AN EXISTENCE RESULT FOR SUPERPARABOLIC
FUNCTIONS

JUHA KINNUNEN, TEEMU LUKKARI, MIKKO PARVIAINEN

ABSTRACT. We study superparabolic functions related to nonlin-
ear parabolic equations. They are defined by means of a parabolic
comparison principle with respect to solutions. We show that ev-
ery superparabolic function satisfies the equation with a positive
Radon measure on the right-hand side, and conversely, for every
finite positive Radon measure there exists a superparabolic func-
tion which is solution to the corresponding equation with measure
data.

1. INTRODUCTION

This work provides an existence result for superparabolic functions
related to nonlinear degenerate parabolic equations

0

a—;‘ — div Az, t, Vu) = 0. (1.1)
The principal prototype of such an equation is the p-parabolic equation

0

3_7: — div(|VulP2Vu) =0 (1.2)

with 2 < p < 0o. Superparabolic functions are defined as lower semi-
continuous functions that obey a parabolic comparison principle with
respect to continuous solutions of (1.1). The superparabolic functions
related to the p-parabolic equation are of particular interest because
they coincide with the viscosity supersolutions of (1.2), see [5]. Thus
there is an alternative definition in the theory of viscosity solutions and
our results automatically hold for the viscosity supersolutions of (1.2)
as well.

By definition, a superparabolic function is not required to have any
derivatives, and, consequently, it is not evident how to directly relate
it to the equation (1.1). However, by [9] a superparabolic function has
spatial Sobolev derivatives with sharp local integrability bounds. See
also [1], |2], and [7]. Using this result we show that every superparabolic
function u satisfies the equation with measure data
@ —div A(z, t, Vu) = p, (1.3)
ot
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where p is the Riesz measure of u, see Theorem 3.9. A rather delicate
point here is that the spatial gradient of a superparabolic function is
not locally integrable to the natural exponent p. Consequently, the
Riesz measure does not belong to the dual of the natural parabolic
Sobolev space. For example, Dirac’s delta is the Riesz measure for the
Barenblatt solution of the p-parabolic equation.

We also consider the converse question. Indeed, for every finite non-
negative Radon measure u, there is a superparabolic function which
satisfies (1.3), see Theorem 5.8. This result is standard, provided that
the measure belongs to the dual of the natural parabolic Sobolev space,
but we show that the class of superparabolic functions is large enough
to admit an existence result for general Radon measures. If the mea-
sure belongs to the dual of the natural parabolic Sobolev space, then
uniqueness with fixed intial and boundary conditions is also standard.
However, uniqueness questions related to (1.3) for general measures
are rather delicate. For instance, the question whether the Barenblatt
solution is the only solution of the p-parabolic equation with Dirac’s
delta seems to be open. Hence, we will not discuss uniquess of solutions
here.

2. PRELIMINARIES
Let 2 be an open and bounded set in R™ with n > 1. We denote
Qr =Qx(0,7),
where 0 < T' < co. For an open set U in R™ we write
Uyt = U X (11, 12),
where 0 < t; <ty < co. The parabolic boundary of Uy, 4, is
U 1o = (OU X [t1,t2]) U (U x {t:}).

As usual, W'?(Q) denotes the Sobolev space of functions in LP(),
whose distributional gradient belongs to L?(€2). The space W'?(Q) is
equipped with the norm

[ullwir@) = lullze@) + [[Vull Lr@)-

The Sobolev space with zero boundary values, denoted by Wol’p(Q), is
a completion of C§°(Q) with respect to the norm of W'?(Q).

The parabolic Sobolev space LF(0, T; W'?(Q)) consists of measurable
functions u : Qp — [—00, 0] such that for almost every ¢t € (0,7), the
function = — u(z,t) belongs to W?(Q2) and

/ (Jul? + |Vul?) dz dt < . (2.1)
Qp
A function u € LP(0, T; WP(£2)) belongs to the space LP(0, T; W, *(€))

if 2 — u(z,t) belongs to Wy (Q) for almost every t € (0,T). The local
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space LY (0,T; WLP(Q)) consist of functions that belong to the para-
bolic Sobolev space in every Uy, 1, @ Sr.

