
EXISTENCE FOR A DEGENERATE CAUCHY PROBLEM

TUOMO KUUSI AND MIKKO PARVIAINEN

Abstract. We prove the existence of a solution to the degenerate par-
abolic Cauchy problem with a possibly unbounded Radon measure as
an initial data. To accomplish this, we establish a priori estimates and
derive a compactness result. We also show that the result is optimal in
the Euclidian setting.

1. Introduction

We study the existence of solutions to the Cauchy problem

divA(x, t,∇u) = ∂u

∂t

on M × (0, T ) with a Radon measure ν as an initial trace. Here M is a suit-
able Riemannian manifold satisfying doubling condition and the Poincaré
inequality with uniform constants. As far as we know, our results are new
even in Rn × (0, T ). We show that if the quantity

|∥ν∥| = lim sup
R→∞

R−p/(p−2) |ν|(B(x,R))

µ(B(x,R))
, x ∈M, p > 2,

is bounded, then there exists a solution with the initial trace ν up to the
time T = C/|∥ν∥|2−p. Here µ is a doubling measure on M and |ν| denotes
the total variation of ν. In particular, if |∥ν∥| = 0, then the solution exists
for all times. Furthermore, the existence result is sharp: We show that the
existence fails for more general Radon measures in the Euclidean setting.

In [20], DiBenedetto and Herrero proved the existence and uniqueness for
the evolutionary p-Laplace equation

∂u

∂t
= div

(
|∇u|p−2∇u

)
, p > 2

in the Euclidean setting. The existence of this important special case is
included in our results. See also DiBenedetto [17]. For further related results
we refer to Andreu et. el. [3], Blanchard-Murat [9], Boccardo et. al. [10],
Rakotoson [33], and Manfredi-Vespri [31].

Our proof relies on a priori estimates and a compactness result. Starting
from the weak formulation, we show that a bounded sequence of solutions
has a subsequence that converges to a weak solution. It is worth noting that
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the proof avoids Hölder estimates and the Arzelà-Ascoli theorem. By ap-
proximating the initial trace with compactly supported functions, we obtain
approximative solutions which converge to a weak solution by the compact-
ness result and a priori estimates. Due to a gradient estimate, this solution
has the right initial trace. The optimality is a consequence of the global
Harnack estimate.

We consider three types of a priori estimates providing boundedness for
essential supremum of a subsolution, finite speed of propagation, and a
bound for the gradient. In view of the Barenblatt solution [7], our estimates
are optimal. The proofs for the a priori estimates apply modified Moser’s
iteration method and avoid the use of the scaling argument (cf. Choe-Lee
[14]). In particular, the proofs have a local nature. For a priori estimates on
the Riemannian manifolds, see also Dekkers [16] and Bonforte-Grillo [12].
Furthermore, the connection between parabolic equations and geometric
properties of the manifolds, has been studied, for example, by Grigori’yan
[23], Saloff-Coste [34], and Bakry et. al. [6].

Classical results in, for example, Widder [38], state that if initial data
satisfies the exponential growth condition, then there exists a solution to
the heat equation. In [4], Aronson proved the optimality of such a condition
for equations with bounded measurable coefficients. For the porous medium
equation the existence of a solution was established by Benilan, Crandall
and Pierre in [8] provided that the initial trace satisfies a suitable growth
condition. Later, Aronson and Caffarelli obtained the necessity of such a
condition in [5]. The uniqueness of the solution is due to Dahlberg and
Kenig [15].

2. Preliminaries

Let M be a smooth, noncompact, connected, and complete Riemannian
manifold without a boundary and of dimension n. We use path metric
throughout the work and assume that there exists a doubling measure µ,
i.e. we have a constant Cµ ≥ 1 such that

µ(B(z, 2R)) ≤ Cµµ(B(z,R))

for every ball B(z, 2R) inM . The dimension of the measure is dµ = log2Cµ.
Let TxM be the tangent space to M at the point x. Because M is a Rie-
mannian manifold, we are given on each TxM a scalar product

⟨
·, ·
⟩
x
. We

usually surpress the dependence on x. The space TM is defined in a usual
way as the disjoint union of the tangent spaces TxM .

