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Abstract. We show that weak solutions to a singular parabolic partial dif-
ferential equation globally belong to a higher Sobolev space than assumed a
priori. To this end, we prove that the gradients satisfy a reverse Hölder in-
equality near the boundary. The results extend to singular parabolic systems
as well. Motivation for studying reverse Hölder inequalities comes partly from
applications to regularity theory.

1. Introduction
We study the global regularity properties of singular parabolic partial di�erential

equations. Parabolic partial di�erential equations with the principal part in the
divergence form are either degenerate or singular depending on the vanishing of the
gradient. In particular, the parabolic p-Laplace equation

∂u

∂t
= div

(
|∇u|p−2∇u

)
,

is singular when 1 < p < 2 and degenerate when p > 2. In the degenerate case,
the modulus of ellipticity, |∇u|p−2, vanishes when |∇u| = 0, whereas in the sin-
gular case, it becomes unbounded. The modulus of ellipticity describes the rate
of di�usion, and therefore, the behavior of solutions is quite di�erent between the
two cases. For example, disturbances have a �nite speed of propagation in the
degenerate case, whereas solutions extinct in �nite time in the singular case.

Weak solutions to degenerate equations belong to a slightly higher Sobolev space
than assumed a priori. Moreover, this holds up to the boundary, as shown in [21].
In the singular case, there are several new phenomena and di�culties. Hence, it is
not obvious that singular equations have a higher integrability property as well.

In this paper, we show that weak solutions to singular parabolic partial di�er-
ential equations globally belong to a higher Sobolev space than assumed a priori
when 2n/(n + 2) < p ≤ 2. Furthermore, the results extend to systems of the form

∂ui

∂t
= divAi(x, t,∇u), i = 1, 2, . . . , N.

We assume that the complement of the domain satis�es a uniform capacity density
condition, which is essentially sharp for our main results. In addition, the boundary
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values belong to an appropriate higher Sobolev space. Note, however, that the re-
sults of this paper are already nontrivial for regular domains and smooth boundary
values.

The proofs are based on Caccioppoli and Sobolev-Poincaré-type inequalities as
well as on the careful analysis of level sets. We also apply intrinsic scaling and cov-
ering arguments. Intuitively, some properties of the heat equation can be restored
in the intrinsic geometry that depends on the gradient itself. However, boundary
e�ects and singularity cause extra di�culties: The covering now consists of three
kind of intrinsic cylinders. Indeed, the cylinders may lie near the lateral boundary,
near the initial boundary or inside the domain. Due to singularity, it is a delicate
problem to cover the space-time domain in such a way that an appropriate reverse
Hölder inequality holds. Moreover, the proof in the degenerate case utilizes the Lp-
norm of the gradient, whereas in the singular case, we avoid the use of the L2-norm
of the gradient by applying a di�erent scaling.

The �rst nonlinear parabolic higher integrability results apparently date back to
a 1982 paper of Giaquinta and Struwe [11]. They studied the local higher integrabil-
ity for systems of parabolic equations with quadratic growth conditions. However,
for more general systems, the problem remained open for some time: In the year
2000 Kinnunen and Lewis settled the local higher integrability question in [16] when
p > 2n/(n+2). For recent results, see Acerbi-Mingione [1] and Parviainen [22]. See
also Antontsev-Zhikov [3], Arkhipova [4], DiBenedetto [5], and Duzaar-Mingione [6]
for further parabolic regularity results.

In the elliptic case, the same higher integrability proof applies to both degenerate
and singular equations. Granlund showed in [12] that an elliptic minimizer has the
global higher integrability property if the complement of the domain satis�es a
measure density condition. Later, Kilpeläinen and Koskela generalized the elliptic
results to a wider class of equations and to a uniform capacity density condition in
[15].

The higher integrability estimates provide a useful tool in applications to partial
regularity (see, for example, Giaquinta-Modica [10]) and stability, to mention a few.
On the other hand, the regularity properties of solutions are often interesting in
their own right.

2. Preliminaries
2.1. Parabolic setting. Let Ω be a bounded open set in Rn, n ≥ 2, and let
2n/(n + 2) < p ≤ 2. We study the equation

∂u

∂t
= divA(x, t,∇u), (x, t) ∈ Ω× (0, T ), (2.1)

where u : Ω× (0, T ) → R and A : Ω× (0, T )×Rn → Rn. We assume that A is a
Carathéodory function, that is, (x, t) 7→ A(x, t, ξ) is measurable for every ξ in Rn

and ξ 7→ A(x, t, ξ) is continuous for almost every (x, t) ∈ Ω × (0, T ). In addition,
there exist constants 0 < α ≤ β < ∞ such that

A(x, t, ξ) · ξ ≥ α|ξ|p and |A(x, t, ξ)| ≤ β|ξ|p−1.

As usual, W 1,p(Ω) denotes the Sobolev space of functions in Lp(Ω) whose �rst
distributional partial derivatives belong to Lp(Ω) with the norm

||u||W 1,p(Ω) = ||u||Lp(Ω) + ||∇u||Lp(Ω) .
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The Sobolev space W 1,p
0 (Ω) is a completion of C∞0 (Ω) in the norm of W 1,p(Ω).

The parabolic space Lp(0, T ;W 1,p(Ω)) is a collection of measurable functions
u(x, t) such that for almost every t ∈ (0, T ), the function x 7→ u(x, t) belongs to
W 1,p(Ω) and the norm

||u||Lp(0,T ;W 1,p(Ω)) =

(∫ T

0

||u||pW 1,p(Ω) dt

)1/p

is �nite. Analogously, the space Lp(0, T ;W 1,p
0 (Ω)) is a collection of measurable

functions u(x, t) such that for almost every t ∈ (0, T ), the function x 7→ u(x, t)
belongs to W 1,p

0 (Ω) and
||u||Lp(0,T ;W 1,p(Ω)) < ∞.

The parabolic Sobolev space W 1,2(0, T ; L2(Ω)) consists of functions

{ϕ ∈ L2(0, T ; L2(Ω)) :
∂ϕ

∂t
∈ L2(0, T ; L2(Ω))}

with the norm

||ϕ||W 1,2(0,T ;L2(Ω)) = ||ϕ||L2(0,T ;L2(Ω)) +
∣∣∣∣
∣∣∣∣
∂ϕ

∂t

∣∣∣∣
∣∣∣∣
L2(0,T ;L2(Ω))

.

Finally, the space C([0, T ]; L2(Ω)) comprises all continuous functions u : [0, T ] →
L2(Ω) (that is, u is continuous with respect to t in the norm || · ||L2(Ω)) such that

||u||C([0,T ];L2(Ω)) = max
t∈[0,T ]

||u(·, t)||L2(Ω) < ∞.

A function u belonging to the space L2
loc(Ω × (0, T )) ∩ Lp

loc(0, T ; W 1,p
loc (Ω)) is a

weak solution to (2.1) if

−
∫ T

0

∫

Ω

u
∂φ

∂t
dxdt +

∫ T

0

∫

Ω

A(x, t,∇u) · ∇φdx dt = 0, (2.2)

for every φ ∈ C∞0 (Ω× (0, T )).
A Lebesgue-type initial condition and a Sobolev-type boundary condition turn

out to be convenient for our purposes. To be more speci�c, we say that u is a global
solution if u ∈ L2(Ω× (0, T ))∩Lp(0, T ;W 1,p(Ω)) satis�es (2.2) as well as the initial
and boundary conditions:

u(·, t)− ϕ(·, t) ∈ W 1,p
0 (Ω) for almost every t ∈ (0, T )

and
1
h

∫ h

0

∫

Ω

|u− ϕ|2 dxdt → 0 as h → 0,

(2.3)

for a given
ϕ ∈ W 1,2(0, T ; L2(Ω)) ∩ Lp(0, T ; W 1,p(Ω)) ∩ C([0, T ];L2(Ω)).

Observe that already smooth ϕ leads to a nontrivial theory.
There is a well-recognized di�culty in proving Caccioppoli-type estimates for

weak solutions: We often use test function depending on u itself, but u may not be
admissible. We treat this di�culty by using the standard convolution. We set

φε(x, t) =
∫

R

φ(x, t− s)ζε(s) ds,
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where φ ∈ C∞0 (Ω × (0, T )) and ζε(s) is a standard molli�er, whose support is
contained in (−ε, ε) with ε < dist (spt(φ), Ω× {0, T}). We insert φε into (2.2),
change variables, and apply Fubini's theorem to obtain

−
∫ T

0

∫

Ω

uε
∂φ

∂t
dz +

∫ T

0

∫

Ω

A(x, t,∇u)ε · ∇φdz = 0. (2.4)

Here uε and A(x, t,∇u)ε denote the molli�ed functions in the time direction.

2.2. Notation. Let
ΩT = Ω× (0, T )

be a space-time cylinder. We denote the points of the cylinder by z = (x, t) and
employ a shorthand notation dz = dx dt.

