SELF-IMPROVING PROPERTY OF NONLINEAR HIGHER ORDER
PARABOLIC SYSTEMS NEAR THE BOUNDARY

VERENA BOGELEIN" AND MIKKO PARVIAINEN *

ABSTRACT. We establish global regularity results for a wide class of non-linear
higher order parabolic systems. The model problem we have in mind is the
parabolicp-Laplacian system of ord@&m, m> 1,

du+ (—1)™div™(|D™u|P~2DMu) =0
with prescribed boundary and initial values. We prove that if the boundary values

are sufficiently regular, the@™Mu is globally integrable to a better power than the
naturalp. The method also produces a global estimate.

1. INTRODUCTION

We study the global regularity properties of solutions to a wide class of non-
linear higher order parabolic systems. In particular, the parapeliaplacian sys-
tem of order2Zm, m> 1,

du+ (—1)™div™(|DMulP~?D™u) =0

with the initial and boundary values provides a basic example.

Under suitable conditions on the initial and boundary values, the corresponding
initial boundary value problem admits a solutiarsuch thatfD™u| is integrable
to the powerp. Our aim is to show thab™u is actually globally integrable to a
better power, that igD™u| € LP*¢ all the way up to the boundary provided that
the boundary values and the domain are sufficiently smooth. We assume that the
complement of the domain satisfies a uniform capacity density condition, which is
essentially sharp for higher integrability results. Moreover, the method produces
an explicit estimate for theP™¢-norm of D™u.

Higher integrability plays an important role in stability and partial regularity
results for solutions and gradients in both the elliptic and parabolic cases. For
elliptic regularity results with the standard and also non-standard growth condi-
tions, see for example Acerbi-Mingione [1, 2, 3, 28]. For recent parabolic appli-
cations of higher integrability in the framework of partial regularity and Caider
Zygmund type estimates, see for example Acerbi-Mingione [4], Acerbi-Mingione-
Seregin [5], Bgelein [10], Duzaar-Mingione [16], Duzaar-Mingione-Steffen [17]
and Bbgelein-Duzaar-Mingione [11].
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The elliptic higher integrability techniques developed by Gehring [20], and EI-
crat and Meyers [18] (see also [21]) could not directly be carried over to the par-
abolic case. Nevertheless, Giaquinta and Struwe proved a first parabolic analogue
for systems with linear growth in [22]. Higher integrability for more general para-
bolic systems with non-linear growth conditions remained open for some time: The
first positive result for degenerate and singular second order pargbghowth
systems was obtained by Kinnunen and Lewis [26]. The proof employs the method
of intrinsic scaling with respect to the gradient of the solution. The idea to con-
sider parabolic cylinders whose scaling depends on the solution itself goes back
to DiBenedetto and Friedman [12, 13, 14]. The local higher integrability result
was recently extended to higher order parabolic systems in [9], and global higher
integrability results for quasiminimizers and second order parabolic systems were
obtained in [35, 36, 37].

Our basic strategy follows the guidelines of the local result in [26]. Indeed, we
first derive a reverse ®lder inequality on intrinsic cylinders up to the boundary
and then use a covering argument to extend the estimates to the whole space-time
cylinder. The intuitive idea is to use cylinders whose space-time scaling is roughly
speaking comparable to the mean valug@fu|?>~P on the same cylinder. In a
certain sense this space-time scaling reflects the non-homogeneity of the parabolic
system, which is not present in the elliptic case. However, the boundary effects and
lower order terms cause extra difficulties: The covering now consists of three kinds
of intrinsic cylinders that may lie near the lateral or initial boundary, or inside the
domain.

To estimate the lower order terms near the lateral boundary, we employ a bound-
ary version of Poincé&'s inequality iteratively. This step exploits the uniform ca-
pacity density condition of the complement. Near the initial boundary, we compare
the solution with the mean value polynomial of the initial values. To this end, the
oscillation of weighted means of the solution and lower order derivatives between
the different time slices needs to be controlled. For the solution itself, we directly
exploit the weak formulation of the parabolic system whereas for the derivatives,
we utilize the suitable weighted means.

In the singular case, that is when< 2, the quadratic terms on the right-hand
side of the Caccioppoli inequality usually cause technical difficulties. Therefore,
we employ an iteration method in order to absorb these terms at an early stage (c.f.
Lemma 4.3 and 5.5). In this way, we later avoid additional terms in the scaling
which simplifies the proof considerably. Indeed, practically the same proof now
runs in both the singular and degenerate cases. This observation is useful even in
the local second order higher integrability proof.

2. STATEMENT OF THE RESULT
We consider initial-boundary value problems of the type

gu+(—1)™ § D%(zD™u)=0, in Qr,
(2.2) la[=m
u=ag, ondpQr.

Here, Q is a bounded domain iR" and Qr = Q x (0,T) c R™?! stands for a
parabolic cylinder. The initial and lateral boundary valgesf the solution are
prescribed on the parabolic boundaiyQr = (Q x {0}) U (dQ x (0,T)) of Q.
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Moreover,u: Qr — RN is a vector valued function and, as usual, we denote by
Jiu = u; the derivative with respect to the time-variablend byDu, respectively

Dku= {D"u.}"”| k N the derivatives (of ordes) with respect to the space-variable
x. For convenience of notation, we identB'u as a vector iR’, £=N(""""1),

and similarly forDXu. Furthermore, we adopt the shorthand notatiea (x,t) €
R,

For simplicity of notation, we writes = {.@ }q|—m, Wherea : Qr x R! —
RN, and thuseZ : Q7 x R — RY. We assume that is a CaratBodory function:
z— </ (z,w) is measurable for every € R,
w — 7 (z,w) is continuous for almost evere Qr,
and satisfies the following-growth conditions:
(2.2) (o (2, W), W) > v WP,
(2.3) |7 (zw)] < L (WPt +1),
for all z e QT, w e R! and some constan8< v <1 and1<L < o and
p>max{l, - +2m} Above we have made several simplifications for expository
reasons: we could add an inhomogeneity with controlled growth conditions into
the right-hand side of (2.1) as well as additional functions to the growth bounds,

cf. [9]. Nevertheless, the proofs would remain virtually the same. The restriction
p > max{1 } is necessary in the parabolic framework because of the Sobolev

) n+2m
embeddingV™ m+2m am < L2 as we have to deal with tHe-norm ofu appearing in
Caccioppoli’s inequality.

There will naturally appear several exponents throughout the paper. Set

2, =max{1 }and p.=max1l

’ n+2m ’ n+2m}

and observe that when = 1, we simply obtain the usual Sobolev exponents. We
will be able to combine the degenerate and singular cases by defining
=min{2, ;%7 }.

Next we define the spad% (0,T;Q) for the initial and boundary values. For
B > 0, we denote

/\/

p=max{2,p}, pP.=max2,p.}and

V2O,T:Q) = {([) e LPHB(0, T;W™PHB(Q; RN)) nWLP+B (0, T; LP+B(Q;RV))
NC([0,T);L2(Q;RN)) : (-, 0) eWm’ﬁ”B(Q;RN)}.
The role of the continuity assumption is to fix the right representative. Observe

that even smooth boundary values lead to a nontrivial theory. Next we specify the
notion of a global solution.

Definition 2.1. Let p > 2.. A functionu € LP(0, T;W™P(Q; RN))NC([0, T); L%(Q;
RN)) is a global (weak) solution to the initial-boundary value problem (2.1) if

2.4) /Q U- ¢y — (7/(2D™u),D™¢) dz= 0

for every test-functiog € C3(Qr; RN) and, moreover,
(2.5) (u—9)(-,t) eWs"P(Q;RN)  for almost every € (0,T)
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and
1 /h
(2.6) H/ /]u(x,t)fg(x,0)|2dxdtﬂo ash |0
0 Jo
for a given functiorg € V' (0, T; Q).

Note that the spade”(0, T;W™P(Q; RN))NC([0,T);L?(Q; RN)) seems natural
in the light of the existence theorems (see Lions [30] and Showalter [38] Chap-
ter Ill, Proposition 1.2).

We work on the parabolic cylinders of the form

Qu(0.9) = By (P) X Aty(8)  R™,
wherezy = (xo,t0) € R™1, p,s> 0 andBy,(p) denotes the open ball R" with
centerxp and radiugp and
Ny(S) = (to—Sto+9)

the interval of lengti2s centered aty. In the cases = p?™, we write Q,,(p) =
Q4 (P, ™). When no confusion arises, we shall omit the reference points. Fur-
thermore, we write

aB(p) = B(ap), a(s) = A(a®™s), andaQ(p,s) = Q(ap,a®™s),

for a ball, interval, and cylinder enlarged by the faaor- 0.

Next we state our main theorem. The global higher integrability is achieved
under the assumption that the complement of the dofasatisfies a uniform ca-
pacity density condition. This regularity condition guarantees that there is “enough
of complement” near every boundary point. The capacity density condition could
be replaced for example by the stronger measure density condition. For the precise
formulation of the condition, see Definition 3.1.