We assume that the following structural conditions hold for the di-
vergence part of our equation for some exponent p > 2:

(1) (x,t) — A(x,t,&) is measurable for all £ € R™,

(2) € — A(z,t,€) is continuous for almost all (z, t) € Q xR,

(3) A(x,t,&) - & > aléJP for almost all (z,t) € Q2 x R and £ € R,

(4) |A(z,t,8)| < BI€[P~ for almost all (z,t) € 2 x R and € € R”

(5) (A(z,t,&) — A(z,t,n))- (£ —n) > 0 for almost all (z,t) € Q «R
and all £&,n € R", £ #n.

Solutions are understood in the weak sense in the parabolic Sobolev
space.

Definition 2.2. A function u € L2, (0, T;W,.?(Q)) is a weak solution
of (1.1) in Qp, if

- / uﬁ—gp dz dt + A(z,t,Vu) - Vodrdt =0 (2.3)
o, Ot Or

for all test functions ¢ € C§°(€2r). The function u is a supersolution if
the integral in (2.3) is nonnegative for nonnegative test functions. In a
general open set V' of R"*!, the above notions are to be understood in
a local sense, i.e. u is a solution if it is a solution in all sets Uy, ., € V.

By parabolic regularity theory, every weak solution has a locally
Holder continuous representative.

The definition of a weak solution does not refer to the time derivative
of u. We would, nevertheless, like to employ test functions depending
on u, and thus the time derlvatlve 5; inevitably appears. The standard
way to overcome this difficulty is to use a mollification procedure, for
instance Steklov averages or convolution with the standard mollifier,
in the time direction; see, e.g., [3]. Let u® denote the mollification of
u. For each ¢ € C§°(S2r), the regularized equation reads

/ Ou pdxdt + Az, t,Vu)® - Veodrdt =0,
Qr at Qr

for small enough € > 0. The aim is to obtain estimates that are in-
dependent of the time derivatives of u®, and then pass to the limit
e — 0.

3. A-SUPERPARABOLIC FUNCTIONS

We illustrate the notion of A-superparabolic functions by considering
the Barenblatt solution B, : R"™ — [0,00) first. It is given by the
formula

M B ’x| (p=1)\ (p—1)/(p—2)
(o= P22 w0 p( ) ) s,
By(z,t) = ( p ti/2 N

0, t <0,



where A = n(p — 2) + p, p > 2, and the constant c is usually chosen so

that
/ By(z,t)de =1
for every t > 0.

The Barenblatt solution is a weak solution of the p-parabolic equa-
tion (1.2) in the open upper and lower half spaces, but it is not a
supersolution in any open set that contains the origin. It is the a priori
integrability of VB, that fails, since

//]VB (x,t)|Pdedt =

where @ = [—1,1]" € R". In contrast, the truncated functions
min(Bp(x,t), k), k=12 ...,

belong to the correct parabolic Sobolev space and are weak superso-
lutions in R™™! for every k. This shows that an increasing limit of
supersolutions is not necessarily a supersolution.

In order to include the Barenblatt solution in our exposition we define
a class of superparabolic functions, as in [6].

Definition 3.1. A function u : Qp — (—00, 00| is A-superparabolic in
Qr, if
(1) u is lower semicontinuous,
(2) w is finite in a dense subset, and
(3) If h is a solution of (1.1) in Uy, 4, € Qr, continuous in Uy, 4,,
and A < u on the parabolic boundary 9,Uy, +,, then h < w in
Utl,tQ'

We say that u is A-hyperparabolic, if u satisfies properties (1) and (3)
only.

The class of A-superparabolic functions is strictly larger than that of
weak supersolutions as the Barenblatt solution discussed above shows.
If u and v are A-superparabolic functions, so are their pointwise min-
imum min(u,v), and the functions u + « for all & € R. This is an
immediate consequence of the definition. However, the functions v + v
and au are not superparabolic in general. This is well in accordance
with the corresponding properties of supersolutions. In addition, the
class of superparabolic functions is closed with respect to the increas-
ing convergence, provided the limit function is finite in a dense subset.
This is also a straightforward consequence of the definition.

Theorem 3.2. Let (u;) be an increasing sequence of A-superparabolic
functions in Qp. Then the limit function w = lim;_ u; is always A-
hyperparabolic, and A-superparabolic whenever it is finite in a dense

subset.
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A much less straightforward property of A-superharmonic functions
is the following theorem.