Let z0 = (x0, t0) ∈ ΩT and θ, ρ > 0. Then we denote
Bρ(x0) = {x ∈ Rn : |x− x0| < ρ },
Bρ(x0) = {x ∈ Rn : |x− x0| ≤ ρ }

and
Λθρ2(t0) = (t0 − 1

2
θρ2, t0 +

1
2
θρ2).

Further, a space-time cylinder in Rn+1 is denoted by
Qρ,θρ2(z0) = Qρ,θρ2(x0, t0) = Bρ(x0)× Λθρ2(t0).

When no confusion arises, we shall omit the reference points and simply write Bρ,
Λθρ2 and Qρ,θρ2 . The integral average of u is denoted by

uρ(t) =
∫

Bρ

u(x, t) dx =
1
|Bρ|

∫

Bρ

u(x, t) dx,

where |Bρ| denotes the Lebesgue measure of Bρ. The power 2∗ = 2n/(n+2) is used
in the initial boundary term. Finally, φ′ sometimes denotes the time derivative of
φ instead of ∂φ

∂t .

2.3. Capacity. Let 1 < p < ∞. The variational p-capacity of a compact set C ⊂ Ω
is de�ned to be

capp(C, Ω) = inf
g

∫

Ω

|∇g|p dx,

where the in�mum is taken over all the functions g ∈ C∞0 (Ω) such that g = 1 in C.
To de�ne the variational p-capacity of an open set U ⊂ Ω, we take the supremum
over the capacities of the compact sets belonging to U . The variational p-capacity
of an arbitrary set E ⊂ Ω is de�ned by taking the in�mum over the capacities of
the open sets containing E. For the capacity of a ball, we obtain the simple formula

capp(Bρ, B2ρ) = cρn−p, (2.5)
where c > 0 depends only on n and p. For further details, see Chapter 4 of
Evans-Gariepy [7], Chapter 2 of Heinonen-Kilpeläinen-Martio [14], or Chapter 2 of
Malý-Ziemer [18].

In this paper, we assume that the complement of the domain satis�es a uniform
capacity density condition. For the higher integrability results, this condition is
essentially sharp as pointed out in Remark 3.3. of Kilpeläinen-Koskela [15] in the
elliptic case.
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De�nition 2.6. A set E ⊂ Rn is uniformly p-thick if there exist constants µ, ρ0 > 0
such that

capp(E ∩Bρ(x), B2ρ(x)) ≥ µ capp(Bρ(x), B2ρ(x)),

for all x ∈ E and for all 0 < ρ < ρ0.

If we replace the capacity with the Lebesgue measure in the de�nition above,
we obtain a measure density condition. A set E, satisfying the measure density
condition, is uniformly p-thick for all p > 1.

Singularity does not play an essential role before Lemma 3.2, and, therefore, we
mostly omit the proofs of �rst lemmas. For more details, we refer the reader to
the degenerate proofs in [21]. Since Ω is bounded, the estimate in De�nition 2.6
actually holds for every ρ. Moreover, the estimate is also valid inside a uniformly
p-thick domain near the boundary as stated in the next lemma.

Lemma 2.7. Let Ω be a bounded open set, and suppose that Rn \ Ω is uniformly
p-thick. Choose y ∈ Ω such that B 4

3 ρ(y) \ Ω 6= ∅. Then there exists a constant
µ̃ = µ̃(µ, ρ0, n, p) > 0 such that

capp(B2ρ(y) \ Ω, B4ρ(y)) ≥ µ̃ capp(B2ρ(y), B4ρ(y)).

A uniformly p-thick domain has a deep self-improving property. This result was
shown by Lewis in [17], see also Ancona [2]. For a good survey of the boundary
regularity, see Section 8 of Mikkonen [20].

Theorem 2.8. Let 1 < p ≤ n. If a set E is uniformly p-thick, then there exists a
constant q = q(n, p, µ) such that 1 < q < p for which E is uniformly q-thick.

We end this section by stating without a proof a capacitary version of a Sobolev-
type inequality. A boundary version of Sobolev's inequality follows from this lemma
coupled with the boundary regularity condition. For the proof, see Hedberg [13],
Chapter 10 of Maz'ja's monograph [19] or Lemma 3.1 of Kilpeläinen-Koskela [15].

The lemma employs quasicontinuous representatives of the Sobolev functions.
We call u ∈ W 1,p(Ω) p-quasicontinuous if for each ε > 0 there exists an open set
U , U ⊂ Ω ⊂ BR′ , such that capp(U,B2R′) ≤ ε, and the restriction of u to the set
Ω \ U is �nite valued and continuous.

The p-quasicontinuous functions are closely related to the Sobolev space
W 1,p(Ω): For example, if u ∈ W 1,p(Ω), then u has a p-quasicontinuous repre-
sentative. In addition, the capacity can be written in terms of quasicontinuous
representatives.

Lemma 2.9. Suppose that q ∈ (1, p) and that u ∈ W 1,q(B2ρ) is q-quasicontinuous.
Denote

NBρ(u) = {x ∈ Bρ : u(x) = 0}
and choose q̃ ∈ [q, q∗], where q∗ = qn/(n − q). Then there exists a constant c =
c(n, q) > 0 such that

(∫

B2ρ

|u|q̃ dx

)1/q̃

≤
(

c

capq(NBρ(u), B2ρ)

∫

B2ρ

|∇u|q dx

)1/q

.

The above estimate also holds if the powers on both sides are replaced by p.
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Lemma 2.10. Suppose that u ∈ W 1,p(B2ρ) is p-quasicontinuous and let NBρ
(u)

be as above. Then there exists a constant c = c(n, p) > 0 such that
(∫

B2ρ

|u|p dx

)1/p

≤
(

c

capp(NBρ
(u), B2ρ)

∫

B2ρ

|∇u|p dx

)1/p

.

3. Estimates near the boundary
In this section, we derive estimates near the lateral boundary ∂Ω× (0, T ). These

estimates are applied in Section 4 in order to prove a reverse Hölder inequality. We
start with a Caccioppoli-type inequality.

Lemma 3.1 (Caccioppoli). Let u be a global solution with the boundary and initial
conditions (2.3). Let θ > 0, suppose that 0 < θρ2 < M for some M > 0, and let
Qρ,θρ2 = Qρ,θρ2(x0, t0) ⊂ Rn+1. Then there exists a constant c = c(n, p, M, α, β) >
0 such that∫

Qρ,θρ2∩ΩT

|∇u|p dz + ess sup
t∈Λθρ2∩(0,T )

∫

Bρ∩Ω

|u− ϕ|2 dx

≤ c

θρ2

∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|2 dz +
c

ρp

∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|p dz

+ c

∫

Q4ρ,θ(4ρ)2∩ΩT

( |ϕ′|2 + |∇ϕ|p )
dz.

Proof. The proof is virtually the same as in the degenerate case. Observe, however,
that now the power 2 dominates over p. Formally, we choose in (2.4) the test
function

φ(x, t) = ηp(x, t)(u(x, t)− ϕ(x, t))χh
0,t1(t),

where χh
0,t1(t) is a piecewise linear approximation of a characteristic function ap-

proaching χ0,t1(t) as h → 0. Furthermore, η ∈ C∞0 (Rn+1) is a cut-o� function such
that spt η ⊂ Q4ρ,θ(4ρ)2 , η(x, t) = 1 in Qρ,θρ2 , 0 ≤ η ≤ 1, and

ρ |∇η|+ θρ2

∣∣∣∣
∂η

∂t

∣∣∣∣ ≤ c.

The assumption θρ2 < M is utilized together with Young's inequality to estimate
∫

Ω×(0,t1)

|ϕ′| ηp |u− ϕ| dz

≤ ε

∫

Ω×(0,t1)

|ϕ′|2 ηp dz +
c

θρ2

∫

Ω×(0,t1)

ηp |u− ϕ|2 dz

in the proof. Here c depends on M and ε. ¤

In order to derive a reverse Hölder inequality, we estimate the right hand side of
Caccioppoli's inequality in terms of the gradient. A natural idea is to use Sobolev's
inequality, but there is a principal di�culty in the parabolic case: We assume little
regularity for a weak solution in the time direction, and Sobolev's inequality is not
applicable in space-time cylinders as such. Nevertheless, weak solutions satisfy the
following parabolic Sobolev's inequality.
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Lemma 3.2 (parabolic Sobolev). Let u be a global solution with the bound-
ary and initial conditions (2.3). Suppose that Rn \ Ω is uniformly p-thick. Let
θ > 0, suppose that 0 < θρ2 < M for some M > 0, and choose Qρ,θρ2 =
Qρ,θρ2(x0, t0) ⊂ Rn+1 such that B 4

3 ρ(x0) \ Ω 6= ∅. Then there exists a positive
constant c = c(n, p, M, Xµ, ρ0, α, β) such that

ess sup
t∈Λθρ2∩(0,T )

∫

Bρ∩Ω

|u− ϕ|2 dx

≤ c

θρ2

∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|2 dz + c

∫

Q4ρ,θ(4ρ)2∩ΩT

|∇(u− ϕ)|p dz

+ c

∫

Q4ρ,θ(4ρ)2∩ΩT

( |ϕ′|2 + |∇ϕ|p )
dz.