Theorem 2.2. Suppose that is a global solution according to Definition 2.1 with
boundary and initial datay € Vg(O,T; Q) for somef > 0 and letR"\ Q be uni-
formly p-thick. Then there existes= ¢(n,N,m,p,L/v) € (0, 3] such that

ue LPTE(0, T;WwmPte(Q:RNY).
Moreover, for any parabolic cylinde®o = By x Ao = Q4 (R, R?) € R, we have
the following boundary estimate

c

’QO, QoNQr
C

@ QoNQr
([ om0 o)
|Bo| JBonQ
wherec = ¢(n,N,m,p,L/v) andd = 1if 0 € Ag and & = O otherwise. Here, we
have denoted
2.7) G=(ID"gP+[9:g/” )" fBo\Q#0
andG = 0 otherwise and

{ 2 if p>2
d= n2—p) .
p— om if 2.<p<2

(e+d)/d
D™u|P*E dz < ( (|DMu|P+GP) dz)

|QO| 3QoNQr
GPédz+c

(P+e)/(P.+e)
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3. PRELIMINARIES

3.1. Variational p-capacity. Let1l < p < o and& be an open set. Thariational
p-capacityof a compact sef C ¢ is defined to be

—i p
cap,(C,0) ngf/ﬁ\Df\ dx,

where the infimum is taken over all the functiohs Cy (&) such thatf = 1in C.
To define the variationgb-capacity of an open sét C &, we take the supremum
over the capacities of the compact sets belonging.tdhe variationab-capacity
of an arbitrary seE C & is defined by taking the infimum over the capacities of
the open sets containirig

For the capacity of a ball, we have

(3.1) cap,(B(p),B(2p)) =cp"P.
For further details, see Chapter 4 of Evans-Gariepy [19], Chapter 2 of Heinonen-
Kilpelainen-Martio [24], or Chapter 2 of M@iZiemer [31].

Next we introduce the uniform capacity density condition, which allows us to
use a boundary version of a Sobolev-Poiicape inequality. This condition is
essentially sharp for our main result as shown by Kédpetn-Koskela [25] in the
elliptic case and in [27] for the second order parabplicaplace equation.

Definition 3.1. A setE C R" is uniformly p-thick if there exist constanis, pp > 0
such that

cap,(ENBx(p),Bx(2p)) > u cap,(Bx(p),Bx(2p)),
forall xe E and for all0 < p < po.

If p> n, the condition is superfluous since then every set is uniforprlyick.
The next lemma slightly extends the capacity estimate from the above definition
(cf. [36], Lemma 3.8).

Lemma 3.2. Let Q be a bounded open set RI' and suppose th&"\ Q is uni-
formly p-thick. Choosey € Q such thatBy(4p/3) \ Q # 0. Then there exists a
constantfi = 1(u, po, N, p) > 0 such that

cap, (By(2p) \ Q,By(4p)) > fi cap, (By(2p),By(4p)).

A uniformly g-thick set is also uniformly? -thick for all 3 > g. This is a conse-
guence of lder's and Young’s inequalities.

Lemma 3.3. If a compact seE is uniformlyg-thick, thenE is uniformly 3 -thick
forall 3 > q.

The next theorem states that a unifornphghick set has a self-improving prop-
erty. This result was shown by Lewis in Theorem 1 of [29]. See also Ancona [7]
and Mikkonen [33].

Theorem 3.4.Let 1 < p < n. If a setE is uniformly p-thick, then there exists
y=y(n,p,u) € (1, p) for whichE is uniformlyy-thick.

Next, we formulate a well-known version of the Sobolev-type inequality. For
the proof, see Chapter 10 of Maz'ja’s monograph [32] or Hedberg [23] and also
[36]. Later we combine this estimate with the boundary regularity condition and
obtain a boundary version of Sobolev’s inequality.
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The lemma employs quasicontinuous representatives of Sobolev functions. We
call u e WP(Q) p-quasicontinuousf for eache > 0 there exists an open séft,
U C Q C Br, such thatap,(U,Bxr) < €, and the restriction ofi to the setQ\
U is finite valued and continuous. Thequasicontinuous functions are closely
related to the Sobolev spade-P(Q): For example, iu € WHP(Q), thenu has a
p-quasicontinuous representative.

Adopting the usual notation for the mean value integral

1
uqu:i/ ul%dx.
][Bm)’ | 1B(p)| B(p)’ |

we have the following
Lemma 3.5. Let B = B(p) be a ball inR" and suppose that ¢ W39(B) is ¢-
guasicontinuous. Denote

Na(p/2)(U) = {x € B(p/2) : u(x) = 0}.
Then there exists a constary= c(n,q) > 0 such that
c

q
G cap,(Neip/2(U), B 50

3.2. Interpolation estimates. When dealing with higher order problems, inter-
polation estimates play an essential role. In several points, particularly when
Poincag’s inequality cannot be applied they shall help us to treat the intermediate
derivatives. First, we provide an interpolation estimate for intermediate derivatives
on the annulus, cf. Adams [6], Theorem 4.14 or [8], Lemma B.1. Note that the
crucial point here is the right dependence on the width of the annulus.

|Du|%dx.

Lemma 3.6. LetB(r1) C B(r,) be two concentric balls iR" withO <r; <rp; <1
and letu € W™P(B(r,)) with p> 1. Thenforanf0 <k<m-1land0<e<1
there exist€ = c(n,m, p,1/¢), such that

DHufP m ~ Iu[P
/ kg XS 8/ |D™Mu| dx+c/ s X
B(r2)\B(r2) (F2—r1)(M WP B(r2)\B(r1) B(r2)\B(ry) (F2—1)

One of the difficulties in proving the main result is the fact that both po&ers
and p play a role in Caccioppoli’s inequality. We now state Gagliardo-Nirenberg-
Sobolev’s inequality (see Nirenberg [34]) in a form, which helps us to combine the
different powers.

Theorem 3.7. Let B(p) be a ball inR" andu € qu( (p)), me Nand1 <
0,9,r <wandf € (0,1) and0 < k< m—1withk— 3 < 8(m— ) (1-6)1.
Then there exists= c(n,m, o) such that

Dku (o Dlu ja Go/q u
]€<p> pm-k %][ ’pm‘ <][B<p> pm

The following lemma will help us to absorb certain integrals into the left-hand
side. The proof employs a standard iteration argument, see for instance Giaquinta’s
monograph [21], Chapter V, Lemma 3.1.

(1-6)a/
r dx) o r'

Lemma 3.8.Let0< 3 <1,AB>0,a >0and letf > 0be a bounded function
satisfying

f(t)<I9f(s)+A(s—t)"*+B  forall O<r<t<s<p.
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Then there exists a constagtch = Crech(af, 3 ), such that
f(r) < ciecn(A(p —1)"* +B).

3.3. Mean value polynomials. In order to prove a higher integrability result for
the mth derivative ofu, we shall approximate the function up to oraer 1. For
this aim, we shall employ mean value polynomials of omtler 1. Let By, (r) be a

ballinR" and f € W™Y(B, (r);RN). Then its mean value polynomiaif) ‘R" —
RN of degree< m— 1 is defined uniquely by the condition

(3.2) (5Pr(f))xO;r = (6f)><o;f>
wheredu = (u,Du,...,D™u) denotes the vector of lower order derivatives and

f .:][ fdz
( )Xo,l’ on(r)

denotes the mean-value df on By, (r). Therefore, (3.2) can be rewritten as
(DR ) = (DXF ) for k=0,...,m— 1. The mean value polynomial can be
expressed in terms of the mean valued afs

b
pr(f)(x) _ a—ﬁ(DCH—B f)xo;r (X—Xo)a,
la|l<m-1|a+B]<m-1 """
where
1, if |B|=0
_ bs_
bﬁ{ -y 2l y-xrdy,  if(pI=1
odzp VB

For more details, see for instance Duzaar-Gastel-Grotowski [15].

Due to the defining property (ﬁ(f), we can replace in the above representation
(DB £ )y, by (DIHBRY), ... Moreover, we can show thtig| < c(n,m)rl8! for
all multi-indicesp with 0 < |3| < m— 1. This observation leads us to the estimate

(3.3) IP(x)| < ¢(n,m) mZ:Rk(D"P)XO;r] for all x € By, (R),
k=

valid for any polynomiaP: R" — RN of order< m— 1 and ballsBy,(r), By, (R) in
R"with 0 <r < R. See [8], Lemma A.1, for a more detailed proof.

From this estimate, we can deduce a bound for the difference of the mean value
polynomials on two different balls. The proof applies the definition of the mean
value polynomials together with Poiné&s inequality.