Theorem 3.3 ([8, 10]). A locally bounded A-superparabolic function is
a weak supersolution.

These two results give a characterization of A-superparabolicity. In-
deed, if we have an increasing sequence of continuous supersolutions
and the limit function is finite in dense subset, then the limit function
is A-superparabolic. Moreover, if the limit function is bounded, then
it is a supersolution. On the other hand, the truncations min(v, k),
k=1,2,..., of an A-superparabolic function v are supersolutions and
hence every A-superparabolic function can be approximated by an in-
creasing sequence of supersolutions.

The reader should carefully distinguish between supersolutions and
A-superparabolic functions. Notice that an A-superparabolic function
is defined at every point in its domain, but supersolutions are defined
only up to a set of measure zero. On the other hand, weak superso-
lutions satisfy the comparison principle and, roughly speaking, they
are A-superparabolic, provided the issue about lower semicontinuity is
properly handled. In fact, every weak supersolution has a lower semi-
continuous representative as the following theorem shows. Hence every
weak supersolution is A-superparabolic after a redefinition on a set of
measure zero.

Theorem 3.4 ([11]). Let u be a weak supersolution in Qr. Then there
exists a lower semicontinuous weak supersolution that equals u almost
everywhere in Q.

Supersolutions have spatial Sobolev derivatives and they satisfy a
differential inequality in a weak sense. By contrast, no differentiability
is assumed in the definition of a A-superparabolic function. The only
tie to the differential equation is through the comparison principle.
Nonetheless, [9] gives an integrability result with an exponent smaller
than p. See also [1] and [2].

Theorem 3.5. Let u be A-superparabolic in Qr. Then u belongs to the
space LL (0, T;Wh9(Q)) with 0 < ¢ <p—n/(n+1).

loc loc

In particular, this shows that an A-superparabolic function u has a
spatial weak gradient and that it satisfies

0

—/ w2 dz dt + A(x,t,Vu) - Vodzdt >0
op Ot Qr

for all nonnegative test functions ¢ € C§°(2r). Note carefully that

the integrability of the gradient is below the natural exponent p and

hence u is not a weak supersolution. Although wu satisfies the integral

inequality, it seems to be very difficult to employ this property directly.
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A key ingredient in the proof of Theorem 3.5 is the following lemma,
see |9, Lemma 3.14]. We will use it below.

Lemma 3.6. Suppose that v is a positive function such that vy =
min(v, k) belongs to LP(0,T; WyP(Q)). If there is a constant M > 0,
independent of k, such that

/ |Vvk|pdxdt+esssup/vidx§Mk, k=1,2,...,
Qr o<t<T Jo

then v and Vv belong to L1(Qr) for 0 < ¢ < p—n/(n+ 1) and their
L9 norms have an estimate in terms of n, p, q, |Qr|, and M.

Next we study the connection between A-superparabolic functions
and parabolic equations with measure data. First we define weak solu-
tions to the measure data problem (1.3). Recall our assumption p > 2.

Definition 3.7. Let p be a Radon measure on R"". A function
we LV N0, T; WP~1(Q)) is a weak solution of (1.3) in Qp, if

loc loc

—/ u@_gp dz dt + Az, t, Vu)-Vgodxdt:/ wdp (3.8)
o Ot Qr Qr

for all ¢ € C5°(Qr).

The Barenblatt solution satisfies

% _ div(|VB,[2VB,) — §
in the weak sense of Definition 3.7, where the right-hand side is Dirac’s
delta at the origin. In other words, Dirac’s delta is the Riesz mass of
the Barenblatt solution.
Theorem 3.5 implies the existence of the Riesz measure of any A-
superparabolic function.

Theorem 3.9. Let u be a A-superparabolic function. Then there exists
a positive Radon measure p such that u satisfies (1.3) in the weak sense.

Proof. Theorem 3.5 implies that |u|?~!,|Vu|P~! € L (Qr). Let ¢ €

loc

C°(Qr) with ¢ > 0 and denote uy, = min(u, k). Then
Az, t,Vuy) - Vo — A(z,t,Vu) - Vo

pointwise almost everywhere as k — oo by continuity of £ — A(x,t,§),
as Vu — Vu almost everywhere. Using the structure of A, we have

|A(z,t, Vug) - V| < C|Vui [P Vel < C|VulP~ V.