Proof. The claim follows from Caccioppoli's inequality and Lemma 2.10 in a
straightforward manner: We extend u(·, t)−ϕ(·, t) by zero outside of Ω and use the
same notation for the extension. For a given t, we denote

NB2ρ(u− ϕ) = {x ∈ B2ρ : u(x, t)− ϕ(x, t) = 0}.

We estimate the second term on the right side of Caccioppoli's inequality by using
Hölder's inequality and Lemma 2.10. Consequently,

c

ρp

∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|p dz

≤ cρn

ρp

∫

Λθ(4ρ)2∩(0,T )

1
capp(NB2ρ(u− ϕ), B4ρ)

∫

B4ρ

|∇(u− ϕ)|p dx dt.

Since Rn \Ω is uniformly p-thick and B 4
3 ρ(x0) \Ω 6= ∅, we conclude by Lemma 2.7

and (2.5) that

capp(NB2ρ(u− ϕ), B4ρ(x0)) ≥ µ̃ capp(B2ρ(x0), B4ρ(x0)) = cρn−p

for almost every t ∈ [0, T ]. Notice that this estimate still holds true if we rede�ne
u(·, t)− ϕ(·, t) in a set of measure zero in Ω. ¤

One of the di�culties in proving the �rst reverse Hölder inequality is the fact
that both the powers 2 and p appear in the above inequalities. We combine the
previous lemma with the following Sobolev-type inequality in order to estimate the
terms on the right hand side of the Caccioppoli. Observe that the self-improving
property of the capacity density condition plays an important role in the proof.

Lemma 3.3. Let u be a global solution with the boundary and initial conditions
(2.3). Suppose that Rn \ Ω is uniformly p-thick. Let θ > 0, suppose that 0 <
θρ2 < M for some M > 0, and choose Qρ,θρ2 = Qρ,θρ2(x0, t0) ⊂ Rn+1 such that
B 4

3 ρ(x0) \ Ω 6= ∅. Then there exist constants q̃ < p and c = c(n, p, M, µ, ρ0) > 0
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such that
1∣∣Q4ρ,θ(4ρ)2

∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|2 dz

≤ cρq̃

∣∣Q4ρ,θ(4ρ)2
∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|∇(u− ϕ)|q̃ dz

·
(

ess sup
t∈Λθ(4ρ)2∩(0,T )

1
|B4ρ|

∫

B4ρ∩Ω

|u− ϕ|2 dx

)1−q̃/2

.

Proof. In order to prove the claim, we apply Hölder's and Sobolev's inequalities.
First, divide the term on the left hand side of the claim as

1
|B4ρ|

∫

B4ρ∩Ω

|u− ϕ|2 dx

=

(
1

|B4ρ|
∫

B4ρ∩Ω

|u− ϕ|2 dx

)q̃/2 (
1

|B4ρ|
∫

B4ρ∩Ω

|u− ϕ|2 dx

)1−q̃/2

,

(3.4)

where q̃ < p is �xed later. Next we extend u(·, t)− ϕ(·, t) by zero outside of Ω, use
the same notation for the extension, and set q̃∗ = q̃n/(n − q̃). Furthermore, for a
given t, denote

NB2ρ(u− ϕ) = {x ∈ B2ρ : u(·, t)− ϕ(·, t) = 0}.
According Lemma 2.9, we have

(
1

|B4ρ|
∫

B4ρ

|u− ϕ|2 dx

)q̃/2

≤ c

capq̃(NB2ρ(u− ϕ), B4ρ)

∫

B4ρ

|∇(u− ϕ)|q̃ dx.

(3.5)
To continue, we would like to use the uniform capacity density condition, but
this is not immediately possible since q̃ < p and since we only assumed that the
complement of a domain is uniformly p-thick. Nevertheless, Theorem 2.8 asserts
that the density condition satis�es the self-improving property. This, together with
Lemma 2.7 and (2.5), implies

capq̃(NB2ρ(u− ϕ), B4ρ) ≥ µ̃ capq̃(B2ρ, B4ρ) = cρn−q̃,

for almost every t and for large enough q̃ < p. We combine this capacity estimate
with (3.5) and (3.4), and end up with

1
|B4ρ|

∫

B4ρ

|u− ϕ|2 dx ≤ cρq̃

|B4ρ|
∫

B4ρ

|∇(u− ϕ)|q̃ dx

(
1

|B4ρ|
∫

B4ρ

|u− ϕ|2 dx

)1−q̃/2

.

The claim follows by integrating this estimate with respect to time. ¤

4. Reverse Hölder inequalities
The proof of the main result, Theorem 6.1, consists of three cases: We consider

cylinders near the lateral boundary, near the initial boundary and inside the domain.
This section provides a reverse Hölder inequality near the lateral boundary for the
gradient of a solution, and the next section deals with a reverse Hölder inequality
near the initial boundary. Finally, Section 6 combines all the cases and shows that
the reverse Hölder inequalities have a self-improving property.
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We utilize the estimates from the previous section in scaled space-time cylinders.
The scaling takes both singularity and boundary e�ects into account. In particular,
the scaling allows us to absorb the additional terms into the left hand side in the
next lemma. In addition, the right scaling helps in combining the initial and lateral
boundary estimates in the proof of the main result. Due to singularity, the term
with the power 2 is dominant contrary to the degenerate case.

Lemma 4.1 (reverse Hölder). Let u be a global solution with the boundary and
initial conditions (2.3). Suppose that Rn \ Ω is uniformly p-thick. Let λ > 0, set
θ = λ2−p, suppose that 0 < θρ2 < M for some M > 0, and choose Qρ,θρ2 =
Qρ,θρ2(x0, t0) ⊂ Rn+1 such that B 4

3 ρ(x0) \ Ω 6= ∅. Further, denote

Bρ =
1∣∣Qρ,θρ2

∣∣
∫

Qρ,θρ2∩ΩT

|ϕ′|2 dz +
1

θ
∣∣Qρ,θρ2

∣∣
∫

Qρ,θρ2∩ΩT

|∇ϕ|2 dz (4.2)

for short. Suppose then that there exists a constant c1 ≥ 1 for which

c−1
1 λp ≤ 1∣∣Qρ,θρ2

∣∣
∫

Qρ,θρ2∩ΩT

( |u− ϕ|2
θρ2

+ |∇u|p
)

dz + Bρ

≤ c1∣∣Q20ρ,θ(20ρ)2
∣∣
∫

Q20ρ,θ(20ρ)2∩ΩT

( |u− ϕ|2
θρ2

+ |∇u|p
)

dz + c1B20ρ ≤ c2
1λ

p.

(4.3)

Then there exist constants c = c(n, p,M, c1, µ, ρ0, α, β) > 0 and q̃ = q̃(n, p, µ) < p
such that

1∣∣Q20ρ,θ(20ρ)2
∣∣
∫

Q20ρ,θ(20ρ)2∩ΩT

|∇u|p dz

≤
(

c∣∣Q4ρ,θ(4ρ)2
∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|∇u|q̃ dz

)p/q̃

+ cB4ρ.

Proof. To prove the claim, we estimate the terms on the right hand side of Cac-
cioppoli's inequality with the gradient by using the parabolic version of Sobolev's
inequality. Observe �rst that Lemma 3.1 provides the estimate

1∣∣Qρ,θρ2

∣∣
∫

Qρ,θρ2∩ΩT

(
|∇u|p +

|u− ϕ|2
θρ2

)
dz + Bρ

≤ c

θρ2
∣∣Q4ρ,θ(4ρ)2

∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|2 dz +
1∣∣Q4ρ,θ(4ρ)2

∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|∇ϕ|p dz

+
c

ρp
∣∣Q4ρ,θ(4ρ)2

∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|p dz + cB4ρ.

(4.4)

Notice that we inserted some extra terms to the above inequality. This will help us
at the end of the proof to absorb terms into the left.
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Since p ≤ 2 and θ = λ2−p, we may estimate the third term on the right in terms
of the �rst by using Hölder's and Young's inequalities. We conclude that

c

ρp
∣∣Q4ρ,θ(4ρ)2

∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|p dz

≤ θp/2

(
c

θρ2
∣∣Q4ρ,θ(4ρ)2

∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|2 dz

)p/2

≤ λpε +
c

θρ2
∣∣Q4ρ,θ(4ρ)2

∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|2 dz,

(4.5)

and hence it is enough to estimate the �rst term on the right hand side of (4.4).
In view of Lemma 3.3, there exists a constant q̃ < p such that

1∣∣Q4ρ,θ(4ρ)2
∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|2 dz

≤ cρq̃

∣∣Q4ρ,θ(4ρ)2
∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|∇(u− ϕ)|q̃ dz

·
(

ess sup
t∈Λθ(4ρ)2∩(0,T )

1
|B4ρ|

∫

B4ρ∩Ω

|u− ϕ|2 dx

)1−q̃/2

.