Lemma 3.9. Let By, (r), Bx,(R) be two balls inR" with R/2 <r < R and sup-

pose thatf € W™1(B,,(R);RN). Denote byp'" PL": R" — RN the mean value
polynomials off of degree< m— 1. Then there exists= c(n,N, m) such that

R - PP )| <c Fz“][ D™fldx  forall x € By (R).
By (R)

Proof. To estimate the difference of the polynomials, we use (3.3) Wﬁ) —
PF(J)) instead ofP and exploit the defining property of the ponnonﬁéf) to find

m-1
AR <c Y R DR R )ay
RO -ROl<e s Rf  DSEY Ry
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—CZ)Rk‘]é k(f =Py dyl.

Next we enlarge the domain of integration in the integrals on the right-hand side
and recall thatBy,(R)|/|Bx,(r)| < 2" sinceR/2 < r. Finally, applying Poinca’s

inequalitym—k times toD¥(f —P4") which is allowed sincéD¥(f —P{")),,.r =0
leads us to

m—1 .
PP <c Rk][ D¥(f —PL") dxgcR‘“][ D™f| dx.
(AT P00l <e 5 ROE D =R o
This is the desired estimate. O

3.4. Steklov-means. Since weak solutions do not a priori possess any differentia-
bility properties with respect to the time varialbat is standard to use a mollifica-
tion in time. Therefore, given a functiohc L*(Qr), we define its Steklov-mean

by

t+h
fr(x,t) = [fln(x,t) = { h/ f(x,s)ds, te (0, T —h),
0, te(T—hT),

for 0 < h< T and(x,t) € Qt. Using Steklov-means, we get for atez (0,T) an
equivalent system:

(3.4) /thuh(-,t) -¢ + ([« (-,D™u)]n(-,t),D™p ) dx = 0,

forall ¢ € L2(Q;RN)NW5"P(Q; RN).

4. ESTIMATES NEAR THE LATERAL BOUNDARY

In this chapter, we derive estimates on parabolic cylinders lying near the lateral
boundarydQ x (0, T). For notational convenience, in this chapter we will combine
the boundary terms and the constant coming from the growth bounds as follows

G= (IDmg|p+|0rg|ﬁ/)l/p+ 1.

Since we now are in the lateral boundary situation we Have G + 1, whereG

is from (2.7). As usual, the first step when proving higher integrability is to derive
suitable Caccioppoli’s inequality. Although we state it for arbitrary cylinders in
R, it will be needed later only for cylinders intersecting the lateral boundary.

Lemma 4.1. Letu be a global solution according to Definition 2.1. Then there
exists Ccac = Ccac(N,m, p,L/v) such that for all parabolic cylindergy(r,s),
Qu(RS) CR™I with 0 < R/2<r <R<1, s=AZP2M S=)2PRM < 1,

A > Othere holds

sup [ ju-g)pffdxr D"yl dz
e ()N(0,T) /By (NNQ Qg (r9)NQr

_ —g |2 u—g |P =~
< pY ] it I +GPdz
_Ccac/QzO(R,S)mT ’(R—f)m’ ‘(R—r)m‘
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Proof. We chooser <ry <rp < Randn € Cj(By(r2)), { € CY(R) to be two
cut-off functions with

@1 { n=1inBy(r1),0<n<1, ]Dkn|< monwforalo<k<m

{ =00n(—ow,tp—S), { =1on (to— s,oo),ogzgl,ogz’_és.

Choosing the test-functiopy, = n{?(un — gn) in the Steklov-formulation (3.4) and
integrating with respect to over (0,t), we get fort € (0,T)

4.2) /Q dctn - @+ ([ (-, D)}, D) dz =0,

where we abbreviate@; = Q x (0,t). For the first term on the left-hand side, we
find that

/0ruh'¢hdZ=/ Or(Un—0h) - n + 010n - Pndz

— /Iug t)12nZ (t)?dx— /\u g!nZZdZ+/drg (u—g)nZdz,

ash | 0. Here we have also taken into account that the initial boundary term
vanishes at = 0 because of the initial condition. The last integral on the right-
hand side is now further estimated with the help of Young’s inequality with ex-
ponents(2,2) if p < 2, respectively(p,p/(p—1)) whenp > 2. Note also that
r,—ry <R< 1, respectivel\ 2 P(r, —r1)?M < S< 1. We get

2 2 lu—gf | Ju-gP
| [ o u-ginczeg < [ 9rgl” +AP-
o Qi (RINQT

(ro—r1)?™ ° (rp—rq)™P

Passing to the limib | 0 also in the second term on the right side of (4.2), we find
/Q ([ (-,D™u)]p, D™y, diz
t

A («/(-,D"u),D™u) n¢? — (o7 (-,D™u),D™g) NZ*+ («/(-,D™u),LOT){?dz,

where we abbreviated the lower order terms by

m-1

Lot=% <r|11> D™k © DX(u—g).

k=0
From the ellipticity (2.2) ofe7, we infer for the first term that

/ («7(-,D™u),D™u) n¢2dz > v/ ID™u|Pnz2dz,
Qt Qt

while for the second one, we obtain by the growth bound (2.3y'dnd Young'’s
inequality fore > O that

‘/ ),D™ >n52dz‘ <s/ (]Dmu|p+1)nZ2dz+c£/ ID™g|Pdz,

Qt Qt

wherec, = c¢(p,L,1/¢€). Similarly, for the third term, we get

‘/ LOT>Z2dZ‘ <s/ (\Dmu\p+1)52dz+cg/ |LOT|PZ?dz,
o) QiNsptn Qt

wherece = c¢(p,L,1/¢€). To estimate the integral involving the terms of lower or-
der, we first note thdd*n = 0on By, (r1) for k > 1. Due to our boundary condition
(2.5) we can extend — g by zero outsideQt to anLP —W™P function, i.e. for
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the extended function we know-—g € LP(0, T;WMP(B, (r2); RN). This allows us

to replace the domain of integration By, (r2)\By,(r1) x (0,t) and then apply the
Interpolation-Lemma 3.6 slicewise on the annuBygr2)\By,(r1). This yields for

0< £ < 1that

m-1 k
/ |LOT|pZZdZ<C%// ’D (U g)‘ ZZdZ
rz \BXO I’1 r2 rl) (

—qlP
<e/ / |ID™(u— g)\pZZdz+c~/ / %szz,
BXO ro \BXO ri) BXO ra) rz_rl) p

wherecg = cz(n,m, p,1/£).
Combining the previous observations with (4.2), recalling that 1 on By, (r1)
and choosing < 1 with respect tgp, L ande we infer for a.et € (0,T) that

t
[ uegenREmecy [ [ pruPedxa
on(rl)ﬂQ 0 on(l’]_)ﬂQ

<3£/ / |Dmu|pzzdz
B

4o (12)N
+C/ o2 lu—g®  Ju-gP
JQ,(RNQT (rp—r1)2™ = (rp—rq)mp

wherec = ¢(n,m,p,L,1/¢). Now, we choose& = v/6 and multiply with1/v.
Applying Lemma 3.8, we get rid of the term involvifip™u| on the right-hand side.
Then, we take the supremum ouet A, (s) N (0, T) in the first term on the left-
hand side of the resulting inequality and chobsemin{to + S T} in the second
term. Finally we recall thaf = 1 on A (s) to conclude desired Caccioppoli’s
inequality. O

+Gpdz

Next, we derive a Poincartype inequality for solutions on parabolic cylinders
intersecting the lateral bounda# x (0, T). The capacity density condition and
the boundary condition allow us to apply Poingarinequality slicewise to — g.
Therefore, in contrast to the local situation, we do not need to compare mean value
polynomials between different time slices.

Lemma 4.2. Let u be a global solution according to Definition 2.1 and suppose
thatR"\ Q is uniformly p-thick. Furthermore, 1eQ,,(p,s) C R™1 be a parabolic
cylinder such thaBy,(p/3) \ Q # 0. Then there exisg = y(n, p, 1) € (1, p) such
thatforall0<k<m-—1landy<3$ < p, we have

IDX(u—g)[? dz< cpﬁ(m*")/ ID™)® +G? dz,

/on(ps)ﬂQT J Qg (0,9NQ7

wherec = c(n,m,N, i, pp, 3 ) andG was defined in (2.7).