The majorant established above allow us to use the dominated con-

vergence theorem and the fact that the functions uy are supersolutions
6



to conclude that

— / u@_cp dz dt + A(z,t,Vu) - Vodrdt
Qr at Qr

= lim (—/ ukai dz dt + A(x,t, Vuy) - Vgodmdt) > 0.
k—o0 QT at QT

The claim now follows from the Riesz representation theorem. U

4. COMPACTNESS OF A -SUPERPARABOLIC FUNCTIONS

In this section we prove a compactness property of A-superparabolic
functions. It will be essential in the proof of the fact that every finite
Radon measure there exists a superparabolic function, which solves
the corresponding equation with measure data. We use the following
convergence result for weak supersolutions from [10].

Theorem 4.1. Let (u;) be a bounded sequence of supersolutions in Qr
and assume that u; converges to a function u almost everywhere in
Qp. Then the limit function u is a weak supersolution, and Vu; — Vu
almost everywhere.

Note that a pointwise limit of supersolutions is not necessarily a
supersolution if we drop the boundedness assumption, as illustrated by
the Barenblatt solution at the beginning of Section 3.

We also use the following Caccioppoli estimate from [3]. The straight-
forward proof employs the test function —ue.

Lemma 4.2. Let u < 0 be a weak supersolution in Qr, and @ €
C§(Qr) with ¢ > 0. Then

/ |Vu|PeP do dt
Qrp
9w

gc(/ ]u|”|Vgo|”dxdt+/ 2|2
QT QT

ot

Pt dx dt) :

Next we show that general superparabolic functions have a compact-
ness property. Note that the limit function may very well be identically
infinite.

Theorem 4.3. Let (u;) be a sequence of positive A-superparabolic
functions in Qp. Then there exist a subsequence (uj,) and an A-
hyperparabolic function u such that

uj, — u almost everywhere in S,

and

Vuj, — Vu almost everywhere in  {(x,t) € Qr : u(z,t) < co}.
7



Proof. Assume first that v; < M < oo. If we could extract a sub-
sequence that converges pointwise almost everywhere to a function u,
Theorem 4.1 would imply that u is a supersolution and that Vu; — Vu
almost everywhere. By Theorem 3.4, we could then assume that u is
lower semicontinuous and thus A-superparabolic.

Once the result for bounded sequences is available, we can remove
the boundedness assumption by a diagonalization argument. Indeed,

we can find a subsequence (u!) and an A-superparabolic function u,
such that

J

min(u}, 1) - u; and Vmin(uj,1) — Vi,

almost everywhere in 7. We proceed inductively and pick a subse-
quence (u%) of (u?‘l) such that

min(uf, k) — u; and Vmin(uf, k) — Vuy

almost everywhere in Q7. We observe that if [ > &k and u(z,t) < k,
we have w(x,t) = ug(x,t). Thus the sequence (uy) is increasing, and
we conclude that the limit

u = lim wuy
k—o00
exists and defines the desired A-hyperparabolic function in Q7. We
note that by construction min(u, k) = wuyg, so that for the diagonal
sequence (uf) it holds that Vu¥ — Vu almost everywhere in the set

{(z,t) € Qp : u(z,t) < oco}.

To extract the pointwise convergent subsequence from a bounded
sequence of supersolutions, we start by observing that the sequence
(Vuy;) is bounded in LP(7y, 72; LP(§Y')) for all subdomains Q= Q' x
(11,72) € Qp. This follows from Lemma 4.2 applied to u; — M and
the boundedness of (u;). Let p; denote the measure associated to u;
by Theorem 3.9, and choose open polyhedra U € U’ € §2 and intervals
(ti,t2) € (s1,82) € (0,T). If n € C°(U,,,,) with0 <p <Tlandn=1
in Uy, +,, we have

Mj(Ut17t2> < / nd/JJ]

!
U51,52

0
/ U’

51,52 81,82

1/p
<CM+C ( |Vuj|p dxdt) .

