
,

and recall that aim was take rocket car to q = 0, v = 0 in minimum time.
Denote the minimum time starting at x by u(x). Dynamic programming
principle:

u(x) = inf
α∈A
{
∫ τ∧t

0
1 ds+ χ{τ>t}u(x(t))}.

The Hamilton-Jacobi-Bellman equation is now

0 = min
a∈[−1,1]

{r(x, a) +Du(x) · f(x, a)}

= min
a∈[−1,1]

{1 +Du(x) · f(x, a)}

= min
a∈[−1,1]

{1 +Du(x) ·
(
x2

a

)
}

= min
a∈[−1,1]

{1 + x2ux1(x) + aux2(x)}.

6. Existence of optimal controls

We denote

L∞ = L∞(0, t;Rm) = {α : [0, t]→ Rm : ess sup
0≤s≤t

|α(s)| <∞},

||α||L∞ = ess sup
0≤s≤t

|α(s)| .

Definition 6.1. Let αi, α ∈ L∞. We say that αi converges to α in weak∗ if∫ t

0
αi(s) · v(s) ds→

∫ t

0
α(s) · v(s) ds

as i→∞, for any v : [0, t]→ Rm with
∫ t

0 |v(s)| ds <∞.

Theorem 6.2 (Alaoglu’s theorem). Let ||αi||L∞ ≤ M < ∞. Then passing
to a subsequence if necessary, there is α ∈ L∞ such that∫ t

0
αi(s) · v(s) ds→

∫ t

0
α(s) · v(s) ds

as i→∞, for any v : (0, t)→ Rn with
∫ t

0 |v(s)| ds <∞.

Definition 6.3. A point z ∈ K is extreme, if there are no x, y ∈ K and
λ ∈ (0, 1) such that

z = λx+ (1− λ)y ∈ K.
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Theorem 6.4 (Krein-Milman). Let ∅ 6= K ⊂ L∞ be convex and let ai ⊂ K.
If, passing to a subsequence if necessary, there is α ∈ L∞ such that∫ t

0
αi(s) · v(s) ds→

∫ t

0
α(s) · v(s) ds

as i→∞, for any v : (0, t)→ Rn with
∫ t

0 |v(s)| ds <∞, then K has at least
one extreme point.

We say that a control is of bang-bang type if (recall the rocket car exam-
ple) if for each time s ∈ [0, t] and i = 1, 2, . . .m, it holds that

|αi(s)| = 1.

Next we consider existence of the optimal bang-bang control in an exam-
ple.

Example 6.5 (Rocket car). Recall that the dynamics in the rocket car ex-
ample is of the form {

x′(s) = Mx(s) +Nα(s),

x(0) = x0.

Next we sketch the proof that there exists an optimal bang-bang control.
Let

τ̃ = inf{t : we can steer from x0 to 0 in time t }.

We want to show that there is α̃ steering from x0 to 0 in time τ̃ . After earlier
considerations, we take for granted that always τ̃ <∞, and by definition of
inf

ti → τ̃+

as i→∞.

We can define αi = 0 after ti so that all the controls are defined up to time
t1. By Banach-Alaoglu’s Theorem, Theorem 6.2, passing to a subsequence
if necessary there is α̃ so that αi converges in weak∗.

Since by denoting X(s) = etM it holds that (ex)

0 = X(t1)x0 +X(t1)

∫ t1

0
X(−s)Nαi(s) ds

by weak∗ conv→ X(τ̃)x0 +X(τ̃)

∫ τ̃

0
X(−s)Nα̃(s) ds

since
∫ t1

0 |X(−s)N | ds < ∞, it follows that α̃ is optimal. (This formula
tells if we can reach 0 from x0 in given time and control, and is based on
the theory of linear ODEs, see Evans’ lecture note.)

After verifying that set of controls steering to 0 in time τ̃ satisfies the
condition of Krein-Milman (ex, based on the above integral formula), we
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can show that there is optimal control of bang-bang type: Let α∗ be extreme
point of controls steering to 0 in time τ̃ (actually essentially α∗ = α̃ in this
particular example). Now we show that such extreme point is bang-bang.
Suppose that there is F ⊂ (0, τ̃), |F | > 0 such that

α∗ < 1− ε.

Now, choose β 6≡ 0, |β| ≤ 1, β = 0 outside F , and∫
F
X−1(s)Nβ(s) ds = 0.