Proof. Let y = y(n,p, i) € (1, p) be the constant from Theorem 3.4. Then we
know thatR"\ Q is uniformly y-thick, and therefore also uniformk§-thick by
Lemma 3.3. Then we extend— g by zero outside of2t, use the same notation
for the extension. We fik < j <m—1andt € A(s)n(0,T) and denote

NL /2 = (X€ B(p/2) : DI(u—g)(xt) = 0}.
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From Lemma 3.5, we get (here, we consider for the momen thaasicontinuous
representative af)

[ Dlu-g(0f = [ Diu-g)(-.b)° dx
B(p)NQ B(p)
Cp / Dj+l(u 9
—g)(-, )7 dx,
ca|q9(NJ B(o/2):B(P)) B(p)| )
with c=c(n,N,J). SinceR"\ Q is uniformly 9-thick, Lemma 3.2 and (3.1) imply
capy (Ng,2):B(P)) > fi capy (B(p/2),B(p)) =cp"’

Note thatt = [i(n, i, po,9). Combining this capacity estimate with the previous
one, we conclude

[ plu-gnlf ke’ [ DIFu-g)(- 1) d
B(p)nQ B(p)nQ

wherec=c(n,N, u, po,3). Integrating with respect tooverA(s)N (0, T) and iter-
ating the resulting estimate fpe=k, ..., m—1, we deduce the following Poindzls
inequality

L pu-glfdz<ep®™ 9 [ pmu-g)Pdz
Q(p,s)NQt Q(p.9NQr

The assertion now follows by Young’s inequality and the definitioGof d

Also in the singular case, i.e. whgn< 2, we will have to estimate the2-
norm of u, since it appears on the right-hand side of Caccioppoli’'s inequality in
Lemma 4.1. Therefore, we prove a suitahfeestimate in the following lemma.
This lemma simplifies the proof in the singular case considerably since we absorb
the additional terms into the left-hand side. Indeed, due to this lemma, we can
apply the same scaling as in the degenerate case.

Lemma4.3.Letk > 1, 2, < p< 2, andu be a global solution according to Defini-
tion 2.1. Furthermore, leQ = Q,(p,s) C RM I with0< p <1,s=A2"Pp?M< 1,
andA > 0 be a parabolic cylinder such tha,(20/3)\ Q # 0. If

1 -

4.3 — D"uP4+GP)dz< kAP,

(*3) ’2Q’ 2QNQr (‘ ’ )

then there exists = c(n,N,m, p,L/v, i, po, K) such that
1 lu—g|2dz< c p?™AP,
‘Q| QNQr

Proof. We first extendu — g by zero outside of2t. Next, we choosd < a1 <
ay < 2 and denotea;Q = Q,(aip,a?™s) for i = 1,2.  Applying Gagliardo-
Nirenberg-Sobolev’s inequality, i.e. Theorem 3.7 wjiih, q, 0,r,k) replaced by
(2,p,p/2,2,0) slicewise to(lu—g)(-,t), we obtain

/ \U—g\dez/ u—g[*dz
a;QNQr oy

k (2-p)/2
<cpmp/ / Du-g) ‘ dx(f ]u—g]zdx> "2
C{l/\k 0 a,B aB

pmk

k (2—-p)/2
il e( s f ju-gcora)

m
44)  <cpm /
(4.4) =cp kZo amQl MK teaiAJ 1B
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To estimate the integrals in the sum on the right-hand side, we recadt{@at 2Q
andu—g=00n2Q\ Q. Therefore, we can replace the domain of integration
by 2Q N Q1 which allows us to apply Poincas inequality from Lemma 4.2 on
2QNQr. Finally, using hypothesis (4.3) and the fact t/2| = 2+2"|Q| we infer

for 0 < k < mthat

k
/ ’D(u__kg)’pdzgc/ IDMulP+GPdz<cAP|Q),
mQl P 2QnQr
wherec = c(n,m,N, u, po, k). We now come to the estimate for the sup-term in
(4.4). Here, we first apply Caccioppoli’s inequality, i.e. Lemma 4.1. Then we use
Young'’s inequality, note thgp < 2, to estimate the second term on the right-hand
side and the assumption (4.3) to estimate the term invoI@n&inaIIy, we recall
that|Q| = 2p2™A?~P|B|. Proceeding this way, we obtain for ates a1/ that

1
u—g)(-t)Pdx= —— u—g)(-,t)|%dx
£l 000Pd= g [ w90
Ccac 2 lu—g|? lu—glP ~
< T&r AP +GPdz
~ Bl Jaxonar (a2p—a1p)2™  (ap—0a1p)MP
c 2 Ju-gP
<= P2__ TSl __ | )Pdz
~ Bl Jaqnor (azp—a1p)2m
. A2
c u=9 dz+c p?™A?,

1Ql Jaxgrar (a2—a1)2™
wherec = c(n,m, p,L/v, k). Joining the previous estimates with (4.4), applying
Young's inequality and recalling that= A2~Pp?™, we arrive at

2 1 2 c 2m
u—gl“dz< f/ u—g|cdz+ AP,
/alQmQT| ofdz< aszQT| g (ap—aq)2m2-p)/p pTIQl

wherec=c(n,N,m,p,L/v, U, po, k). Applying Lemma 3.8, we deduce the desired
estimate. O

Now, we have the prerequisites to prove a reverdédét type inequality for
parabolic cylinders lying near the lateral boundary.

Lemma 4.4. Letk > 1, andu be a global solution according to Definition 2.1 and
suppose thaR"\ Q is uniformly p-thick. Furthermore, leQ = Q(p,s) C R™?
with0 < p <1 ands=A2"Pp?™ <1, A > 1 be a parabolic cylinder such that
By, (4p/3) \ Q # 0. Suppose that

K ~ 1
(45) AP< _— D™u|P+GP)dz, ——
Q| QOQT(| | ) 18Q] Jsonar

and lety = y(n, p, i) be the constant from Lemma 4.2. Then, for anwith
maxy, p.} < q< pthere existe = c(n,N,m,p,L/v, U, po,k) such that

3 ID™UPdz < <C |Dmu|qdz) ", e GPdz
1Ql Janar ~ \|4Q| Jagnor 14Q)| Jagnor '

Proof. First, we extendi— g by zero outside ot and use the same notation for
the extension. From Caccioppoli’'s inequality, i.e. Lemma 4.1, we get

Ccac
Q| J2qnar

(|D™u|P+GP)dz < K AP.

1
4.6) — |ID™Mu|Pdz <
Q| Janar

Apz‘lﬁl‘2+‘lﬁl‘p+épdz_
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In the following, we will infer bounds for the first two terms on the right-hand side.
Therefore, we abbreviate (note that g=00n2Q\ Qr)

o [ |u—Q[°
_pof |U=9
o=/ ]éq‘ pm

for 0 = 2 or o = p. First, observe thgu—g)(-,t) € W™P(2B; RN) when extended
by zero on2B\ Q. Now we fixq € [maxy, p.}, p), apply Gagliardo-Nirenberg-
Sobolev’s inequality, i.e. Theorem 3.7 in the case 2 and0 = q/o slicewise to
(u—9)(-,t) and take the supremum ovee 2A in the second integral to infer

DX(u—g)
p—o o-— Q)/
4.7) le <c(n,m,p) A Z)%ZQ‘ oK ‘ dz - J¢

where

J= sup][ ’ ‘ dx.
te2A /2B
Let us first observe that we can replace the domain of integration in the above
integrals by2QN Q, respectively2BN Q, sinceu— g = 0 on the selQ\ Qr. We

first consider the sum of integrals on the right-hand side of (4.7). Here, we apply
Poincag’s inequality from Lemma 4.2 to find f@ < k < mthat

][ ‘D"u g) c Dk(u—g))qdz<c
2l pmk ~ 14Q| Jagnar I pMK ~ 14Q] Jagnar

wherec = c(u,po,n,m,N,K). Next, we derive an estimate fdr Using |Q| =
2A2~Pp?™|B| and applying Caccioppoli’s inequality, Lemma 4.1, we get

CCac
’Q| 40NQ7

Our aim is to bound the right-hand side in terms\éf For the first term we either
apply Lemma 4.3 whemp < 2, which is applicable due to the second inequality

in (4.5), or whenp > 2, we in turn apply Poinc&'s inequality from Lemma 4.2,
Holder’'s inequality and the second inequality in (4.5). To estimate the second
term on the right-hand side, we use Poilsmequality from Lemma 4.2 and the
second inequality in (4.5) in any case. Finally, the term invol\@i’g's estimated

in terms ofA P also due to our assumption (4.5). Observe that here we utilize the
fact that the scaling also takes the boundary terms into account. Proceeding this
way we find that

IDMul9+ GAdz,

g‘2+/\2—9]“;rf’\p+/\2-pépdz.