Let Ω be an open bounded (in the sense of the path metric) set in M .
We define the Sobolev norm

∥f∥1,p,Ω =
(∫

Ω

(
|f |p + |∇f |p

)
dµ
)1/p

,

where f ∈ C∞(M) and |∇f | =
⟨
∇f,∇f

⟩1/2
, see for example do Carmo [21]

and Saloff-Coste [34] for more details.
The Sobolev spaceW 1,p(Ω) is defined to be the closure of C∞(Ω) with re-

spect to the Sobolev norm. Similarly, the Sobolev space with zero boundary
values, denoted by W 1,p

0 (Ω), is the closure of C∞
0 (Ω). A function belongs

to the local Sobolev space W 1,p
loc (Ω) if it belongs to W

1,p(Ω′) for every open
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subset Ω′ whose closure is a compact subset of Ω. For further discussion on
the Sobolev spaces on Riemannian manifolds, see, for example, Hebey [24].

Furthermore, we assume that M satisfies a (1, p)-Poincaré inequality∫
B(z,R)

∣∣f − fB(z,R)

∣∣ dµ ≤ Cp

∫
B(z,R)

|∇f |p dµ

with a uniform constant Cp > 0. Here the integral average of f is denoted
by

fB(z,R) =

∫
B(z,R)

f dµ =
1

µ(B(z,R))

∫
B(z,R)

f dµ.

The (1, p)-Poincaré inequality leads to the Sobolev inequality for the
Sobolev functions with zero boundary values. Indeed, suppose that u
is in W 1,p

0 (B(z,R)). Then there exists constants C = C(p, Cµ, Cp) and
κ = κ(p, Cµ, Cp) > 1 such that(∫

B(z,R)
|v|κp dµ

)1/(κp)
≤ CR

(∫
B(z,R)

|∇v|p dµ
)1/p

. (2.1)

Here κ = dµ/(dµ − p), if p < dµ and κ ∈ (p,∞), if p ≥ dµ. Recall that
dµ is the dimension of the measure. For the proof we refer, for example, to
Kinnunen-Shanmugalingam [27].

We denote by Lp(t1, t2;W
1,p(Ω)), t1 < t2, the parabolic Sobolev space.

This space consists of functions u such that for almost every t, t1 < t < t2,
the function x 7→ u(x, t) belongs to W 1,p(Ω) and the norm(∫ t2

t1

∫
Ω
|u(x, t)|p + |∇u(x, t)|p dµ(x) dt

)1/p

is finite. The definitions for Lp
loc(t1, t2;W

1,p
loc (Ω)) and L

p(t1, t2;W
1,p
0 (Ω)) are

analogous. Finally, the space C((t1, t2);L
q(Ω)), q = 1, 2, comprises of all

the functions u such that for t1 < s, t < t2, we have∫
Ω
|u(x, t)− u(x, s)|q dµ(x) → 0

as s→ t.
We study the Cauchy problem div

(
A(x, t,∇u)

)
=
∂u

∂t
in M × (0, T ),

u(·, 0) = ν,
(2.2)

where ν is a Radon measure (for a precise formulation, see Definition 2.5).
The solution u satisfies the initial condition in the sense of distributions, i.e.

lim
t→0

∫
M
u(x, t)φ(x) dµ(x) =

∫
M
φ(x) dν(x)

for all φ ∈ C∞
0 (M). We say that ν is the initial trace of u.

The function A (for which A(x, t, ξ) ∈ TxM , where (x, t) ∈M ×R+, and
ξ ∈ TxM) satisfies Carathéodory, monotonicity, and p-growth conditions,
i.e.,

(1) (x, t) 7→ A(x, t,X) is measurable for all measurable vector fields X,
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(2) ξ 7→ A(x, t, ξ), ξ ∈ TxM , is continuous for almost every (x, t) ∈
M × R+,

(3) there exists 0 < α ≤ β <∞ such that⟨
A(x, t, ξ), ξ

⟩
≥ α|ξ|p,

|A(x, t, ξ)| ≤ β|ξ|p−1,
(2.3)

for almost every (x, t) ∈M × R+ and for every ξ ∈ TxM .
(4) A is strictly monotone, that is,⟨

A(x, t, ξ)−A(x, t, ζ), ξ − ζ
⟩
> 0, (2.4)

for almost every (x, t) in M × R+, and every ξ,ζ in TxM , ξ ̸= ζ.

We denote

Mτ1,τ2 =M × (τ1, τ2), Ωτ1,τ2 = Ω× (τ1, τ2).