(4.6)

The �rst integral is of the correct form, but the second integral should be estimated
from above by the gradient. To accomplish this, we apply Lemma 3.2, Hölder's
inequality, and assumption (4.3). First, according to Hölder's inequality and (4.3),
we have

∫

Q4ρ,θ(4ρ)2∩ΩT

|∇ϕ|p dz

≤
(

1
θ
∣∣Q4ρ,θ(4ρ)2

∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|∇ϕ|2 dz

)p/2

θp/2
∣∣Q4ρ,θ(4ρ)2

∣∣ ≤ ρn+2λ2,

since θ = λ2−p. This leads to

ess sup
t∈Λθρ2∩(0,T )

∫

Bρ∩Ω

|u− ϕ|2 dx

≤ c

θρ2

∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|2 dz + c

∫

Q4ρ,θ(4ρ)2∩ΩT

|∇(u− ϕ)|p dz

+ c

∫

Q4ρ,θ(4ρ)2∩ΩT

(|ϕ′|2 + |∇ϕ|p) dz ≤ cρn+2λ2.

(4.7)
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To continue, we merge estimates (4.6) and (4.7), apply Young's inequality, and
conclude that

1
θρ2

∣∣Q4ρ,θ(4ρ)2
∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|u− ϕ|2 dz

≤ ρq̃c

θρ2
∣∣Q4ρ,θ(4ρ)2

∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|∇(u− ϕ)|q̃ dz
(
ρ2λ2

)1−q̃/2

≤
(

c∣∣Q4ρ,θ(4ρ)2
∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|∇(u− ϕ)|q̃ dz

)p/q̃

+ ελp,

since (θρ2)−1ρq̃
(
ρ2λ2

)1−q̃/2 = λp−q̃.
We combine the previous estimate with (4.4) and (4.5). Furthermore, we deduce

by Hölder's and Young's inequalities that the second term on the right hand side
of (4.4) can be estimated as

1∣∣Q4ρ,θ(4ρ)2
∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|∇ϕ|p dz

≤ θp/2

(
1

θ
∣∣Q4ρ,θ(4ρ)2

∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|∇ϕ|2 dz

)p/2

≤ ελp + cB4ρ.

Combining the facts, we end up with

1∣∣Qρ,θρ2

∣∣
∫

Qρ,θρ2∩ΩT

(
|∇u|p +

|u− ϕ|2
θρ2

)
dz + Bρ

≤ 3ελp +

(
c∣∣Q4ρ,θ(4ρ)2

∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|∇(u− ϕ)|q̃ dz

)p/q̃

+ cB4ρ.

(4.8)

Next we absorb the additional terms into the left. To accomplish this, we employ
scaling of the time direction and choose ε > 0 small enough to absorb 3ελp into the
left hand side. Finally, since (4.3) implies

1∣∣Q20ρ,θ(20ρ)2
∣∣
∫

Q20ρ,θ(20ρ)2∩ΩT

|∇u|p dz

≤ c∣∣Qρ,θρ2

∣∣
∫

Qρ,θρ2∩ΩT

(
|∇u|p +

|u− ϕ|2
θρ2

)
dz + cBρ,

we have proven the claim. ¤

5. Estimates near the initial boundary
This section provides estimates near the initial boundary Ω × {0}. Here we

compare the solution with its average instead of the boundary function, and the
estimates become somewhat di�erent.

The proof uses the weighted mean

uη
2ρ(t) =

∫
B2ρ

ηp(x, t)u(x, t) dx∫
B2ρ

ηp(x, t) dx
,
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instead of the standard mean

u2ρ(t) =
∫

B2ρ

u(x, t) dx.

The weighted mean should be close to the standard mean, and therefore the weight
η ∈ C∞0 (Rn+1) is de�ned to be a cut-o� function such that

spt η ⊂ Q2ρ,θ(2ρ)2(x0, t0), 0 ≤ η ≤ 1, and η = 1 in Qρ,θρ2(x0, t0),

where θ > 0. In addition,

sup
x∈B2ρ

η(x, t) ≤ c̃

∫

B2ρ

η(x, t) dx, t ∈ Λθ(2ρ)2(t0), (5.1)

where

Λθ(2ρ)2(t0) = (t0 − 1
2
θ(2ρ)2, t0 +

1
2
θ(2ρ)2).

The following lemma gives a useful connection between the standard mean and
the weighted mean.

Lemma 5.2. Suppose that B2ρ b Ω, let u(·, t) ∈ Lp
loc(Ω), where p > 1, and let

η, uη
2ρ(t), u2ρ(t) be as above. Then there exists a constant c = c(p, c̃) > 0 such that
∫

B2ρ

|u− u2ρ(t)|p dx ≤ c

∫

B2ρ

|u− uη
2ρ(t)|p dx ≤ c2

∫

B2ρ

|u− u2ρ(t)|p dx.

Here c̃ is the constant in (5.1).

Proof. Let us begin with the �rst inequality. We add and subtract uη
2ρ(t), which

leads to
∫

B2ρ

|u− uη
2ρ(t) + uη

2ρ(t)− u2ρ(t)|p dx

≤ c

∫

B2ρ

|u− uη
2ρ(t)|p dx + c |B2ρ|

∣∣uη
2ρ(t)− u2ρ(t)

∣∣p

since p > 1. This implies the desired estimate since

|B2ρ|
∣∣uη

2ρ(t)− u2ρ(t)
∣∣p ≤

∫

B2ρ

|uη
2ρ(t)− u|p dx

due to Hölder's inequality.
To obtain the second inequality of the claim, we add and subtract u2ρ(t). It

follows that
∫

B2ρ

|u− uη
2ρ(t)|p dx ≤ c

∫

B2ρ

|u− u2ρ(t)|p dx + c|u2ρ(t)− uη
2ρ(t)|p.
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Then we estimate the last terms on the right hand side by using the de�nition of
uη

2ρ(t), Hölder's inequality, and assumption (5.1). We conclude that

|uη
2ρ(t)− u2ρ(t)| ≤

∫
B2ρ

|u− u2ρ(t)|ηp dx∫
B2ρ

ηp dx

≤
(

supx∈B2ρ
η∫

B2ρ
η dx

)p ∫

B2ρ

|u− u2ρ(t)| dx

≤ c̃p

(∫

B2ρ

|u− u2ρ(t)|p dx

)1/p

,

which completes the proof. ¤

We suppress the explicit dependence on c̃ in the notation, since this constant
is �xed as soon as the weight is �xed. From now on, we assume that the cut-o�
function η, de�ned at the beginning of the section, also satis�es

ρ |∇η|+ θρ2

∣∣∣∣
∂η

∂t

∣∣∣∣ ≤ c. (5.3)

The next lemma provides a Caccioppoli-type inequality near the initial boundary.
We assume that ϕ(·, 0) ∈ W 1,2∗+δ(Ω) and, thus, the boundary term in the next
lemma is well de�ned.

Lemma 5.4 (Caccioppoli). Let u be a global solution with the boundary and initial
conditions (2.3). Let θ > 0 and let Qρ,θρ2 = Qρ,θρ2(x0, t0) ⊂ Rn+1 be such that
B4ρ(x0) ⊂ Ω and 0 ∈ Λθ(2ρ)2(t0). Then there exists a constant c = c(n, p, α, β) > 0
such that

∫

Qρ,θρ2∩ΩT

|∇u|p dz + ess sup
t∈Λθρ2∩(0,T )

∫

Bρ

|u− uη
2ρ(t)|2 dx

≤ c

θρ2

∫

Q2ρ,θ(2ρ)2∩ΩT

|u− u2ρ(t)|2 dz +
c

ρp

∫

Q2ρ,θ(2ρ)2∩ΩT

|u− u2ρ(t)|p dz

+ c

(∫

B2ρ

|∇ϕ(x, 0)|2∗ dx

)2/2∗

,

where 2∗ = 2n/(n + 2).