’
USI,SQ



Hence the sequence (11;(Uy, 1,)) is bounded. For ¢ € C§°(Uyy,), we
have

: Iy
(0] = ‘—/ 0, dwdr

152

A(z,t,Vu;) - Vodrdt + / odpu;(z,t)

Uty ty

‘ Uty ity

<e|(/.

so that the sequence (u}) is bounded in L'(ty,ty; Wy "N(U)). Recall
that U is a polyhedron and hence W'?(U) embeds compactly to L(U)
by the Rellich-Kondrachov compactness theorem. Moreover, L'(U) is
contained in W, ! (U), so it follows from Theorem 5 in [14] that (u;) is
relatively compact in L'(Uy, 4,). This allows us to pick a subsequence
that converges pointwise almost everywhere in Uy, 4, to a function u.

To pass to the whole set Q2 x (0,7), we employ another diagonaliza-
tion argument. Choose polyhedra U! € U%? € ... U’ € U’*!... and
intervals (t],43) € (3,t2) € ... so that

o0
Q:UWu
T .t
=1

The above reasoning allows us to pick a subsequence (u}) that converges

pointwise almost everywhere in Utll o to a function u'. We proceed
1272
k1
k+1 ’
everywhere in Ut,jrl g1 1O 2 function u
1 "2

u¥ = u! almost everywhere in Utk;i &« if I > k. Hence the diagonal
172

sequence (uf) converges almost everywhere in 7 to a function u. As

explained above, this completes the proof. U

1/p
[V [” da dt) + 15 (Ut ) ||‘:0||Loo(t1,t2;wgv°°(u))>

1:t2

inductively, and pick a subsequence (u3 ") of (u}) that converges almost

k+1  Since limits are unique,

5. EXISTENCE OF A -SUPERPARABOLIC SOLUTIONS

In this section we prove our main existence result, Theorem 5.8.
Recall that a sequence of measures (y;) converges weakly to a measure
wif

lim mwszw

Iz Jar Qr
for all ¢ € C§°(Q2r). The following well-known result asserts that
for each finite positive Radon measure there exists an approximating
sequence of functions in L*({)r) in the sense of a weak convergence
of measures. We repeat the proof given, for example, in [12] for the

convenience of the reader.
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Lemma 5.1. Let p be a finite positive Radon measure on Qp. Then
there is a sequence (f;) of positive functions f; € L®(Qr) such that

Qr

and

lim of;dxdt :/ odu
Qr

i—0 Jo,
for every ¢ € C§°(Qr). In other words, the sequence of measures (ji;)
gwen by du;(x,t) = f;dedt converges weakly to pu.

Proof. Let Q;,1=1,...,Nj;, be the dyadic cubes with side length 277
such that Q;; € Qp. We define

ng
Zl Q”\ (x,1),

and show that the sequence (f;) has the desired properties. Observe
that

/fjdxdt ZMQ” < (),

and thus the first property holds. Let then (z;;,t;;) be the center of
Qi ;. By the smoothness of ¢, there is a constant C' depending only on
©, such that

o, 1) — (@i, tiy)| < C277
for all (z,t) € Q; ;. Hence,

| oean- | fjsodxdt‘
Qr Qr

<Z/ @du—/Q__SO(l‘z,j)du

0,7 2,

2 Qz
+/ @(%’)dﬂ—/ |(Q ,J|)<pdl’dt
i\ Qi j 1,7

N
<2y / d < C2p(Sr).
=1 (2%

This proves the claim as j — oo. U

In the proof of the next theorem we utilize the following standard
existence result, see, e.g., Example 4.A. in [13]. Suppose that f €
L>(Q7) has a compact support in Qr. Then there exists a unique
function

u € LP(0,T; Wy * ()
10



such that
_/ uaidxdt+ A(I,t,Vu)-Vgpdxdt:/ ofdrdt (5.2)
QT at QT QT
for every ¢ € C§°(Q2r) and

1 t
hm—/ / |u|? dz dt = 0.
t—0 t 0 Q

In particular, if f > 0, then wu is a supersolution.
The following lemma provides us with a key estimate, cf. Lemma 3.6
above.

Lemma 5.3. Let u be a solution of (5.2) with f > 0. Then

/ |V min(u, k)|P dz dt + ess Sup/ min(u, k)*dz < Ck fdaxdt,
Qr 0<t<T Jq Qr
(5.4)

fork=1,2,....