The notation U b Ω denotes that U is a bounded subset of Ω and the closure
of U belongs to Ω.

The definition of the weak solution is local. In particular, it does not
impose any condition on the initial data.

Definition 2.5. Let Ξ be an open set in M × R. A measurable function
u : Ξ → R is a weak subsolution (supersolution), if whenever Ωτ1,τ2 b Ξ,
then

u ∈ Lp(τ1, τ2 ; W
1,p(Ω))

and it satisfies the integral inequality∫ τ2

τ1

∫
Ω

⟨
A(x, t,∇u),∇ϕ

⟩
dµ dt−

∫ τ2

τ1

∫
Ω
u
∂ϕ

∂t
dµ dt ≤ (≥) 0 (2.6)

for every non-negative test function ϕ ∈ C∞
0 (Ωτ1,τ2). A weak solution is a

weak sub- and supersolution and (2.6) holds with equality for all test func-
tions ϕ ∈ C∞

0 (Ωτ1,τ2).

Remark 2.7. By the growth bounds (2.3) and the approximation, the func-
tional f defined via⟨

f, ϕ
⟩
=

∫ τ2

τ1

∫
Ω

⟨
A(x, t,∇u),∇ϕ

⟩
dµ dt

belongs to the dual space of Lp(τ1, τ2;W
1,p
0 (Ω)), whenever Ωτ1,τ2 b Ξ. Thus,

if u is a weak solution, then the equation implies that the time deriv-
ative of u belongs to the same dual space. Consequently, u belongs to
C([τ1, τ2], L

2(Ω)), see, for example, Lions [30] and also Showalter [35].
Later we shall consider initial and boundary value problem with L2- initial

data in bounded Ω. In that case, a weak solution belongs to C([0, T ), L2(Ω)),
see (5.1) and (5.2). The L2-continuity also extends to the Cauchy problem
with compactly supported L2 initial data as we shall show in Theorem 5.4.
However, with a radon measure as an initial data, see Theorem 5.6, we can
not assume the L2-continuity at t = 0.

The parabolic theory differs from the elliptic theory when proving esti-
mates for the weak solutions. One often needs a test function depending



EXISTENCE FOR A DEGENERATE CAUCHY PROBLEM 5

on u itself, but the time derivative of a test function may not exist as a
function. We treat this difficulty by using the standard mollification

ϕδ(x, t) =

∫
R
ϕ(x, s)ζδ(s− t) ds, x ∈M, τ1 < t < τ2,

where ϕ ∈ C∞(Ωτ1,τ2) and ζδ(s) is the standard mollifier, whose support
is contained in (−δ, δ), δ < dist (spt(ϕ), ∂Ωτ1,τ2). Next we insert the test
function into (2.6), change variables, apply Fubini’s theorem, integrate by
parts, and obtain the following regularized equation∫ τ2

τ1

∫
Ω

∂uδ
∂t

ϕ dµ dt+

∫ τ2

τ1

∫
Ω

⟨
A(x, t,∇u),∇ϕδ

⟩
dµ dt ≤ (≥) 0, (2.8)

where uδ is the mollification in the time direction.

3. A priori estimates

This section deals with three type of a priori estimates providing bound-
edness for essential supremum of a subsolution, finite speed of propagation,
and a bound for the gradient. Theorem 3.1, the main result of the section, is
later used in proving the existence of a Cauchy problem. In particular, the
estimates help us in obtaining preliminary existence and compactness re-
sults as well as the connection to the initial data. The proofs apply Moser’s
iteration method and have a local nature. A priori estimates have plenty
of further applications: Together with the compactness results, they imply
an existence of the universal bound for homogenous Dirichlet problems (cf.
Vázquez [37] in a different context). A priori estimates also play an impor-
tant role in further regularity results, see for example Acerbi-Mingione [1]
and DiBenedetto [17].

In [17], a priori estimates are derived using De Giorgi’s method in the Eu-
clidian setting. Furthermore, Dekkers proves the finite speed of propagation
on Riemannian manifolds applying De Giorgi’s method in [16]. However,
the propagation speed obtained there is not optimal as the Barenblatt solu-
tion shows. Bonforte and Grillo consider the porous medium equation on a
compact Riemannian manifold in [12].