J<cAZ
Combining this and the second last estimate with (4.7) and applying Young'’s in-
equality, we obtain foe > O that

AP 0’412’ [ o (D" Gz A
T

<g/\P+< Ce / !Dmu!qdz)p/q Ce GPdz
B 14Q| Jagnar 14Q| Jagnar ’

wherecg = c(n,N,m, p,L/v, U, po,K,1/€). Inserting this estimate far = 2 and
o = pin (4.6), we arrive at

1

’Q| JQNQ

|D™u|Pdz
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< 2cc e)\p+< Ce |Dmu|qdz> p/qui GPdz

S 14Q] Jaonar 4Q| Jagrar
wherec; = c:(n,N,m p,L/v, U, po,k,1/€). Now we use the first inequality in
(4.5) to bound\ P in terms of the integral on the left-hand side of the preceding in-
equality. Choosing small enough, we can absorb this term on the left. Proceeding
this way, we deduce the desired reversgddr inequality. a

5. ESTIMATES NEAR THE INITIAL BOUNDARY

In this chapter, we are concerned with parabolic cylinders lying near the initial
boundaryQ x {0}. We shall use the following abbreviation for the initial values

go(X) = 9(x,0) forx e Q.
Due to our assumptions the initial values are well defined. Moreover, given a
ball By, (r) in R", we denote b)Pr(g‘)): R" — RN the mean value polynomial @f

of degree< m— 1 on By, (r) defined by(c‘iPr(g"))xo;r = (89o)x,r, @s introduced in
Section 3.3. As usual, we first prove suitable Caccioppoli’s inequality for parabolic
cylinders lying near the initial boundary.

Lemma 5.1. Suppose that is a global solution according to Definition 2.1.
Then there existscac = Ccac(n,m, p,L/v) such that for all parabolic cylinders
Q4 (1,9),Q4 (RS C R™MIwith0< R/2<r < R<1,5=A2Pr2M S=)2-PR2M,

A > 1 satisfyingBy,(R) C Q and0 € Ay, (S) there holds

sup / (U= P (- t)2dx + ID™y[Pdz
e (SN(0,T) /By (r) Qg (r,9NQT
(9o) (%)
u—Ry™> 12 Ju—R™ P
< AP-2 R R_I" 4 1) dz
o Ccac/on(Rvs)ﬂQT ( ‘ (R—r)m ‘ (R—r)m

2/2,
‘ Dmgo | 2 dX) .
R)

+ Ccac Rn+2m <][
B,

Proof. Since the proof is very much similar to the one of Lemma 4.1, we only
point out the differences. We again start with the Steklov-formulation (4.2) of the

parabolic system. But now we takig, = n{%(un — Pég(’)) as test-function with
cut-off functionsn, ¢ as in (4.1). The main difference compared to the proof of
Lemma 4.1 is related to the first term on the left-hand side of (4.2). Therefore, we

shall only accomplish how to treat this term. Taking into accountdtéf(’) =0
and the initial condition (2.6), we find in the lirtit] O

/eruh-¢hdZ=/Qdr(Uh—Pp(qg(’))'%dZ

— 3 [ (P& (.0 ()2~ lo0—PE 202 (020~ | Ju—R PNl
t

To estimate the second integral on the right-hand side we iterate Sobolev-
Poincaé’s inequality (recall thatsptn ¢ B(R) and n,{ < 1, that (D*(go —

P%)))g = 0for 0 < k < m— 1 by the definition 0¥ and thaD™P® — 0)

+2
| lo0— P20z 020 < c BRIR( £, 1D(@— AP 2ax) "
@ B(R)

4o
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/2.
<c(n,m) [B(R)| RZm(]é(m ID"™go|% olx)2 >

The remaining terms in (4.2) are estimated similarly as in the proof of Lemma 4.1

with PF(QQO) instead ofg (note again thaDmPég°) = 0). This leads us to the desired
Caccioppoli’s inequality. O

In our notion of a global weak solution we did not impose any differentiability
assumption with respect to time. Therefore, we cannot apply usual Pe@mcar
inequality. Nevertheless, we can exploit the parabolic system to gain the needed
regularity with respect to time. Indeed, in the next lemma, we will show that the
weighted meangD*u), (t) of D¥u(-,t) - defined below - possess an absolutely
continuous representative. This is first deduced for the weighted meanbyof
using the system. The result then extends to the weighted means of deritives
with integration by parts.

We sayn € C3(By,(p)) is a nonnegative weight-function @y,(p) C R", if

(5.1) n=>0, ][ ndx=21and |D‘nl. <cy/p’for 0<¢<2m.
Bx, (P)

Note that the smallest possible valuecgfdepends om andm. Let Qz(p,s) C
R™1 be a parabolic cylinder ande L1(Q,,(p,s); R¥), k € N. Then we define the
weighted mean o¥(-,t) on By, (p) for a.e.t € A (s) by

(5.2) Va) = £ VO

By, (P)
Lemma 5.2. Suppose that is a global solution according to Definition 2.1 and let
Q4 (p,s) € R™! be a parabolic cylinder witl) < p < 1, s> 0 andBy,(p) C Q.
Letn € C5(By(p)) be a nonnegative weight-function satisfying (5.1). Then there
existsc = ¢(N, L, c,) such that for the weighted means®fu, 0 <k < m—1, and
a.e.ty,tp € Ay, ()N (0, T), there holds

2
DXu),, (to) — (DXU)p (t1)] < L/ ][ D™Mu|P~1 + 1) dxdt.
[(D"u)p (t2) — (D u)p (ta)| < ok on(p)(\ | )

Proof. Leti € {1,...N} andn be as above and chooge R™! — RN with ¢; =
n, ¢; =0for j #1i as a test-function in the Steklov-formulation (3.4). For a.e.
1, € /\to(S) n (O,T), we get

(15l1) 5 t2)~ ([0l () = [ @ (fue),

t1
t
:—/2][ ([(-,D™u)], D™ ) ixct,
t1 /By (P)

where«: Qr x R — R!/N denotes a component ef. To infer the assertion
for the casek = 0, we use the growth conditions (2.3) for and the fact that
ID™N |l < c/p™. After passing to the limih | 0 and summing over=1,... N
we obtain

(W) (t2) — (W (ta)] < ;h/;]éxo(p) (ID™u|P~t + 1) dxdt.
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For the general case, we consider a multi-indesf orderk and obtain with inte-
gration by parts

(D), (t) = ][ DUu(- tindx= (~1X£  u(-)Dn dx= (—1)(U)pen (t).

By, (0) By (P)
Therefore the asserted estimate follows from the &as® by exchanging) with
D%n and summing oveja | = k. O

Since we have achieved some regularity with respect to time of our solytion
we are now in a position to prove a Poingdype inequality.

Lemma 5.3. Suppose thati is a global solution according to Definition 2.1 and
letQ = Q(p,s) € R™! be a parabolic cylinder witld < p < 1ands= A2"Pp?™,

A >1andB=By,(p) C Qand0e Ay (s). Thenforalll<k<m-landl<d <p
there exist€ = c(n,N,m,L,J) such that

DK(u— Ppgo [ 1
_— dZ / DMu 9 dz
pm-k ‘ Q[ Janer | |

A2-p 9
+(5 / (ID™ulP 1) dz+ ][ ID"go] ) }
Q Jonar B

Proof. Let n € C3(B) be a nonnegative weight-function satisfying (5.1). ket
j<m-1landa.eteAN(0,T)and0 < h<ty+s, we decompose

]é‘Dj(U(-,t)—P‘()QO)HB dx < 4° {][ ‘Dj(u(-,t)—P‘()go)) _ (Dj(u("t)_Plggo)))n‘ﬁ dx

+‘]Z (Dlu), (t) — (D'u)n(T )dr’ﬁ

1
‘Q’ QNQr

9
+‘][ (D!u), (1)—(Dlgo)n dr‘
+|(Digo)y—(DIPE), |9]

(5.3) =47 (1) + 1 (X) 11 +1V).

To estimaté (t), we apply Poincd’s inequality slicewise t®! (u— P,SQO))(-,t) and
find fora.et e AN(0,T)

I©) <c(n.9) p? 4 DI H(uC- 1) ~ P o
JB
To estimatdl (t), we use Lemma 5.2 (note th&| = 2p°™A2-P|B)). It implies for
a.ete AN(0,T) that
II(t) < esssup |(D'u)y(ta) — (D'u)n(t2) |

t1,12€AN(0,T)

Ny b4
<cp?m —/ D™u/P141)dz) .
<cp” ™D (Top [, o (DM + 1))

Note that the previous bound is independerti.ofo estimatell , we first consider
a multi-indexa of order j. With integration by parts, we obtain

‘][ (Dgqu) — (Dao)n dT ‘][ ][Da go)ndXdT‘
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‘][ ][ —Qo)Dgn dxdr
][][\u —Qo/dxdr — O

ash | 0 by our initial condition (2.6). Observe that the weight function helped us
to complete the previous step. Summing over all indces order j, we therefore
conclude thatll — 0 ash | 0. Finally, to estimatdV, we recall that) < c(n,m)

and apply Poincérs inequalitym— j times toD!(go — 90 ) (note that(D’(go —
P%)))g =0for £ = j,...,m—1andD™P}® = 0) to mfer

. 4
|v< ][|DJ p)) |dx) §~--§cp9<m—l><][\Dmgo|dx) .
B

Combining the previous estimates fgt) — IV with (5.3), passing to the limh | O
and integrating with respect tamverAN (0, T), we getfork < j <m-1
1

Q] Jog, [P 4= PRI dz < S [ pitu— R g

’Q| QNQr

/A2P ?
JrCpﬂ(mj)(/ (,Dmuypfl+1)dz+][ \Dmgo\dx> ,
QI Jonar B

wherec = ¢(n,N,m,L,9). Iterating this estimate fo=k,...,m—1, we find

1
L e
T
cp? - ?
SIg oo D+ (u—P)|? dz+cp® ™ k)("'>
T
sz‘9 k CONE; g ?
\Q! og) D2 (u—Pp™®)[” dz+cp (m_k)<"'>
QT
cp?(mk o

)
< 7/ D™ul® dz+cp?™ N (...},
B Q| QWQT| | P ( )

with the obvious meaning of...)?. This proves the asserted Poiraype in-
equality. O

The integral( [ |D™u|P~1dz)? on the right-hand side of the previous Poiricar
type inequality has the “wrong exponent”. Therefore, we shall exploit the intrinsic
scaling of the cylinders, which depends via hypothesis (5.4) on the solution itself.
This will help us to “compensate” the degeneracy.