It holds that

|α∗ + εβ| ≤ 1.

Thus since

X(τ̃)x0 +X(τ̃)

∫
F
X−1(s)N(α∗(s) + εβ(s)) ds

= X(τ̃)x0 +X(τ̃)

(∫
F
X−1(s)Nα∗(s) ds+ ε

∫
F
X−1(s)Nβ(s) ds︸ ︷︷ ︸

=0

)
= 0

also α∗ + εβ is admissible and steers to 0 in time τ̃ . So is α∗ − εβ, and
1
2(α∗+εβ)+ 1

2(α∗−εβ) = α∗, which is a contradiction, since α∗ was extreme.
Thus α∗ must be of bang-bang type.

7. Stochastic control theory

This section gives some ideas on the stochastic control theory. It is
strictly formal, for the backround and rigor, the stochastics courses are
recommended.

So far our dynamics has been given by ODE,{
x′(t) = f(x(t), α(t)), t > 0

x(0) = x0.

In many financial etc. phenomenons, there is however noise and stochastic
differential equations (SDE) are used as a model dynamics, for example,{

X ′(t) = f(X(t), A(t)) + noise t > 0

X(0) = x0.

and A is a control. Here X is an example of a stochastic process.

We skip the rigorous assumptions: roughly speaking, we need regularity
assumptions on f and measurability assumptions on A. Heuristically

A : [0, T ]→ K

is a mapping such that A(s) depends on the history/observations up to time
s.
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What incidence of history occurred can be indexed by sample point ω ∈ Ω.
Further, we need to assign sample space, events and their probabilities. This
is modeled by probability space

(Ω,F ,P ),

where F (a σ-algebra) is space of events and P a probability measure as-
signing probability P (A) on each A ∈ F .

Random variables are usually denoted by capital letters and they are
defined to be measurable functions with respect to the F . This allows us
define the expectation as a usual integral

E [X] :=

∫
Ω
X dP .

A key concept is so called stochastic integral with respect to Brownian
motion W denoted ∫ T

0
GdW.

This integral is being build on by approximating by step processes and sums
like ∑

k

Gk(W (sk+1)−W (sk)).

A typical notation in SDE:s now reads as{
dX(t) = f(t) dt+ σ(t) dW,

X(0) = x0

where f : [0, T ] → Rn and σ : [0, T ] → R (we take σ to be deterministic
scalar valued for simplicity). This means

X(t) = x0 +

∫ t

0
f(s) ds+

∫ t

0
σ(s) dW (s).

Heuristically, Ito rule can looked through Taylor’s theorem. A difference
is that the Brownian motion is very ’curly’ or irregular and thus also higher
order effects add up. In 1D, assuming u is smooth,

du(X(t)) = u′(X(t)) dX(t) +
1

2
u′′(X(t))( dX)2 + . . .

= u′(X(t))(f(t) dt+ σ(t) dW ) +
1

2
u′′(X(t))(f(t) dt+ σ(t) dW )2 + . . .

= u′(X(t))(f(t) dt+ σ(t) dW )

+
1

2
u′′(X(t))(f2(t)( dt)2 + 2f(t)σ(t) dt dW + σ2(t)( dW (t))2 + . . .

Using dW 2 = dt and dropping the higher order terms, we obtain

du(X(t)) =
(
u′(X(t))f(t) +

1

2
u′′(X(t))σ2(t))

)
dt+ u′(X(t))σ(t) dW.
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In the higher order case, where dX, dW = ( dW1, . . . , dWn) etc are vec-
tors. We use the rule

dWi dWj =

{
dt, i = j

0, otherwise.

and get, also including time dependence for u,

du(X(t), t)

= ut(X(t), t) dt+
∑
i

uxi(X(t)) dXi(t) +
1

2

∑
ij

uxixj (X(t)) dXi dXj

= ut(X(t), t) +
∑
i

uxi(X(t))(fi(t) dt+ σ(t) dWi(t))

+
1

2

∑
ij

uxixj (X(t))(fi(t) dt+ σ dWi)(fj(t) dt+ σ(t) dWj(t))

= ut(X(t), t) dt+
∑
i

((
uxi(X(t), t)fi(t) + uxixi(X(t), t)

σ(t)2

2

)
dt+ σ(t)uxi(X(t), t) dWi(t)

)
=
(
ut(X(t), t) +Du(X(t), t) · f(t) + ∆u(X(t), t)

σ(t)2

2

)
dt+ σ(t)Du(X(t), t) · dW (t).