Finally, we note that the estimates hold whenever the Riemannian man-
ifold supports the local doubling condition and the Poincaré inequality. In
particular, when the Ricci curvature is bounded below by −Kg, K > 0,
then the constants Cµ and Cp behave like a power of exp(

√
KR), where R

is the radius of the ball, see Chavel [13]. Hence the theorem below applies

as such whenever R ≤ 1/
√
K.

Theorem 3.1. Let u be a non-negative weak subsolution in B(x0, 2R) ×
(t0, t0 + T ) and denote

Ns = ess sup
t0<t<t0+s

∫
B(x0,2R)

u dµ,

0 < s ≤ T . Then

i) The subsolution is bounded:

ess sup
Q

u ≤C
(Rp

τ

)1/(p−2)
+ C

τ

Rp
Np−1

τ , (3.2)
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where Q = B(x0, R)× (t0 + τ/2, t0 + τ) and 0 < τ ≤ T .
ii) Disturbances have a finite speed of propagation: Assume that u has

zero initial data in sense that

lim
h→0

∫ t0+2h

t0+h

∫
B(x0,2R)

u2 dµ dt = 0.

Then u = 0 almost everywhere in B(x0, R)× (t0, t0 + τ), where

τ = min
{
T,RpN2−p

T /C
}
. (3.3)

iii) For the gradient, we have the estimate∫ t0+τ

t0

∫
B(x0,R)

|∇u|p−1 dµ dt ≤ C
(
(RdµNτ )

p−2τ
)1/λ

Nτ , (3.4)

λ = dµ(p − 2) + p, which holds for every 0 < τ < T such that

τ ≤ RpN2−p
τ .

Above C = C(p, α, β, Cµ, Cp) is a positive constant.

Remark 3.5. If u is a solution in Theorem 3.1, then the results hold with u
replaced by |u| and N replaced by

N = max(N+, N−), N± = ess sup
t0<t<t0+T

∫
B(x0,2R)

max(±u, 0) dµ,

or alternatively

N = ess sup
t0<t<t0+T

∫
B(x0,2R)

|u| dµ.

This is because max(±u, 0) is a subsolution and |u| = max(u, 0) +
max(−u, 0). Observe that the equation may change, but its structure re-
mains the same.

The proof of the Theorem 3.1 is based on the Moser’s iteration method in
which we utilize the Sobolev inequality and the following Caccioppoli esti-
mate with possibly large ε. However, a subsolution is known to be integrable
only up to the power p. We avoid by difficulties using the truncation in the
proof of the Caccioppoli inequality.

Lemma 3.6. Suppose that u is a non-negative subsolution in Ωτ1,τ2. Then
we have∫ τ2

τ1

∫
Ω
|∇u|pu−1+εϕp dµ dt+

p

αε(1 + ε)
ess sup
τ1<t<τ2

∫
Ω
u1+εϕp dµ

≤
(βp
α

)p ∫ τ2

τ1

∫
Ω
up−1+ε|∇ϕ|p dµ dt

+
p

α(1 + ε)

∫ τ2

τ1

∫
Ω
u1+ε

(∂ϕp
∂t

)
+
dµ dt

for every non-negative ϕ ∈ C∞
0 (Ωτ1,τ2) and ε ≥ 1.

Proof. To begin with, we define χh
τ1,τ (t), where τ1 < τ < τ2, to be a piecewise

linear approximation of a characteristic function such that

χh
τ1,τ (t) = 1 as τ1 + 2h ≤ t ≤ τ − 2h,

χh
τ1,τ (t) = 0 as t ≤ τ1 + h or t ≥ τ − h,
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and ∣∣(χh
τ1,τ (t))

′∣∣ ≤ 1

h
.

Let δ < h/4 and choose ϕ ∈ C∞
0 (Ωτ1,τ2). We insert the test function

η = min{u−1+ε
δ , k−1+ε}uδϕpχh

τ1,τ . (3.7)

into (2.8), where the subscript δ refers to the mollification. The test function
η is admissible due to the approximation. We obtain∫ τ2

τ1

∫
Ω

∂uδ
∂t

η dµ dt+

∫ τ2

τ1

∫
Ω

⟨
A(x, t,∇u),∇ηδ

⟩
dµ dt ≤ 0.