Corollary 5.4. Letk > 1 andu be a global solution according to Definition 2.1.
Furthermore, letQ = Q(p,s) C R™! be a parabolic cylinder witld < p < 1,
A >0ands= A?"Pp?MandB = By,(p) C Q and0 € A (s). Suppose that

1

(5.4) 19l Joror

(IDMUP+1)dz< kK AP.
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Then there exists = c(n,N,m,L,3,k) such that forall0 <k <m-1and1l<
3 < p, we have
1

Dk(u— %)) 9
— (up‘ dz<c</\+][|Dmgo|dx> :
Q| Jonar

pmk

Proof. We first apply Poincédr's inequality from Lemma 5.3 (note thafp?" =
A2-P). Then we use Blder’s inequality and hypothesis (5.4) to infer

1 D(u—Py%) ’ i
Q| Jonar P k
1 / A2-p . 9
<cl—= D™u|? dz+ / DMu|P~141 dz+][ D™Mgo| dx ]
[\Q! QmQT| | ( Ql QmQT(| | ) oD ol )
9
< c[)\‘9 n (Az—p)\ P—1+][ |Dmgo|dx) ]
B
9
= c()\ +][ \Dmgo|dx> :
B
wherec = ¢(n,N,m,L, 3, k). This proves the desired estimate. d

The next lemma is an analogue of Lemma 4.3 for parabolic cylinders near the
initial boundary. Later, in the proof of the reversélHer inequality it will help us
to bound theL?-norm ofu in the casep < 2.

Lemma 5.5. Letk > 1, 2, < p< 2 and letu be a global solution according to
Definition 2.1. Furthermore, 1eQ = Q,(p,s) € R™! be a parabolic cylinder
with0< p <1,A >0ands=A?"Pp?Mand2B = B,,(2p) C Q and0 € Ay (s). If

1
12Q| J2qnar
then there exists = c(n,N,m, p,L/v, k) such that

(5.5) (ID™ulP+1)dz< KAP,

1 ) dx> 2/2,
’Q| QNQr .

Proof. Let 1 < a1 < ap < 2. Applying Gagliardo-Nirenberg-Sobolev’s inequality,
i.e. Theorem 3.7 with{o,q, 8,r,k) replaced by(2, p, p/2,2,0) slicewise to(u—

Pé?%))(-,t), we obtain

lu— P 2dz < cp2m</\2* +]£B|Dm

(5.6) lu—P¥)2dz< cp™P / DU—PB) 1P g, sz
' a:QNQt P =cP kz a:QNQr pm— ’
where

J= sup u(-,t) — P |2 dx

tea;AN(0,T) /1B
We first estimate the integrals in the sum on the right-hand side of (5.6). For this
aim we apply Corollary 5.4 o;Q (note that the hypothesis (5.4) follows from
(5.5) sincea;Q C 2Q and|2Q|/|a1Q| < 2"2M) yielding that

Dk Pgo
(upm_al‘)’ dz<c</\+][ |Dmgoldx> :

1

5.7 —
( ) ‘Q’ C{]_QI"IQT
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We now come to the estimate &f Lemma 3.9 provides the following estimate for
difference of the mean value polynomials @Q anda»Q:

1/2,
P00~ P (9| < cp™ f _D"golax < cp™( £ [D"gol* o),
ai1B 2B

for all x € a,B and thus we can use the Caccioppoli inequality, Lemma 5.1 to obtain
the following estimate fod:

; (27 u-PHP PP +1)
_a{'\B’ a2QNQr (a2p_a1p)2m (azp—a1p)mP
2/2,
2*dx)

—I—szm(][ |Dm
2B
c ‘U— azp

2/2,
L P T
~ Q| Jayonor (a2—az)2m z+cep < + ZB\ Qo dx

Here, in the last line, we have used Young’s inequality and the factstrat
A27Pp2M and A > 1 (similarly as in the proof of Lemma 4.3). Joining the pre-
vious estimate and (5.7) with (5.6) and applying Young’s inequality, we find

/ u— P |2dz</ u— P9 2dz
a1QNQr a2QNQT
2/2,
2 dx> .

2m

Applying Lemma 3.8 we obtain the desired estimate. a

(90 ‘2

Now we are in a position to prove a reverséltter inequality on cylinders inter-
secting the initial boundary. We tak&from Section 4 into account in the scaling
because then we can later use the same scaling in all the cases.

Lemma 5.6. Letk > 1 and letu be a global solution according to Definition 2.1.
Furthermore, letQ = Q(p,s) C R™?! be a parabolic cylinder witld < p < 1,

A >0ands=A%"Pp?Mand8B c Q, where8B = B,,(8p) and0 € 2/, (s). Suppose
that

(5.8) AP< — (\Dmu\p+ép) dz, (|D™u|P+GP)dz < K AP,

IQ! 18Q| Jsanar

for someG € Lp(8Q) with G > 1. Then there exists a constant= c(n,N,m, p,
L/v,k), such that for any with max{p— 1, p.} < q < pthere holds

1 c p/q
— IDMuPdz< | — |DMul9dz
Q| Janar 14Q| Jagnor
c

B X PP
Gpdz+c)\p‘p<][ ID™go p*dx) .
4B

|4Q‘ 40NQ7
Proof. From Caccioppoli’'s inequality, i.e. Lemma 5.1, we get
(90) (90)
1 CCac < L U=Pp 2 u=Py
= D™y[Pdz < AP2) | +] ) +1)dz
Q| QmQT| | Q| J2nar pm
, 2/2.
(5.9) +CcacA p—2<]z ‘DmgO 2 dX) .
2B
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We still have to bound the first two terms on the right-hand side. Therefore, we

abbreviate

| u— PZ(gO) o
7 1Ql Jagrar ! pm

for 0 =2 or o = p. Now, we fixg € [max{p—1,p.},p). In order to estimaté,

we apply Gagliardo-Nirenberg-Sobolev’s inequality, i.e. Theorem 3.7 mit?

and@ = g/o slicewise to(u— Pz(gf’))(-,t) yielding that

AP—9

dz

5.10 | APO S Df(u— Pz(" dz-J(0-9/2,
) <
(510) o < c(n.m.p) 12Q| & /2QmQT ok ‘
where
J= ][ ‘ ‘ dx.
t€2/\ﬂ OT 2B

To estimate the integrals in the sum on the right-hand side, we enlarge the domain
of integration from2Q to 4Q and apply Poincé@’s inequality from Lemma 5.3 to
infer for 0 < k < mthat (recall that; > 1)

(9o)

1 DX(u—P. 1

il (m_kZP)’qd <C[ ID™u|%dz

12Q| J2gnar I p 14Q| Jagnar
AP ~ q
A D™ p-1 ][ D™ .
(\4Q\ o, (IDTU+G)Paz 4 £ | gddx)}

To further estimate the second term on the right-hand side, wedaldet'$ inequal-
ity and hypothesis (5.8) (i.e. the first inequality in (5.8) wher 2, respectively
the second inequality in (5.8) whegn> 2) to find

AP o 1-1/(p-1) 1/(p-1)
P-1lg,_ x2-P
20 Jiog, (DTGP dz=2 () ()
2 p 1 " ~ 0 (p-2)/p 1 . ~q 1/q
<A D"u|+G dz) < D"ul+G dz)
(!4Q| 4QmQT( DUFG) 14Q| 4QmQT(| +6)
1
<cA2P/\”p(1 (|Dmu\+c§>de) :
o ‘4Q’ 40NQr
1 m X 1/q
=Cc|— D"u| +G)dz )
<|4Q| 4QmQT(‘ I+G) )

Inserting this above to bound the second term on the right-hand side, we deduce

IS A I
12Q| Jagnar | pMK
1 ~ 1/q q
5.11 c|(—= D"Mu|%+GY)dz +][ D™ dx}.
5.11) < | (12 fog (0™ G 2) " £ D7y