Proof. Formally, we choose a test function

φ(x, t) = ηp(x, t)(u(x, t)− uη
2ρ(t))χ

h
0,t1(t), t1 ∈ Λθρ2 ∩ (0, T ),

where uη
2ρ(t) is the weighted mean and otherwise the notation is the same as in

Lemma 3.1.
The weighted mean is utilized in the estimation of the �rst term of (2.4). We

add and subtract uη
2ρ(t)φ

′ to obtain

−
∫

ΩT

uφ′ dz = −
∫

ΩT

(u − uη
2ρ(t))φ

′ dz −
∫

ΩT

uη
2ρ(t)φ

′ dz.
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The last term in the above expression vanishes. To see this, we integrate by parts,
use the de�nition of uη

2ρ(t), and have

−
∫

ΩT

uη
2ρ(t)φ

′ dz

=
∫ t1

0

χh
0,t1(t)

(∫

B2ρ

uηp dx−
∫

B2ρ
ηp dx

∫
B2ρ

ηpu dx∫
B2ρ

ηp dx

)
(uη

2ρ(t))
′ dt

= 0.

The rest of the proof is almost similar to the degenerate case and we omit it. ¤

The following lemma asserts that a parabolic Poincaré-type inequality is also
valid near the initial boundary.

Lemma 5.5 (parabolic Poincaré). With the assumptions of the previous lemma,
there exists a constant c = c(n, p, α, β) > 0 such that

ess sup
t∈Λθρ2∩(0,T )

∫

Bρ

|u− uη
2ρ(t)|2 dx ≤ c

θρ2

∫

Q2ρ,θ(2ρ)2∩ΩT

|u− u2ρ(t)|2 dz

+ c

∫

Q2ρ,θ(2ρ)2∩ΩT

|∇u|p dz + c

(∫

B2ρ

|∇ϕ(x, 0)|2∗ dx

)2/2∗

.

Proof. This is an immediate consequence of Lemma 5.4 since Lemma 5.2 and
Poincaré's inequality implies

c

ρp

∫

Q2ρ,θ(2ρ2)

|u− uη
2ρ(t)|p dz ≤ c

∫

Q2ρ,θ(2ρ2)

|∇u|p dz. ¤

The following lemma helps us to combine Caccioppoli's inequality with parabolic
Poincaré's inequality. The proof is a straightforward application of Hölder's and
Poincaré's inequalities.

Lemma 5.6. Let u ∈ L2∗(0, T ;W 1,2∗
loc (Ω)), let θ > 0, and choose Qρ,θρ2 =

Qρ,θρ2(x0, t0) ⊂ Rn+1 such that B4ρ(x0) ⊂ Ω and 0 ∈ Λθ(2ρ)2(t0). Then there
exists a constant c = c(n) > 0 such that

∫

Qρ,θρ2∩ΩT

|u− uρ(t)|2 dz

≤ c

∫

Qρ,θρ2∩ΩT

|∇u|2∗ dz

(
ess sup

t∈Λθρ2∩(0,T )

∫

Bρ

|u− u2ρ(t)|2 dx

)2∗/n

.

Proof. First, we divide the left hand side into two parts as∫

Qρ,θρ2∩ΩT

|u− uρ(t)|2 dz

=
∫

Λθρ2∩(0,T )

(∫

Bρ

|u− uρ(t)|2 dx

)1− 2∗
2

(∫

Bρ

|u− uρ(t)|2 dx

) 2∗
2

dt.

Then we apply Poincaré's inequality to the second part, replace uρ(t) by u2ρ(t) in
the �rst the part, and take the essential supremum. ¤
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The following lemma provides a counterpart for Lemma 4.1 near the initial
boundary. Here we can ignore the lateral boundary terms in the scaling.

Lemma 5.7 (reverse Hölder). Let u be a global solution with the boundary
and initial conditions (2.3). Let λ > 0, set θ = λ2−p, and choose Qρ,θρ2 =
Qρ,θρ2(x0, t0) ⊂ Rn+1 such that B40ρ(x0) ⊂ Ω and 0 ∈ Λθ(4ρ)2(t0). Suppose that
there exists c1 > 1 such that

c−1
1 λp ≤ 1∣∣Qρ,θρ2

∣∣
∫

Qρ,θρ2∩ΩT

( |u− uρ(t)|2
θρ2

+ |∇u|p
)

dz

≤ c1∣∣Q20ρ,θ(20ρ)2
∣∣
∫

Q20ρ,θ(20ρ)2∩ΩT

( |u− u20ρ|2
θρ2

+ |∇u|p
)

dz ≤ c2
1λ

p.

(5.8)

Then there exists a positive constant c = c(n, p, c1, α, β) such that

1∣∣Q20ρ,θ(20ρ)2
∣∣
∫

Q20ρ,θ(20ρ)2∩ΩT

|∇u|p dz

≤
(

c∣∣Q4ρ,θ(4ρ)2
∣∣
∫

Q4ρ,θ(4ρ)2∩ΩT

|∇u|2∗ dz

)p/2∗

+
c

θ

(∫

B4ρ

|∇ϕ(x, 0)|2∗ dx

)2/2∗

.

Proof. In view of Lemma 5.4, we have

1∣∣Qρ,θρ2

∣∣
∫

Qρ,θρ2∩ΩT

(
|∇u|p +

|u− uρ(t)|2
θρ2

)
dz

≤ c

θρ2
∣∣Q2ρ,θ(2ρ)2

∣∣
∫

Q2ρ,θ(2ρ)2∩ΩT

|u− u2ρ(t)|2 dz

+
c

ρp
∣∣Q2ρ,θ(2ρ)2

∣∣
∫

Q2ρ,θ(2ρ)2∩ΩT

|u− u2ρ(t)|p dz

+
c

θ

(∫

B2ρ

|∇ϕ(x, 0)|2∗ dx

)2/2∗

.

(5.9)

Since p ≤ 2 and θ = λ2−p, we can estimate the second term on the right hand side
in terms of the �rst in the same way as in (4.5). Thus, we can concentrate on the
�rst term on the right of (5.9).

Recalling Lemma 5.6, we have

1
θρ2

∣∣Q2ρ,θ(2ρ)2
∣∣
∫

Q2ρ,θ(2ρ)2∩ΩT

|u− u2ρ(t)|2 dz

≤ c

θρ2
∣∣Q2ρ,θ(2ρ)2

∣∣
∫

Q2ρ,θ(2ρ)2∩ΩT

|∇u|2∗ dz

· ess sup
t∈Λθ(2ρ)2∩(0,T )

(∫

B2ρ

|u− uη
4ρ(t)|2 dx

)2∗/n

.
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We also applied Lemma 5.2 to manipulate the last integral. Lemma 5.5 implies

ess sup
t∈Λθ(2ρ)2∩(0,T )

∫

B2ρ

∣∣u− uη
4ρ(t)

∣∣2 dx

≤ c

θρ2

∫

Q4ρ,θ(4ρ)2∩ΩT

|u− u4ρ(t)|2 dz + c

∫

Q4ρ,θ(4ρ)2∩ΩT

|∇u|p dz

+ c

(∫

B4ρ

|∇ϕ(x, 0)|2∗ dx

)2/2∗

≤ cρn+2λ2 + c

(∫

B4ρ

|∇ϕ(x, 0)|2∗ dx

)2/2∗

(5.10)

since θ = λ2−p and
∣∣Q4ρ,θ(4ρ)2

∣∣ = c θρn+2.
Collecting the facts, we end up with

1
θρ2

∣∣Q2ρ,θ(2ρ)2
∣∣
∫

Q2ρ,θ(2ρ)2∩ΩT

∣∣u− uη
2ρ(t)

∣∣2 dz

≤ c

θρ2
∣∣Q2ρ,θ(2ρ)2

∣∣
∫

Q2ρ,θ(2ρ)2∩ΩT

|∇u|2∗ dz

·

ρn+2λ2 +

(∫

B4ρ

|∇ϕ(x, 0)|2∗ dx

)2/2∗



2∗/n

.

Observe that ρ−2 = ρ−(n+2)2∗/n and, on the other hand, ρ−2 = (ρ−n)2/n. Young's
inequality now leads to

1
ρp

∣∣Q2ρ,θ(2ρ)2
∣∣
∫

Q2ρ,θ(2ρ)2∩ΩT

|u− u2ρ(t)|p dz

≤
(

c∣∣Q2ρ,θ(2ρ)2
∣∣
∫

Q2ρ,θ(2ρ)2∩ΩT

|∇u|2∗ dz

)p/2∗

+ c

(∫

B4ρ

|∇ϕ(x, 0)|2∗ dx

)p/2∗

+ ελp.

(5.11)

Furthermore, since the power 2 dominates over p, we estimate
(∫

B2ρ

|∇ϕ(x, 0)|2∗ dx

)p/2∗

≤ 1
θp/2

(∫

B2ρ

|∇ϕ(x, 0)|2∗ dx

)p/2∗

θp/2

≤ ελp +
c

θ

(∫

B4ρ

|∇ϕ(x, 0)|2∗ dx

)2/2∗

.