It follows by the properties of the standard mollifiers that⟨
A(x, t,∇u),∇ηδ

⟩
→
⟨
A(x, t,∇u),∇

(
min{u−1+ε, k−1+ε}uϕpχh

τ1,τ

)⟩
in L1(Ωt1,t2) as δ → 0. When u < k, growth conditions (2.3) imply

uε−1
⟨
A(x, t,∇u),∇u

⟩
≥ α|∇u|puε−1

and

p

ε
uεϕp−1

⟨
A(x, t,∇u),∇ϕ

⟩
≥ −βp

ε
|∇u|p−1ϕp−1|∇ϕ|uε

=− α
(
|∇u|u(−1+ε)/pϕ

)p−1(βp
αε
u(p−1+ε)/p|∇ϕ|

)
≥− (p− 1)

p
α|∇u|pu−1+εϕp − α

p

(βp
αε

)p
up−1+ε|∇ϕ|p.

Here we have also applied Young’s inequality. Thus we arrive at

p

αε

⟨
A(x, t,∇u),∇

(
min{u−1+ε, k−1+ε}uϕpχh

τ1,τ

)⟩
≥|∇u|pu−1+εϕpχh

τ1,τ −
(βp
αε

)p
up−1+ε|∇ϕ|pχh

τ1,τ .

Similarly, when u ≥ k, we have

p

α

⟨
A(x, t,∇u),∇η

⟩
≥|∇u|pk−1+εϕpχh

τ1,τ −
(βp
α

)p
upk−1+ε|∇ϕ|pχh

τ1,τ .

Next we define an auxiliary function

gk(s) =

∫ s

0
min{r−1+ε, k−1+ε}r dr

=
1

1 + ε
s1+εχ(0,k](s) + k−1+ε

( k2

1 + ε
+
s2 − k2

2

)
χ(k,+∞)(s)

to simplify the calculations. In particular, observe that

∂uδ
∂t

min
{
u−1+ε
δ , k−1+ε

}
uδ =

∂gk(uδ)

∂t
.

Hence the integration by parts yields∫ τ2

τ1

∫
Ω

∂uδ
∂t

η dµ dt =−
∫ τ2

τ1

∫
Ω
gk(uδ)

∂(ϕpχh
τ1,τ )

∂t
dµ dt.
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Thus ∫ τ2

τ1

∫
Ω

∂uδ
∂t

η dµ dt

→−
∫ τ2

τ1

∫
Ω
gk(u)χ

h
τ1,τ

∂ϕp

∂t
dµ dt−

∫ τ2

τ1

∫
Ω
gk(u)ϕ

p
∂χh

τ1,τ

∂t
dµ dt

as δ → 0. Furthermore, we have∫ τ2

τ1

∫
Ω
gk(u)ϕ

p
∂χh

τ1,τ

∂t
dµ dt

= −
∫ τ−h

τ−2h

∫
Ω
gk(u)ϕ

p dµ dt+

∫ τ1+2h

τ1+h

∫
Ω
gk(u)ϕ

p dµ dt.

Almost every τ is a Lebesgue instant, that is,

lim
h→0

∫ τ−h

τ−2h

∫
K

(
u(x, t)− u(x, τ)

)2
dµ dt = 0

for all compact sets K in Ω. This and the dominated convergence theorem
imply that∫ τ2

τ1

∫
Ω
gk(u)ϕ

p
∂χh

τ1,τ

∂t
dµ dt→ −

∫
Ω
gk(u(x, τ))ϕ

p(x, τ) dµ(x)

as h → 0 for almost every k. Observe that the initial term disappears due
to the compact support of ϕ.

We collect the terms and divide the result by αε/p. Note that gk(s) is
monotone increasing with respect to k. Thus, as k → ∞, by the monotone
convergence theorem it follows that

0 ≥
∫ τ2

τ1

∫
Ω
|∇u|pu−1+εϕp dµ dt−

(βp
α

)p ∫ τ2

τ1

∫
Ω
up−1+ε|∇ϕ|p dµ dt

− p

α(1 + ε)

∫ τ2

τ1

∫
Ω
u1+ε

(∂ϕp
∂t

)
+
dµ dt

+
p

αε(1 + ε)

∫
Ω
u1+ε(x, τ)ϕp(x, τ) dµ(x)

(3.8)

for all Lebesgue instants τ1 < τ < τ2. To conclude the proof, let ρ > 0. We
may choose τ1 < τ < τ2 such that∫

Ω
u1+ε(x, τ)ϕp(x, τ) dµ(x) ≥ ess sup

τ1<t<τ2

∫
Ω
u1+εφpdµ− ρ.