Proof. For each ¢ € C§°(§dr), the mollification u® of u satisfies the
regularized equation

¢ pdxdt + Az, t, Vu)® - Vodzdt = ffodxdt (5.5)
Qr at Qr Qp

for small enough € > 0. We prove the lemma by establishing a lower
bound for the left-hand side, and an upper bound for the right-hand
side.

First, we choose a piecewise linear approximation xj,h > ¢, of x (1)
such that

D =1/h,  ifh<t<2h,

n =1, if 2h <t <T — 2h,
%:_1/h, ifT —2h<t<T—h,
Xn =0, otherwise,

and set u = min(u®, k). We use ¢ = uixy (here ¢ =0, if t < h or
t > T — h) as a test function, observing that x;, gives enough room for
the mollification because h > ¢. We have

ou® ou;, o(u® —k

o k= etk ( ot ke
Thus the first term in the left-hand side of (5.5) becomes, after inte-
gration by parts,

1 28Xh / OXn
— —(uf)*—==dxdt — k(u® — k) ——dxdt.
IR RUSUE

Next, we would like to let € — 0, but we only know that uj, converges
to uy strongly for almost all real values of k. To deal with this, let
us assume that an increasing sequence of numbers k such that the

convergence holds has been chosen; then the conclusion of the lemma
11




holds for these numbers, and this technicality plays no further role. We
get the limit

1/2]7,/ 1 ) 1/T—h/ 1 )
—— —ur dxdt + — —uy da dt
hilyw Jo2° h)ron Jo2 "

1 [2h 1 [T-h
——/ /k:(u—k)+dxdt+—/ /k(u—k)+dxdt
hiw Ja h Jr—on Jo

as € — 0. The negative terms in the above expression vanish as h — 0
by the initial condition while the positive terms can be ignored since
we are proving a lower bound.

The second term on the left-hand side reads

Az, t, Vu)® - V(ugxn) de dt.
Qr
Here, we can simply let £ — 0, and then h — 0. This and the structure
of A gives us the estimate

a/ |Vug|P de dt < A(z,t, Vuy) - Vuy do dt.
Qrp

Qr
To deal with the right-hand side of (5.5), we note that

/ukthdxdtg/ upfdedt <k fdxdt.
Qr

QT QT

Furthermore, the first term in the above estimate equals in the limit
with the right-hand side of (5.5) as ¢ — 0.
We have so far proved that

/ |Vug|Pde dt < Ck/ fdxdt. (5.6)
QT QT

To finish the proof, we repeat the above arguments with x 1) replaced
by X(0,r), where 0 < 7 < T'is chosen so that

1
/uk(x,T) dz > —esssup/uk(m,t) dz.
Q 2 Q

0<t<T
By the choice of 7, we obtain the inequality

|Vug|P de dt + ess sup/ ug(z,t)*dz < Ck fdzdt.  (5.7)
0

Qr o<t<T QT

A combination of (5.6) and (5.7) now completes the proof. O

Next we establish the existence of a solution to the measure data
problem.

Theorem 5.8. Let p be a finite positive Radon measure in Qp. Then
there is an A-superparabolic function u in Qr such that min(u, k) €

LP(0,T; WHP(Q)) for all k > 0 and
ou

5 dlvA(lz:,t,Vu) =u



in the weak sense.

Proof. Let (f;) be the approximating sequence to p obtained from
Lemma 5.1 and denote by (u;) the corresponding sequence of superso-
lutions satisfying (5.2).

By Theorem 4.3, there is an A-hyperparabolic function u such that
we can assume that

u; —u and Vmin(u;, k) — V min(u, k)

almost everywhere by passing to a subsequence.

As the first step, we prove that u is finite almost everywhere, and
thus u is A-superparabolic. To this end, according to Lemmas 5.3 and
5.1, we have

/ |V min(u;, k)P dedt <Ck fidxdt < Cu(Qr)k. (5.9)
QT QT

Since min(u;, k) € LP(0,T; W, ?(Q)), the Sobolev-Poincaré inequal-
ity and (5.9) imply

/ | min(uy, k) da dt < C / IV min(uy, k)| de dt
Qr Qr (5.10)

S CM(QT)ka

where C' is independent of k and j. Since u; — w almost everywhere,
it follows from Fatou’s lemma and (5.10) that

/ | min(u, k)P dedt < Cu(Qr)k.
Qp

This estimate implies that u is finite almost everywhere. Indeed, de-
noting
E ={(z,t) € Qr : u(z,t) = oo},

we have

1 1
|E‘:—/kpd:vdt§—/ | min(u, k)|P dzdt < Ck'"™P — 0
kP Jg kP Ja.

as k — oo. Thus, u is A-superparabolic and by Theorem 3.9, there
exists a measure v such that
ou

i div A(x,t,Vu) =v (5.11)

in the weak sense.