(5.12)

Next we combine (5.9), (5.11), and (5.12), as well as recall the remark after (5.9).
Finally, we absorb the terms containing λp into the left by choosing ε > 0 small
enough. This is possible due to assumption (5.8). ¤

6. The main result
This section provides an improved version of a reverse Hölder inequality. The

proof employs covering arguments and the reverse Hölder inequalities from the
previous sections. In the case p = 2, we could use the well-known Giaquinta-
Modica lemma, which can be found from Giaquinta-Modica [10] or from Giaquinta
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[9]. See also Gehring [8], Stredulinsky [23] and Giaquinta-Struwe [11]. Due to
singularity, we follow a di�erent strategy.

We de�ne that Ṽ 2
δ (0, T ; Ω) comprises functions in

W 1,2+δ(0, T ; L2+δ(Ω)) ∩ L2+δ(0, T ;W 1,2+δ(Ω)) ∩ C([0, T ]; L2(Ω))

with δ > 0, and, furthermore, we assume that if ϕ ∈ Ṽ 2
δ (0, T ; Ω) then ϕ(·, 0) ∈

W 1,2∗+δ(Ω).

Theorem 6.1. Let u be a global solution to (2.2) satisfying the boundary and initial
conditions (2.3) for a boundary function ϕ ∈ Ṽ 2

δ (0, T ; Ω), where δ > 0. Suppose that
Rn \ Ω is uniformly p-thick and choose QR,R2 = QR,R2(x0, t0) ⊂ Rn+1 such that
Q4R,(4R)2 intersects the lateral and initial boundaries. Then there exist constants
ε0 = ε0(n, p, δ, ρ0, µ, α, β) > 0 and c > 0 with the same dependencies such that for
all 0 ≤ ε < ε0, we have

1∣∣QR,R2

∣∣
∫

QR,R2∩ΩT

|∇u|p+ε dz ≤
(

c

|B4R|
∫

B4R∩Ω

|∇ϕ(x, 0)|2∗+ε dx

)(2+ε)/(2∗+ε)

+
c∣∣Q4R,(4R)2

∣∣
∫

Q4R,(4R)2∩ΩT

(|∇u|p + gp+ε
)

dz

+

(
c∣∣Q4R,(4R)2

∣∣
∫

Q4R,(4R)2∩ΩT

(f + gp) dz

)ν

,

where
f =

|u− ϕ|2
R2

+
|u− ũ4R(t)|2

R2
+ |∇u|p ,

ũ4R(t) =
1

|B4R|
∫

B4R∩Ω

udx,

g =
(
|∇ϕ|2 + |ϕ′|2

)1/p

,

and ν = (ε + β)/β, β = ((n + 2)p− 2n)/2 > 0.

Proof. The proof consists of several steps:
(1) The general idea is to divide the space-time cylinder into a good and a bad

set. In the good set, the function |∇u|p is in control by de�nition, and
in the bad set, we can estimate the average of the gradient by using the
reverse Hölder inequality. The Calderón-Zygmund decomposition is usually
applied for this, but here we use a di�erent strategy which seems to work
better in the nonlinear parabolic setting, in particular, in the global case.
In the local setting, Kinnunen and Lewis developed this strategy in [16].

(2) To estimate the gradient in the bad set, we cover the space-time cylinder
with intrinsic cylinders in such a way that we can apply reverse Hölder
inequalities and control the dependence on a location of a cylinder. The
main di�erence from the degenerate case is in the local geometry

(3) We consider three possibilities: An intrinsic cylinder either lies near the
lateral boundary or it does not. If it does not, then it may lie near the
initial boundary or inside a domain. In addition, the intrinsic scaling should
correspond to a right reverse Hölder inequality.

(4) Finally, we obtain the higher integrability by using Fubini's theorem.
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Let us then carry out these steps.
Step (1): We denote Q0 = Q4R,(4R)2(z0) = Q4R,(4R)2(x0, t0). First, we choose the
scaling λ > 0 so that condition (4.3) or (5.8) holds in the cylinders having a center
point in the bad set, where the size of the gradient is large. To this end, set

β =
(n + 2)p− 2n

2
,

and

λ′0 =
(

1
|Q0|

∫

Q0∩ΩT

(f + gp) dz

)1/β

,

and choose λ such that
λ > max(λ′0, 1) = λ0.

Furthermore, set

σ =
2n + 8

(n + 2)((n + 2)p− 2n)
.

Step (2): Next we divide Q0 into the Whitney-type cylinders

Qi = Qri,r2
i
(yi, τi), i = 1, 2, . . . ,

where ri is comparable to the parabolic distance of Qi to the ∂Q0. Parabolic
distance is de�ned to be

distp (E, F ) = inf
{
|x− x|+ |t− t|1/2 : (x, t) ∈ E, (x, t) ∈ F

}
.

In addition, cylinders Qi are of bounded overlap, meaning that every z belongs at
most to a �xed �nite number of cylinders, and

Q5ri,(5ri)2 ⊂ Q0.

For (x, t) ∈ Q0 ∩ ΩT , we de�ne

h(x, t) =
1

c2 |Q0|σ min{|Qi|σ : (x, t) ∈ Qi} |∇u(x, t)| ,

where c2 ≥ 1 is �xed later. Further, choose (x̃, t̃) ∈ ΩT such that

h(x̃, t̃) > λ

and �x Qi for which (x̃, t̃) ∈ Qi ∩ ΩT . We de�ne

α = α(x̃, t̃) = (|Q0| / |Qi|)σ
,

and
θ = (λα)2−p.

Next we show that the second inequality in condition (4.3) is valid due to the
de�nition of λ. To accomplish this, set r = (λα)p/2−1r′i with ri/20 ≤ r′i ≤ ri. Thus,
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Qr,θr2 ⊂ Q0, and for Qr,θr2 = Qr,θr2(x̃, t̃), ri/20 ≤ ri
′ ≤ ri, we obtain

1∣∣Qr,θr2

∣∣
∫

Qr,θr2∩ΩT

1
θr2

|u− ϕ|2 dz

≤ c |Q0| r−(n+4)
i (λα)(1−p/2)n 1

|Q0|
∫

Q0∩ΩT

|u− ϕ|2 dz

≤ c

( |Q0|
|Qi|

)(n+4)/(n+2)

(λα)(1−p/2)n 1
|Q0|

∫

Q0∩ΩT

|u− ϕ|2
R2

dz

≤ c2
pαpλp.

(6.2)

We also have

1∣∣Qr,θr2

∣∣
∫

Qr,θr2∩ΩT

(|∇u|p + |ϕ′|2) dz ≤ c
|Q0|
|Qi| (αλ)−n(p−2)/2λβ

≤ c2
pα(2(n+p))/(n+4)λp

≤ c2
pαpλp,

since α > 1 and p ≥ 2(n+p)
n+4 for 2n/(n + 2) < p ≤ 2. Furthermore, we can estimate

1
θ
∣∣Qr,θr2

∣∣
∫

Qr,θr2∩ΩT

|∇ϕ|2 dz ≤ c
|Q0|
|Qi| (αλ)(1−n/2)(p−2)λβ

≤ cp
2α

((6+n)p−8)/(4+n)λ(1−n/2)(p−2)+β

≤ cp
2α

pλp,

since α, λ > 1 and p ≥ (6+n)p−8
n+4 as well as p ≥ (1− 2

n )(p− 2) + β. We combine the
estimates and obtain

1∣∣Qr,θr2

∣∣
∫

Qr,θr2∩ΩT

(
1

θr2
|u− ϕ|2 + |∇u|p

)
dz + Br ≤ c2

pαpλp,

where c2 is chosen to be large enough and Br was de�ned in (4.2). The �rst
inequality in (4.3) will be valid for small cylinders due to Lebesgue's di�erentiation
theorem, and, thus

lim
r′→0

1∣∣Qr′,θr′2
∣∣
∫

Qr′,θr′2 (x̃,t̃)

(
1

θr2
|u− ϕ|2 + |∇u|p

)
dz + Br′ > c2

pαpλp, (6.3)

which holds for almost every (x̃, t̃) ∈ Qi ∩ ΩT such that h(x̃, t̃) > λ.
Observe that the integral above is continuous with respect to r. Furthermore,

the integral is less than or equal to c2
pαpλp for all r, ri/20 ≤ (αλ)1−p/2r ≤ ri,

and greater than c2
pαpλp for r small enough. Thus, there exists ρ1, 0 < ρ1 ≤

(αλ)p/2−1ri/20, such that the integral equals c2
pαpλp. Moreover, for all larger
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values of radius, the integral is less than or equal to c2
pαpλp. We arrive at

c−1αpλp

≤ 1∣∣∣Qρ1,θρ2
1

∣∣∣

∫

Q
ρ1,θρ2

1
∩ΩT

(
1

θρ1
|u− ϕ|2 + |∇u|p

)
dz + Bρ1

≤ c∣∣Q20ρ1,θ(20ρ1)2
∣∣
∫

Q20ρ1,θ(20ρ1)2∩ΩT

(
1

θρ1
|u− ϕ|2 + |∇u|p

)
dz + cB20ρ1

≤ c2αpλp.