This finishes the proof, since ρ is arbitrary. �

Remark 3.9. A slight modification of the proof gives the result also for
0 < ε < 1 with a different constants. Indeed, we may first add a positive
constant σ to u. This guarantees that the test function η = uεδϕ

pχh
τ1,τ

is admissible due to the approximation. In particular, we may omit the
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truncation. Following the proof, we end up with

0 ≥
∫ τ2

τ1

∫
Ω
|∇u|pu−1+εϕp dµ dt−

(βp
εα

)p ∫ τ2

τ1

∫
Ω
up−1+ε|∇ϕ|p dµ dt

− p

αε(1 + ε)

∫ τ2

τ1

∫
Ω
u1+ε

(∂ϕp
∂t

)
+
dµ dt

+
p

αε(1 + ε)

∫
Ω
u1+ε(x, τ)ϕp(x, τ) dµ(x).

The result then follows by the monotone convergence theorem as σ → 0.

Remark 3.10. Suppose that u has zero initial data, i.e. τ1 is a Lebesgue
instant and

lim
h→0

∫ τ1+2h

τ1+h

∫
Ω
u2(x, t)dµ dt = 0.

We follow the previous proof and choose the test function ϕ to depend only
on x. Consequently, we obtain the estimate∫ τ2

τ1

∫
Ω
|∇u|pu−1+εψp dµ dt+

p

αε(1 + ε)
ess sup
τ1<t<τ2

∫
Ω
u1+εψp dµ

≤
(βp
α

)p ∫ τ2

τ1

∫
Ω
up−1+ε|∇ψ|p dµ dt

for all non-negative ψ ∈ C∞
0 (Ω).

Remark 3.11. Let u be a non-negative subsolution in Ωτ1,τ2 . Suppose that
it has zero boundary values in Sobolev sense, i.e.

u ∈ Lp(t1, t2;W
1,p
0 (Ω))

for all τ1 < t1 < t2 < τ2. We choose ϕ to depend only on t. Then η defined
in (3.7) is an admissible test funtion for all ε ≥ 1. Thus we obtain∫ τ2

τ1

∫
Ω
|∇u|pu−1+εϕp dµ dt+

1

αε(1 + ε)
ess sup
τ1<t<τ2

∫
Ω
u1+εϕp dµ

≤ 1

α(1 + ε)

∫ τ2

τ1

∫
Ω
u1+ε

(∂ϕp
∂t

)
+
dµ dt

for all ε ≥ 1. In particular, by choosing ε = 1, we get

2α

∫ τ2

τ

∫
Ω
|∇u|pϕp dµ dt+ ess sup

τ<t<τ2

∫
Ω
u2 dµ ≤

∫
Ω
u2(x, τ) dµ(x) (3.12)

for almost every τ1 < τ < τ2.

Remark 3.13. If u is a non-negative subsolution in an open set containing
compactly Ωt1,t2 , where t1 and t2 are Lebesgue instants. We may then
proceed as in the proof of Lemma 3.6 and obtain∫

Ω
u(x, t2)ϕ(x) dµ(x) ≤

∫
Ω
u(x, t1)ϕ(x) dµ(x)

−
∫ t2

t1

∫
Ω

⟨
A(x, t,∇u),∇ϕ

⟩
dµ dt,

(3.14)

where ϕ ∈ C∞
0 (Ω).
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We continue the proof of Theorem 3.1 by showing the the boundedness of
the weak subsolutions via Moser’s iteration method. Observe that we avoid
the use of the scaling argument. Therefore, we pay extra attention on the
bookkeeping of the geometric ratio Rp/T .

Lemma 3.15. Let u be a subsolution in B(x0, R) × (t0 − T, t0). Suppose
that

up−2(x, t) ≥ Rp

T
for all (x, t) ∈ B(x0, R)× (t0 − T, t0).

Let δ0 > 0. Then there exist constants Ci = Ci(p, α, β, Cµ, Cp, δ0), i = 1, 2,
such that

ess sup
B(x0,σR)×(t0−σpT,t0)

u ≤
( T
Rp

C1

(1− σ)C2

∫ t0

t0−T

∫
B(x0,R)

up−2+δ dµ dt
)1/δ

for every δ ≥ δ0 and 0 < σ < 1.