The estimate o8 now is similar to the one from Lemma 5.5. We first apply Cac-
cioppoli’s inequality in Lemma 5.1 wit,, (r,s) andQ (R, S) replaced byQ and

4Q, note that|Q| = 2A2~Pp2M|B| and then estimate the terms appearing on the
right-hand side as follows: In the cape> 2, we now use Corollary 5.4 to bound
the first integral on the right-hand side, while in the cpse2 we use Lemma 5.5.
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Moreover, from Corollary 5.4, we also infer a bound for the second integral on the
right-hand side. Note that the second inequality in (5.8) ensures that the hypothesis
of Corollary 5.4 and Lemma 5.5 are satisfied. Proceeding this way we arrive at

40 2. 4l
]éa‘ ‘ dx<c<)\ +][ |D™go dx) :
teZ/\m OT

Since by Lemma 3.9, we can bound the difference of the mean value polynomials
on 2B and4B as

|P2(30) () — Pﬁ?f’) x| <c pm][ IDMgo/dx  for all x € 4B,
4B

2/2,
ch<A2*+][ D™ 2*dx> .
4B

Inserting the previous estimate and (5.11) in (5.10)dce 2 ando = p and ap-
plying Young’s inequality, we obtain far > O that
lo <€AP+c <l

N p/d p/2.
o (|Dmu|q+Gq)dz> + (f ID"go dx> ,
40NQT 4B

wherec, = c:(n,N,m,p,L/v,k,1/¢€). Inserting this estimate far = 2ando = p
in (5.9) and using Young'’s inequality for the term involvigg(note that. .. )p/z* +
AP=2(..)2/% < gAP 4 AP-maX2p}( ymax(2p}/2.) e arrive at

this leads us to

_ p/a
DMul%+ GY dz)
40 Jigra, P+

i /2.
+c£/\p—p<][ D™ 2*dx) .
4B

Now we use the first inequality in (5.8) to bouAd in terms of the integral on the
left-hand side of the preceding inequality. Choosirggnall enough we can absorb
this term on the left. Finally, applying éider’s inequality to the term involving
G and to the initial term if necessary (i.e.pf> 2) we deduce the desired reverse
Holder inequality. O

][ ID™u|Pdz < 3ccaceAP + <

6. PROOF OF THE HIGHER INTEGRABILITY

In this chapter, we prove the global higher integrability result from Theorem
2.2. To deduce the desired estimate on thesetwe will cover Qy by intrinsic
cylinders. Therefore, we have to take into account three different configurations,
that is, cylinders lying in the interior o2t and those lying near the lateral or
initial boundaries. For the latter two, we have proved reverdieét type inequal-
ities in Lemma 4.4 and 5.6. For the interior cylinders there holds an analogue of
Lemma 5.6 without the initial boundary term, of course (cf. [9], Lemma 13).

Proof of Theorem 2.2We fix a cylinderQy = Q,, (R R?) ¢ R™! which might in-
tersect the complement 6f;. As usual, we denotéQo = Q4 (R/4,(R/4)?) and
alsoBg = B (R) and/Ag = /\tO(RZ). At the end, a choic&®t C %Qo leads to the
global higher integrability result.

To begin with, we coveQg by Whitney-type cylinders

Qi :QZj(rivrizm)7 i:1727"'7
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wherer; is comparable to the parabolic distance®fto the boundary Qg of Qg
(see, for example, page 15 of [39]). Tip@rabolic distancef two setsE, F ¢ R™?
is defined to be

mﬁﬂEf):kﬁ“x—ﬂ+H—ﬂ”Qm:(xweE(xﬂeF}.

In addition, the cylinder§); are of bounded overlap, meaning that evebglongs
at most to a fixed finite number of cylinders depending onlynamdm, and
5Qi C Qo.

Later we shall divide)p into a good and a bad set, i.e. into certain level sets ac-
cording to a levelA > 0. In order to apply the reversedttler inequality from
Lemma 4.4, respectively Lemma 5.6, we aim to find cylinders having the scaling
factor A2—P and satisfying (4.5), respectively (5.8) around each point lying in the
bad set. For this we first set

1
A= (
0 |Qol JQoner
whered was defined in the statement of Theorem 2.2 Grisl defined by

a1 if BgC Q
| GP+1 ifBy\Q#0.

B 1/d
(/D™ulP+GP) dz> :

We now choos@ such that
A >max{Aj,1} = Ao.
Forze QuN QT, we define

1 .
h(z) = mmmﬂQiP/d :z2€ Qi} [D"u(z)],

1]Qo

wherec; > 1 will be fixed later. Further, we considée Qp N Qt such that

h(Z) > A
and fix a Whitney-cylinde@; = Q, (ri,r?™ such thag € Q; N Qr. We define

5 (12l ) v

a=a(?) = ,

= (o)

and

6=6(2=(ra(®)*".
Now we will use the stopping time argument to find an intrinsic cylinder around
7 of the typeQs(r,0r?) on which the assumptions (4.5), respectively (5.8) of
Lemma 4.4, respectively 5.6 are satisfied. To begin with, we show that the first
inequality in (4.5), respectively the first inequality in (5.8), is valid for suitably
small cylinders due to Lebesgue’s differentiation theorem. Indeed, for almost ev-
eryZe Q;NQr such thah(Z) > A, we have

1
6.1 lim 7/
L M Q62 Jor aromar

Note thatQs(r’, 8r'>™ N Qr = Qx(r’, 8r’>™ for r’ > 0 small enough.
Our next aim is to show that the second inequality in (4.5), respectively the
second inequality in (5.8), is valid due to the definitiomgf For this we have to

(|DMulP+GP) dz> c1PaPAP.
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distinguish the casgs> 2 andp < 2 since the scaling factd is smaller that one
in the former case, respectively larger than one in the latter case.

We start consideringhe casep > 2, where we havel =2 and 8 < 1. For
an intrinsic cylinderQs(r, Or2™), with radiusr such that;/64 < r < r;, (note that
Qs(r,8r°™) C 2Q; C Qo), we obtain due to the definition dg, a andd

1 ~
. — D"Mu|P + GP) dz
|Q(r, 0r2™)| JQy(r,6r2mnar (1" )
Cc|Qo| 1 ~
(6.2) < |(‘3i’%|Qo| o (ID™pP + GP) dz < c1PaPAP,
0 T

wherec; is chosen to be large enough. This fixes the constantl in the defini-
tion of hin dependence af, mandp.

Now we want to use a similar reasoning fible case2, < p < 2. Here, the
basic difference compared to the cgse 2 is that the scaling facto for the
parabolic cylinders is now larger than 1. Nevertheless, we still have to ensure
that the considered intrinsic cylinders are containe@dnTo accomplish this, we
consider radiir with 8-1/2™r; /64 < r < 8-1/2Mr;. Thus, Qs(r, 8r?™) C Qo, and
due to the definition oho, a andd (note thad = p—n(2— p)/(2m) in the present
case), we obtain
(6.3) Gl

1 m PGP 1Qol g2 yd PoPAP

Q072 Josoremor (ID™P+G )dZSC‘Qﬂ 0 A%< PaPaP.

According to (6.1) and (6.2) whem> 2, respectively (6.3) whep < 2 and due
to the fact that the integrals above depend continuously on the radius of the cylin-
der, there exists one largest radius: p(Z) with p € (0,r;/64] whenp > 2, respec-
tively p € (0,6~1/2™r; /64 whenp < 2 such that equality holds. In the following,
we denote brieflyQ = Qs(p, 60?"), B = Bx(p), 4Q = Qs(4p, 6(4p)?"™), 4B =
Bx(4p), 4\ = \(8(4p)®™) etc. Note thab4Q C Qq by the choice ofp. Hence,
from the previous reasoning we have

1 . _
(6.4) |Q/QOQT(Dmu]p+Gp)dz:clp(a)\)pZClp(aA)p
and

(6.5) L

’64Q’ J640NQT

Now we setq = max{p—1,y, p.}, wherey = y(n,p, ) is the constant from
Lemma 4.4. From (6.4) and (6.5), we see that (after enlarging the domain of in-
tegration if necessary) conditions (4.5) and (5.8) are satisfied Witplaced by
aA and, furthers = 0p™ = (aA)?~Pp?™. We now distinguish several cases. If
8B\ Q # 0, we can apply Lemma 4.4 witBQ instead ofQ (then the condition
By, (4p/3) \ Q # 0 has to be replaced B, (320/3) \ Q # 0 which is fulfilled). In
this case, the first inequality in (4.5) is satisfied8 with 8"2"c; instead ofk
after enlarging the domain of integration in (6.4) fr@yrto 8Q. We get

1
‘SQ’ 8QNQT

(ID™uP+GP)dz< cf(ar)P.