(6.4)

At this point, we remark that α, λ > 1, and, hence, by construction,
Q20ρ1,θ(20ρ1)2 ⊂ Q0 as well as θr2 < R2 < M for some M > 0 as required.

Step (3): We shall also consider cylinders near the initial boundary. We suppose
that Bρ ⊂ Ω, add and subtract ũ4R(t), and estimate

1∣∣Qρ,θρ2

∣∣
∫

Qρ,θρ2∩ΩT

|u− ũρ(t)|2 dz ≤ c∣∣Qρ,θρ2

∣∣
∫

Qρ,θρ2∩ΩT

|u− ũ4R(t)|2 dz.

Thus, we can essentially repeat calculation (6.2). We can also repeat calculation
(6.3), and, consequently, there exists ρ2 such that

c−1αpλp

≤ 1∣∣∣Qρ2,θρ2
2

∣∣∣

∫

Q
ρ2,θρ2

2
∩ΩT

(
1

θρ2
|u− ũρ2(t)|2 + |∇u|p

)
dz

≤ c∣∣Q20ρ2,θ(20ρ2)2
∣∣
∫

Q20ρ2,θ(20ρ2)2∩ΩT

(
1

θρ2
|u− ũ20ρ2(t)|2 + |∇u|p

)
dz

≤ c2αpλp.

(6.5)

We now have two alternatives: Either B 4
3 ρ1

(x̃)\Ω 6= ∅ and scaling (6.4) holds, or
B 4

3 ρ2
(x̃)\Ω = ∅ and scaling (6.5) holds. Indeed, suppose that Bρ ⊂ Ω and estimate

1
θρ2

∫

Qρ,θρ2∩ΩT

|u− uρ(t)|2 dz

≤ c

θρ2

∫

Qρ,θρ2∩ΩT

|u− ϕ|2 + |ϕ− ϕρ(t)|2 + |ϕρ(t)− uρ(t)|2 dz.

(6.6)

Furthermore,
1

θρ2

∫

Qρ,θρ2∩ΩT

|ϕρ(t)− uρ(t)|2 dz ≤ 1
θρ2

∫

Qρ,θρ2∩ΩT

|ϕ− u|2 dz.

Finally, Poincaré's inequality implies
1

θρ2

∫

Qρ,θρ2∩ΩT

|ϕ− ϕρ(t)|2 dz ≤ c

θ

∫

Qρ,θρ2∩ΩT

|∇ϕ|2 dz.

Consequently, by multiplying the integrals in (6.4) by a constant c = c(n, p) if
necessary, we can make sure that they are larger than the integrals in (6.5). Hence,
ρ2 ≤ ρ1 whenever Bρ2 ⊂ Ω, which shows that one of the two alternatives always
holds.
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Let us assume that the �rst alternative holds. If λ is replaced by αλ, then (6.4)
shows that condition (4.3) in Lemma 4.1 holds with ρ1 whenever h(x̃, t̃) > λ. Thus,
Lemma 4.1 implies

1∣∣∣Qρ1,θρ2
1

∣∣∣

∫

Q
ρ1,θρ2

1
∩ΩT

|∇u|p dz

≤
(

c∣∣Q4ρ1,θ(4ρ1)2
∣∣
∫

Q4ρ1,θ(4ρ1)2∩ΩT

|∇u|q̃ dz

)p/q̃

+ cB4ρ1 ,

(6.7)

for some q̃ < p.
Assume then that the second alternative holds. If Q 7

6 ρ2,θ( 7
6 ρ2)2 does not intersect

the initial boundary, then we obtain a local result

1∣∣∣Qρ2,θρ2
2

∣∣∣

∫

Q
ρ2,θρ2

2
∩ΩT

|∇u|p dz

≤ c




∣∣∣Q 7
6 ρ2,θ( 7

6 ρ2)2

∣∣∣
−1

∫

Q 7
6 ρ2,θ( 7

6 ρ2)2∩ΩT

|∇u|2∗ dz




p/2∗

≤
(

c∣∣Q4ρ2,θ(4ρ2)2
∣∣
∫

Q4ρ2,θ(4ρ2)2∩ΩT

|∇u|q̃ dz

)p/q̃

,

(6.8)

by essentially repeating the proof of Lemma 5.7 without the initial boundary terms.
If the second alternative holds and if Q 7

6 ρ2,θ( 7
6 ρ2)2 intersects the initial boundary,

then Lemma 5.7 can be adjusted to the current setting. Thus, by Hölder's inequal-
ity, we have

1∣∣∣Qρ2,θρ2
2

∣∣∣

∫

Q
ρ2,θρ2

2
∩ΩT

|∇u|p dz

≤
(

c∣∣Q4ρ2,θ(4ρ2)2
∣∣
∫

Q4ρ2,θ(4ρ2)2∩ΩT

|∇u|q̃ dz

)p/q̃

+
c

θ

(
1

|B4ρ2 |
∫

B4ρ2∩Ω

|∇ϕ(x, 0)|2∗ dx

)2/2∗

.

(6.9)

For convenience, we only used integer multiples of radii in Lemma 5.7, but the proof
holds verbatim for noninteger multiples as well.

Let us now return to the �rst alternative. By (6.4), we obtain

c−1λp ≤ 1∣∣∣Qρ1,θρ2
1

∣∣∣

∫

Q
ρ1,θρ2

1
∩ΩT

(
hp +

α−p

θρ2
1

|u− ϕ|2
)

dz + α−pBρ1

≤ 1∣∣Q20ρ1,θ(20ρ1)2
∣∣
∫

Q20ρ1,θ(20ρ1)2∩ΩT

(
hp +

α−p

θρ2
1

|u− ϕ|2
)

dz + α−pB20ρ1

≤ c2λp,

(6.10)
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since the volumes of all the Whitney cylinders intersecting Q20ρ1,θ(20ρ1)2 are com-
parable. In view of (6.7) and (6.10), we have

1∣∣Q20ρ1,θ(20ρ1)2
∣∣
∫

Q20ρ1,θ(20ρ1)2∩ΩT

(
hp +

α−p

θρ2
1

|u− ϕ|2
)

dz + α−pB20ρ1

≤
(

c∣∣Q4ρ1,θ(4ρ1)2
∣∣
∫

Q4ρ1,θ(4ρ1)2∩ΩT

hq̃ dz

)p/q̃

+ cα−pB4ρ1 .

(6.11)

Observe that the term
∫

α−p

θρ2
1
|u− ϕ|2 dz is not needed on the right hand side.

Indeed, this term can be estimated by the right hand side due to the Sobolev-type
inequality as done in the proof of Lemma 4.1. See, in particular, (4.8).

Next we decompose Q0 into level sets in the spirit of Step (1). We de�ne

G(λ) = {(x, t) ∈ Q0 ∩ ΩT : h(x, t) > λ}
and

G̃(λ) = {(x, t) ∈ Q0 ∩ ΩT : g(x, t) > λ}.
Since h(x, t) > λ in G(λ), we can later use the previous estimates in G(λ). Observe
that

h(x, t) ≤ ηλ whenever (x, t) ∈ (Q4ρ1,θ(4ρ1)2 ∩ ΩT ) \G(ηλ),

and
g(x, t) ≤ ηλ whenever (x, t) ∈ (Q4ρ1,θ(4ρ1)2 ∩ ΩT ) \ G̃(ηλ).

Furthermore, since α ≥ 1 and α−p/θ ≤ 1, we obtain by (6.11) and the previous
estimates that

1∣∣Q20ρ1,θ(20ρ1)2
∣∣
∫

Q20ρ1,θ(20ρ1)2∩ΩT

(
hp +

α−p

θρ2
1

|u− ϕ|2
)

dz + α−pB20ρ1

≤ cηpλp +

(
c∣∣Q4ρ1,θ(4ρ1)2

∣∣
∫

Q4ρ1,θ(4ρ1)2∩G(ηλ)

hq̃ dz

)p/q̃

+
c∣∣Q4ρ1,θ(4ρ1)2

∣∣
∫

Q4ρ1,θ(4ρ1)2∩G̃(ηλ)

gp dz.

(6.12)

By Hölder's inequality and (6.10), there exists a constant c ≥ 1 such that
(

1∣∣Q4ρ1,θ(4ρ1)2
∣∣
∫

Q4ρ1,θ(4ρ1)2∩ΩT

hq̃ dz

)(p−q̃)/q̃

≤ cλp−q̃. (6.13)

To continue, we choose η > 0 small enough to absorb the �rst two terms on the
right hand side of (6.12) into the left. This is possible due to (6.10). We combine
the result with (6.13), multiply by

∣∣Q20ρ1,θ(20ρ1)2
∣∣ and get

∫

Q20ρ1,θ(20ρ1)2∩ΩT

hp dz ≤ cλp−q̃

∫

Q4ρ1,θ(4ρ1)2∩G(ηλ)

hq̃ dz

+ c

∫

Q4ρ1,θ(4ρ1)2∩G̃(ηλ)

gp dz.