7.1. Dynamic programming and connection to PDE. Consider the
controlled SDE{

dX(s) = f(X(s), A(s)) ds+ σ dW (s), t ≤ s ≤ T
X(t) = x.

We define the expected payoff

Px,t(A) := E
[ ∫ T

t
r(X(s), A(s)) ds+ g(X(T ))

]
and the value

u(x, t) = sup
A∈A

Px,t(A)

= E
[ ∫ T

t
r(X(s), A(s)) ds+ g(X(T )).

]
Let A be

A(s) =

{
any control, t ≤ s ≤ t+ h

optimal, t+ h < s ≤ T.

Since the value u is the largest expected payoff, we have

u(x, t) ≥ E
[ ∫ t+h

t
r(X(s), A(s)) ds+ u(X(t+ h), t+ h)

]
.
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Thus

0 ≥ E
[ ∫ t+h

t
r(X(s), A(s)) ds

]
+ E

[
u(X(t+ h), t+ h)− u(x, t)

]
(7.16)

Recalling Ito formula (replace A there by f) and writing with the integral
notation, we have

u(X(t+ h), t+ h)− u(X(t), t)

=

∫ t+h

t

(
ut +Du · f + ∆u

σ2

2

)
ds+ σ

∫ t+h

t
Du · dW

so that

E
[
u(X(t+ h), t+ h)− u(x, t)

]
= E

[ ∫ t+h

t

(
ut +Du · f + ∆u

σ2

2

)
ds+ σ

∫ t+h

t
Du · dW

]
= E

[ ∫ t+h

t

(
ut +Du · f + ∆u

σ2

2

)
ds

]
+ σ E

[ ∫ t+h

t
Du · dW

]
︸ ︷︷ ︸

=0

.

Combining this with (7.16), we have

0 ≥ E
[ ∫ t+h

t

(
r + ut +Du · f + ∆u

σ2

2

)
ds

]
.

Assume that X(s) → x,A(s) → a as s → 0, f, r and u are regular, divide
by h and pass to a limit to get

0 ≥ r(x, a) + ut(x, t) +Du(x, t) · f(x, a) + ∆u(x, t)
σ2

2
. (7.17)

Since this holds for any control up to time t + h and we expect equality
if taking sup over controls

0 = sup
A∈A

E
[ ∫ t+h

t

(
r(X(s), A(s)) + ut(X(s), s) +Du(X(s), s) · f(X(s), A(s))

+ ∆u(X(s), s)
σ2

2

)
ds

]
Thus there is a control s.t.

0 ≤ E
[ ∫ t+h

t

(
r(X(s), A(s)) + ut(X(s), s) +Du(X(s), s) · f(X(s), A(s))

+ ∆u(X(s), s)
σ2

2

)
ds

]
− η.

Assuming that X(s)→ x,A(s)→ a as s→ 0, f, r and u are regular, divide
by h and pass to a limit we get

0 ≤ r(x, a) + ut(x, t) +Du(x, t) · f(x, a) + ∆u(x, t)− η. (7.18)
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Since η > 0 above is arbitrary and recalling (7.17), we justified heuristically
that the value satisfies a PDE

ut(x, t) + sup
a∈K
{r(x, a) +Du(x, t) · f(x, a)}+ ∆u(x, t) = 0.

Remark 7.1. Now the highest order operator has no control dependence
since σ was just a constant. This would change by choosing σ with control
dependence.

Example 7.2 (Merton’s optimal portfolio selection problem). Next we look
at Application 7.6 in Evans’ lecture note (done at lectures). As shown there
the solution to the corresponding HJB is of the form u(x, t) = g(t)xγ, where
x reflects the wealth, and γ is the power in the selected utility function for
consumption. Also g is explicitly given in Evans’ lecture note. The optimal
portfolio selection is

α̃1(x, t) =
−(R− r)ux
σ2xuxx

=
−(R− r)γxγ−1

σ2xγ(γ − 1)xγ−2

=
−(R− r)γxγ−1

σ2xγ(γ − 1)xγ−2

=
−(R− r)
σ2(γ − 1)

.
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