ID™ulP dz

GPdz

p/q
(6.6) |D™Mu| dz>

(%] Lo
132Q| J320nar 132Q| J320nar
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On the other hand, BB C Q, we still have to distinguish the cases when the cylin-
der lies near, respectively far from the initial boundangBfc Q and2Q intersects
the initial boundary, i.e0 € 2A, then we are in a position to apply Lemma 5.6 (note
that the second inequality in (5.8) is satisfied@@with 8"2"c; instead ofk due

to (6.5) after enlarging the domain of integration fr@&Q to 64Q). Therefore the
application of the lemma implies

1 c p/q
7/ D™uP dz< [ —— ID™y[9dz
Q[ Janar 14Q] Jagnor

¢ épdz+c(a/\)p5<][ ID™go
4B

(6.7) + —
14Q| Jagnar

N P/ Ps
P dx) .

In the remaining cas8B C Q and2A C (0, T), we have2Q C Q. In that case we
can use the interior analogue of Lemma 5.6 to obtain

(6.8) 1/ ]Dmu]pd2< <C/ \Dmu\qd2> p/q+/ GPdz
. 1Ql /g ~ \2Q| J2q J2g '

The proof can be deduced from [9], Lemma 13 by modifying the involved radii
and it is akin to the proof of Lemma 5.6. Observe that (6.4) and (6.5) are valid on
any cylinder lying betweefp and2Q, with possibly larger constants.

We now note thah(z) < c;a=1DMu(z)| < ch(z) for z € 64Q since all the
Whitney cylindersQ; intersectings4Q are comparable. Moreover, we have! =
(1] / |Q0|)1/d < 1. Therefore, multiplying (6.6) - (6.8) by —P, we deduce that in
any case, we have

L (WraPGP)dz< <C hqdz> "
1Ql Jonar ~ \I32Q| Ja2onar
C ~ - ~ P/ P
6.9) + 3 GPdz+ c5{(aA)PP<][ ID"™go|P: dx) 7
320NQT 4B

where we also adde%' Joror a~PGPdz on both sides and then estimated
1 ~ c =~
— a PGPdz< —— GPdz
QI Jonar ~ [32Q] Ja2onar

on the right hand side. Here we have 8gt= 1 if 8B C Q and0 € 2A andd; =0
otherwise.
Next, we decompos@ into level sets and define

G(A)={z€QNQr : h(2) > A},

and

Gat(A) ={z€ QNQr1 : G(2) > A}.
Finally, we define
Gni(A) ={xeByNQ : |ID"go(X)| > A} if 0e Ao

and%ni(A) = 0 otherwise. Sincé(z) > A in ¢4(A), we can later cove¥(A) by
cylinders of the type considered above. Observe thaj forO we haveh(z) < nA
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wheneverz € (32QN Q1) \¥(nA), and similarly forG and|D™gy|. Therefore, by
(6.5), (6.4) and (6.9), we obtain

1 N p/q
— hP+a PGP)dz<c p)\p+( hqdz>
164Q)| 64QmQT( ) L 132Q| Ja20n@(n2)
C ~
- GPdz
132Q| /320N %a(n)
/ - 1 7 e IR P/ P:
+co(ar)P P — D - dx .
1(@h) (4B! 4Bﬂ?¢ini(n/\)‘ % )

Choosingn > 0 small enough and employing a suitable version of (6.4) as in [36]
for h, we can absorb the first term on the right-hand side into the left, because the
left-hand side matches with (6.4). Moreover, with the help 6fdér’s inequality

and (6.5), multiplied bya—P, we deduce

1 Hid (p—q)/q< Apa
<\32Q| 32Qn0r Z) =°

which helps us to estimate the second term on the right-hand side of the preced-

ing inequality. Finally, estimating the left-hand side from below, and multiplying

both sides by64Q| (note that aA )P~P|64Q|/|4B|P/P- < 16™2Mp™+2m-np/P: since

(aA)P~PO = (aA)?> P < 1), we arrive at

/ hPdz < c) FH*/ hqdz+c/ GPdz
64QNQ7 320n¥ (nA) 32Q0N%Gar(nA)

(6.10) + G pM2mnP/. < /
4

Let us mention that the exponemt 2m— np/p. of p is non-negative due to the
definition of p,.

As a next step, we use a covering argument to extend the estimates to the whole
of 4(A). Recall that up to now, we have found, for ahy ¢ (A), a parabolic
cylinderQ = Qs(p(2), 8(2)p(2)®M) satisfying (6.10). By Vitali's covering theorem,
we can extract a family of cylindergQ;, (pj,epjz) =1 with Zj € ¢(A) such that

Qs (64p;,6(640;)™™) C Qo and
“(2) C |J Qy(64p;,6(640;)%™)
=1

O\ PP
|D™Mgo| P dx) .
BN%ini(nA)

when possibly neglecting a set of measure zero. Moreover, atafrost) of the
cylindersQ;; (32pj,9(32pj)2m) intersect in each poirtof Qp and (6.10) holds in
each of the cylinders. Then we sum oyenote thap™2m"P/P: < RM+2m-np/p. <
c|Qol/|Bo|P/P-, and obtain

/ hpdzgc)\p‘q/ hdz
9 9(nA)

B N
(6.11) +c/ GPdz+ Q| <C/ ID"™go|P- dx) .
Ger(NA) Bol J%ni(nA)

When summing over the initial boundary terms, we used the facpitat > 1.
Now we multiply the previous estimate By, wheree € (0,1] is to be fixed
later, integrate with respect o over (A, ) and then apply Fubini’s theorem to
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each of the resulting terms. We will only work out the details for the last term in
(6.11) in order to show how to deal with the exponppp... The computations for

the remaining terms are similar but easier and can be deduced from the local or
second order proofs. Hence, witldlder’s inequality and Fubini’s theorem, we get

/ Aet </ |D™go|P dx) dA
Ao Bo| Jni(nh)

1 ~ ﬁ/p\*fl 1 00 Y
< ( |D™go|P dx> — [ Al / |D™go|P* dxdA
|Bo| “%ini(NAo) 1Bo| /20 Gni(NA)
1 - (ﬁ_ﬁx)/(ﬁx"‘g)
S < ‘Dmgo P«+E€ dX>
Bol J/wi(no)

ID™go|/n -
.l/ / 0 )\8_1|Dmgo|p* dA dx
[Bol % (no) /20

1 1 R (P+e)/(Pite)
S omgpra) ™
€ \ |Bo| J/%ni(no)

Therefore, treating the remaining terms in (6.11) in a similar way (see also [36],
proof of Theorem 4.7) we end up with

& .
1/ hPredz< —C / hp+€dz+%/ hPdz
€ Jg (M) P+€—0.J9(A) € Jg(nko)
> (B+e)/(p.+e)

C ~ C 1 B
4= / GFH-E dZ+ ~ QO (/ DmgO P« +€ dx
€ J%Ga(nAo) € 1l 1Bo| Jni(n2o) | |

Now we multiply both sides by and absorb the integral involvif@ ¢ on the left-
hand side by choosinggsmall enough. As usual, in order to exclude the possibility
that the term we would like to absorb is infinite, we can replalegh, = min{h, k},
k > Ao, repeat the previous calculations and then pass to thelimito.

Next we note that sinde< Agin (QoNQr)\¥(Ao), our estimate extends to the
whole of Qo N Qr as follows

/ hP+ dz < (Ao) / hP dz+ / hP+e dz
3QoNQr (QuNQT)\¥ (Ao) 9(Mo)

gc(Ao)S/ hpdz+c/ GP*e dz

QoNQr QoNQr

1
+¢ 1| Qo 7/ ID™go
|Bo| JBon@

whered, = 1if 0 € Ag andd; = 0 otherwise. This is a consequence of the def-
initions for the set$4a:(NAo) and%ni(nAo). We divide the estimate byQo| and
apply the definition oh(z). Since%Qo lies far away from the boundary @Jo,
there exist = ¢(n,m) > 0, independent oR, such that for everg € %Qo N QT

we have

P+E gy

)

) (P+&)/(P-+e)

c<min{|Q¥?:ze Q}/|Qo/Y! < 1.

The upper bound is due to the fact that the Whitney-cylin@grare contained in
Qo. By the definition ofh and recalling thado = max{A}, 1} we therefore deduce
from the previous estimate
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1 m | p+E c m 1P, AP (etd)/d
— D"u dz< | — D"ul"+G dz> +cC
|Qol /zthWQT | | <|QO| QoNQy (‘ | )
~ ~ (P+€)/(Pte)
+ i GPte dz+ < co1 ‘Dmgo|p*+s dX) )
|Qol JQonar IBo| JBon2

Recalling thatGP = 1 if By  Q andGP = GP + 1 if By\ Q # 0, this proves the
estimate in Theorem 2.2, and sin@g C R"" is an arbitrary parabolic cylinder
andQr is bounded, we conclude th®™u| € LP™¢(Qr). This finishes the proof
of the theorem. O
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