(6.14)
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If the second alternative holds and if Q 7
6 ρ2,θ( 7

6 ρ2)2 does not intersect the initial
boundary, then we obtain a local version of the above estimate by using (6.5) and
(6.8). Consequently,∫

Q20ρ2,θ(20ρ2)2∩ΩT

hp dz ≤ cλp−q̃

∫

Q 7
6 ρ2,θ( 7

6 ρ2)2∩G(ηλ)

hq̃ dz

≤ cλp−q̃

∫

Q4ρ2,θ(4ρ2)2∩G(ηλ)

hq̃ dz.

(6.15)

Finally, if the second alternative holds and if Q 7
6 ρ2,θ( 7

6 ρ2)2 intersects the initial
boundary, then we obtain an initial boundary version by using (6.5) and (6.9).
Indeed, observe �rst that

α−p

θ

(
1

|B4ρ2 |
∫

(B4ρ2∩Ω)\G(ηλ)

|∇ϕ(x, 0)|2∗ dx

)2/2∗

≤ α−p

(αλ)2−p
(ηλ)2 ≤ η2λp

α2
,

where
G(ηλ) = {x ∈ B4R(x0) ∩ Ω : |∇ϕ(x, 0)| > ηλ}.

Thus, by repeating the above reasoning and observing that ρ
−n2/2∗
2 = ρ

−(n+2)
2 , we

deduce∫

Q20ρ2,θ(20ρ2)2∩ΩT

hp dz ≤ cλp−q̃

∫

Q4ρ2,θ(4ρ2)2∩G(ηλ)

hq̃ dz

+ c

(∫

B4ρ2∩G(ηλ)

|∇ϕ(x, 0)|2∗ dx

)2/2∗

.

(6.16)

As a next step, we use a covering argument to extend the estimates to the whole
of G(λ). By Vitali's covering theorem, we have a disjoint set of cylinders

{Q4ρ′i,θ(4ρ′i)(z̃i)}∞i=1, z̃i ∈ G(λ), z̃i = (x̃i, t̃i) (6.17)
such that almost everywhere

G(λ) ⊂
∞⋃

i=1

Q20ρ′i,θ(20ρ′i)
2(z̃i) ⊂ Q0,

and either (6.14), (6.15), or (6.16) holds in each of the cylinders. This is possible,
since one of the two alternatives always holds. Then we sum over i and obtain

∫

G(λ)

hp dz ≤
∞∑

i=1

∫

Q20ρ′
i
,θ(20ρ′

i
)2 (z̃i)∩ΩT

hp dz

≤ c
∞∑

i=1

(
λp−q̃

∫

Q4ρ′
i
,θ(4ρ′

i
)2 (z̃i)∩G(ηλ)

hq̃ dz + bi

)

≤ cλp−q̃

∫

G(ηλ)

hq̃ dz + c

∫

G̃(ηλ)

gp dz + c

(∫

G(ηλ)

|∇ϕ(x, 0)|2∗ dx

)2/2∗

,

(6.18)

where bi is either the lateral boundary term, initial boundary term, or zero de-
pending on the corresponding estimate. When summing over the initial boundary
terms, we used the fact 2/2∗ > 1.
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Step (4): The higher integrability result is now a consequence of (6.18) and Fubini's
theorem. To see this, we integrate over G(λ0) and use (6.18) together with Fubini's
theorem. Thus,

∫

G(λ0)

hp+ε dz =
∫

G(λ0)

(∫ h

λ0

ελε−1 dλ + (λ0)ε

)
hp dz

= ε

∫ ∞

λ0

λε−1

∫

G(λ)

hp dz dλ + (λ0)ε

∫

G(λ0)

hp dz

≤ c

∫ ∞

λ0

(
ελε−1+p−q̃

∫

G(ηλ)

hq̃ dz + ελε−1

∫

G̃(ηλ)

gp dz

+ ελε−1
(∫

G(ηλ)

|∇ϕ(x, 0)|2∗ dx
)2/2∗

)
dλ + (λ0)ε

∫

G(λ0)

hp dz.

(6.19)

We estimate the right hand side in three parts. Similarly as in the degenerate case,
we �rst apply Fubini's theorem and end up with

ε

∫ ∞

λ0

λε−1+p−q̃

∫

G(ηλ)

hq̃ dz dλ + (λ0)ε

∫

G(λ0)

hp dz

= cε

∫

G(ηλ0)

∫ h/η

λ0

λε−1+p−q̃hq̃ dλ dz + (λ0)ε

∫

G(λ0)

hp dz

≤ cε

ε + p− q̃

∫

G(λ0)

hε+pηq̃−p−ε dz + c(λ0)ε

∫

G(ηλ0)

hp dz,

(6.20)

where we also dropped a negative term on the right hand side and used the fact
that λ0 ≥ h in G(ηλ0) \G(λ0).

Let us now estimate the lateral boundary term in (6.19). We utilize Fubini's
theorem and obtain

ε

∫ ∞

λ0

λε−1

∫

G̃(ηλ)

gp dz dλ =
∫

G̃(ηλ0)

((g/η)ε − (λ0)ε) gp dz

≤ c

∫

G̃(ηλ0)

gp+ε dz.

(6.21)

To estimate the initial boundary term in (6.19), we divide the term into two parts
and apply Fubini's theorem as well as Hölder's inequality. It follows that

ε

∫ ∞

λ0

λε−1

(∫

G(ηλ)

|∇ϕ(x, 0)|2∗ dx

)2/2∗

dλ

≤
(∫

G(ηλ0)

|∇ϕ(x, 0)|2∗ dx

)2/2∗−1

·
∫

G(ηλ0)

∫ |∇ϕ(x,0)|/η

λ0

ελε−1|∇ϕ(x, 0)|2∗ dλ dx

≤ cR2ε/(2∗+ε)

(∫

G(ηλ0)

|∇ϕ(x, 0)|2∗+ε dx

)(2+ε)/(2∗+ε)

.

(6.22)
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Now we are ready to collect the estimates. We combine (6.20), (6.21), and (6.22)
with (6.19). Then we choose ε > 0 small enough to absorb the term containing
hp+ε into the left hand side and get

∫

G(λ0)

hp+ε dz ≤ c (λ0)ε

∫

G(ηλ0)

hp dz + c

∫

G̃(ηλ0)

gp+ε dz

+ cR2ε/(2∗+ε)

(∫

G(ηλ0)

|∇ϕ(x, 0)|2∗+ε dx

)(2+ε)/(2∗+ε)

.

(6.23)

Notice that if the term we would like to absorb is in�nite, then we can replace h
by hk = min{h, k}, k > λ0 similarly as in the degenerate case.

Since h ≤ λ0 in (Q0 ∩ ΩT ) \ G(λ0), estimate (6.23) extends to the whole of
QR,R2 ∩ ΩT . Indeed,

∫

QR,R2∩ΩT

hp+ε dz ≤ (λ0)ε

∫

(Q0∩ΩT )\G(λ0)

hp dz +
∫

G(λ0)

hp+ε dz

≤ c (λ0)ε

∫

Q0∩ΩT

hp dz + c

∫

Q0∩ΩT

gp+ε dz

+ cR2ε/(2∗+ε)

(∫

B0∩Ω

|∇ϕ(x, 0)|2∗+ε dx

)(2+ε)/(2∗+ε)

.

Next we divide the estimate by |Q0| and apply the de�nition of h(z). Since QR,R2

lies far away from the boundary of Q0 = Q4R,(4R)2 , there exists c > 0, independent
of R, such that

1
|Q0|

∫

QR,R2∩ΩT

|∇u|p+ε dz ≤ c (λ0)ε

|Q0|
∫

Q0∩ΩT

|∇u|p dz

+
c

|Q0|
∫

Q0∩ΩT

gp+ε dz +
(

c

|B0|
∫

B0∩Ω

|∇ϕ(x, 0)|2∗+ε dx

)(2+ε)/(2∗+ε)

.

Next we take the cut-o� level into account. Remember that either

λ0 = 1 or λ0 = λ′0.

The �rst case is clear. Moreover, if λ0 = λ′0, then Young's inequality and the
de�nition of λ′0 leads to

1∣∣QR,R2

∣∣
∫

QR,R2∩ΩT

|∇u|p+ε dz ≤
(

c

|Q0|
∫

Q0∩ΩT

(f + gp) dz

)(ε+β)/β

+
c

|Q0|
∫

Q0∩ΩT

gp+ε dz +
(

c

|B0|
∫

B0∩Ω

|∇ϕ(x, 0)|2∗+ε dx

)(2+ε)/(2∗+ε)

.

This �nishes the proof. ¤
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