Proof. We set

Rj = σR+ (ρ− σ)R2−j , Tj = T
Rp

j

Rp
= (σ + (ρ− σ)2−j)pT,

0 < σ < ρ < 1, and

Bj = B(x0, Rj), Γj,h = Γj = (t0 − Tj , t0 − h(T0 − Tj)), Qj = Bj × Γj ,

where 0 < h < σp/4. We choose test functions ϕj ∈ C∞
0 (Qj) such that

0 ≤ ϕj ≤ 1, ϕj = 1 in Qj+1, and

|∇ϕj | ≤
C2j

R(ρ− σ)
,
(∂ϕpj
∂t

)
+
≤ C2jp

T (ρ− σ)p
.

Let ε ≥ 1. An application of Hölder’s inequality yields∫
Γj+1

∫
Bj+1

u(1+ε)(κ−1)/κ+p−1+ε dµ dt

≤
∫
Γj+1

(∫
Bj+1

u1+εϕpj dµ
)(κ−1)/κ(∫

Bj+1

(
u(p−1+ε)/pϕj

)κp
dµ
)1/κ

dt

≤ µ(Bj)

µ(Bj+1)

(
ess sup

Γj

∫
Bj

u1+εϕpj dµ
)(κ−1)/κ

×
∫
Γj

(∫
Bj

(
u(p−1+ε)/pϕj

)κp
dµ
)1/κ

dt,

where κ is as in (2.1). The ratio of the measures of balls is bounded by
the doubling constant Cµ of µ. The Sobolev inequality together with the
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Caccioppoli estimate, Lemma 3.6, gives∫
Qj+1

u(1+ε)(κ−1)/κ+p−1+ε dµ dt

≤CR
p

Tj

(
ess sup

Γj

∫
Bj

u1+εϕpj dµ
)(κ−1)/κ

×
∫
Γj

∫
Bj

|∇(u(p−1+ε)/pϕj)|p dµ dt.

≤CεpRpT
1−1/κ
j

×
(∫

Qj

up−1+ε|∇ϕ|p + u1+ε
(∂ϕp
∂t

)
+
dµ dt

)2−1/κ
.

(3.16)

Note here that |Γj | ≥ Tj/2. The assumption u2−p ≤ T/Rp implies∫
Qj+1

u(1+ε)(κ−1)/κ+p−1+ε dµ dt

≤Cε2pRpT
1−1/κ
j

(∫
Qj

up−1+ε
(
|∇ϕ|p + T

Rp

(∂ϕp
∂t

)
+

)
dµ dt

)2−1/κ

≤Cε2p4jp
( Tj
Rp

)1−1/κ( 1

(ρ− σ)p

∫
Qj

up−1+ε dµ dt
)2−1/κ

.

We then choose ε = εj , where εj is a solution to the difference equation

p− 1 + εj+1 = (1 + εj)
κ− 1

κ
+ p− 1 + εj , ε0 = s, s ≥ 1.

Indeed, εj = (1+ s)(2− 1/κ)j − 1, j = 0, 1, . . . , solves the equation. We set
αj = p− 1 + εj and conclude∫

Qj+1

uαj+1 dµ dt ≤ C16pj
( T
Rp

)1−1/κ( 1

(ρ− σ)p

∫
Qj

uαj dµ dt
)2−1/κ

.

Iteration of the obtained inequality gives∫
Qj+1

uαj+1 dµ dt

≤16p
∑j

i=0(j−i)(2−1/κ)i
(CT
Rp

)(1−1/κ)
∑j

i=0(2−1/κ)i

×
( 1

ρ− σ

)p(2−1/κ)
∑j

i=0(2−1/κ)i(∫
Qj

uα0 dµ dt
)(2−1/κ)j+1

≤CR
p

T

( T
Rp

( 1

ρ− σ

)p(2κ−1)/(κ−1)
∫
Qj

uα0 dµ dt
)(2−1/κ)j+1

.