We will complete the proof by showing that p© = . The constants
on the right-hand sides of (5.9) and (5.10) are independent of j. Thus
Lemma 3.6 implies that the sequence (|Vu;|P~!) is bounded in L4(Qr)
for some ¢ > 1. Next we use the structure of A, and obtain

/ |A(x, t, Vu;)|? do dt < C/ |V 9P~ dz dt < C.
QT QT
13



Thus the sequence (A(z,t, Vu;)) is also bounded in L9(€Qr), and it fol-
lows from the pointwise convergence of Vu; to Vu, and the continuity
of & — A(x,t,€) that A(x,t, Vu;) — A(z,t, Vu) pointwise almost ev-
erywhere, and thus weakly in L9(2r) at least for a subsequence, since
the pointwise limit identifies the weak limit. Similarly, the sequence
(u;) is bounded in L®P~19(Q7) and thus a subsequence converges weakly
in LP=Y9(Q7). We use the weak convergences and (5.11) to conclude
that

0
lim edp; = lim —uj—(p + A(z,t, Vu;) - Vodo dt
i—% Ja, i—% Ja, ot
:/ _uﬁ_go + A(z,t, Vu) - Vo da dt
Qr ot
= / pdv,
Qp
which completes the proof. Il

Observe that we can not directly deduce from the boundedness of
gradients that (A(z,t, Vu;)) converges weakly to A(z,t, Vu) above.
The additional information needed is the pointwise convergence of the
gradients from Theorem 4.3 and the continuity of 4 with respect to
the gradient variable.

We close the paper by recording the following simple observation.
Note that the current tools do not allow us to prove the claim for any
solution of (5.13), since solutions to equations involving measures are
not unique in general. Recall that in a general open set V of R"™! v
is a solution if it is a solution in all sets Uy, , € V.

Theorem 5.12. If u is a weak solution of
ou

i div A(z,t, Vu) = (5.13)
in Qp giwen by Theorem 5.8, then w is a weak solution of
% —div A(z,t,Vu) =0 (5.14)

in Qr \ spt p.

Proof. The proof consists of verifying two facts. First, we must check
that the limit has the right a priori integrability, and then show that
it satisfies the weak formulation.

Let (1) be the approximating sequence of y from Lemma 5.1. From
the proof of the lemma, we see that the support of y; is contained in
the set

E; = {(z,t) € Qp : dist(z,spt u) < c277},
where the constant c is independent of j. Thus the corresponding

supersolution u; is a nonnegative solution of (5.14) in Q7 \ E;.
14



Pick any set Uy, 1, € Qr \ spt u. Then Uy, 4, € Qp \ E; for all suffi-
ciently large j. We take the subsequence from the proof of the previous
theorem with uniform bounds in LP=Y4(U,, ), ¢ > 1, converging to a
limit u. We combine the bound for the sequence (u;) in LP~Y(U,, ;)
with a weak Harnack estimate (see [4] or [11]) to conclude that the se-
quence (u;) is bounded in Uy, 4,, and hence the limit function u is also
bounded. The boundedness of v and Lemma 4.2 imply that u belongs
to Lp(tl, tg, Wl,p(U))‘

We are left with the task of checking the weak formulation. Recall
from the proof of Theorem 5.8 that (u;) and (A(x,t, Vu;)) converge
weakly in L1(Qr) to u and A(z,t, Vu), respectively. This implies that

O:lim( / /UJG dxdt+/ /Ax t,Vu;) - Vgodxdt)
j—oo
/ / dxdt+/ /.Aa: t,Vu) - Vedzdt

for all ¢ € C§°(Uty 1,). Since Uy r, € Qr \ sptp was arbitrary, this
implies that u is a solution in Q7 \ spt p. i
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