We take power 1/αj+1 from both sides, let j → ∞, h→ 0, and obtain

ess sup
Uσ

u ≤
(
C
T

Rp

( 1

ρ− σ

)p(2κ−1)/(κ−1)
∫
Uρ

up−1+s dµ dt
)1/(1+s)

,

where Uσ = B(x0, σR) × (t0 − σpT, t0). The result follows then for δ ≥ 2.
By the previous estimate with s = 1 and Young’s inequality, we obtain for
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every 2 > δ ≥ min{δ0, 1} that

ess sup
Uσ

u ≤
(
ess sup

Uρ

u2−δC
T

Rp

( 1

ρ− σ

)p(2κ−1)/(κ−1)
∫
Uρ

up−2+δ dµ dt
)1/2

≤1

2
ess sup

Uρ

u+
(
C
T

Rp

( 1

ρ− σ

)p(2κ−1)/(κ−1)
∫
Uρ

up−2+δ dµ dt
)1/δ

.

A standard iteration argument (see e.g. [22] Lemma 5.1) implies the asser-
tion of the lemma. �

We use the previous lemma to show the preliminary version of the first
statement in Theorem 3.1.

Lemma 3.17. Let u be a subsolution in B(x0, R) × (t0 − T, t0). Suppose
that

up−2(x, t) ≥ Rp

T
for all (x, t) ∈ B(x0, R)× (t0 − T, t0).

Then there are constants Ci = Ci(p, α, β, Cµ, Cp), i = 1, 2, such that

ess sup
B(x0,σR)×(t0−σpT,t0)

u ≤ T

Rp

C1

(1− σ)C2

(
ess sup

t0−T<t<t0

∫
B(x0,R)

u dµ
)p−1

for all 0 < σ < 1.

Proof. Let 0 < h < 1/2. We set

Uσ = B(x0, σR)× (t0 − σpT, t0 − hσpT ),

0 < σ < 1. We choose the test function ϕ ∈ C∞
0 (Uρ), 0 < σ < ρ < 1, such

that 0 ≤ ϕ ≤ 1, ϕj = 1 in Uσ and

|∇ϕ| ≤ C

R(ρ− σ)
,
(∂ϕp
∂t

)
+
≤ C

T (ρ− σ)p
.

By Hölder’s inequality, we obtain∫
Uσ

up+(κ−1)/κ dµ dt

≤C
(

ess sup
t0−T<t<t0

∫
B(x0,R)

u dµ
)(κ−1)/κ

∫ t0

t0−T

(∫
B(x0,ρR)

(uϕ)κp dµ
)1/κ

dt.

Similarly as in the proof of Lemma 3.15, from the Sobolev and Caccioppoli
inequalities, it follows that∫

Uσ

up+(κ−1)/κ dµ dt

≤CRp
(

ess sup
t0−T<t<t0

∫
B(x0,R)

u dµ
)(κ−1)/κ

∫
Uρ

|∇(uϕ)|p dµ dt

≤ C

(ρ− σ)p

(
ess sup

t0−T<t<t0

∫
B(x0,R)

u dµ
)(κ−1)/κ

∫
Uρ

up dµ dt.
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Here we also use the assumption u2−p ≤ T/Rp. Furthermore, by Hölder’s
and Young’s inequalities, we get∫

Uσ

up dµ dt ≤
(∫

Uσ

up+(κ−1)/κ dµ dt
)κp/(κ(p+1)−1)

≤
( C

(ρ− σ)p

(
ess sup

t0−T<t<t0

∫
B(x0,R)

u dµ
)(κ−1)/κ

∫
Uρ

up dµ dt
)κp/(κ(p+1)−1)

≤1

2

∫
Uρ

up dµ dt+
C

(ρ− σ)C
(

ess sup
t0−T<t<t0

∫
B(x0,R)

u dµ
)p

for all 0 < σ < ρ < 1. The iteration then gives∫
Uσ

up dµ dt ≤ C

(1− σ)C

(
ess sup

t0−T<t<t0

∫
B(x0,R)

u dµ
)p

for all 0 < σ < 1. We now use Lemma 3.15 together with Hölder’s inequality
and arrive at

ess sup
Uσ

u ≤ T

Rp

C

(1− σ)C

∫
U(1+σ)/2

up−1 dµ dt

≤ T

Rp

C

(1− σ)C

(∫
U(1+σ)/2

up dµ dt
)(p−1)/p

≤ T

Rp

C

(1− σ)C

(
ess sup

t0−T<t<t0

∫
B(x0,R)

u dµ
)p−1

,

which proves the result after letting h→ 0. �

An application of the previous lemma for v = u+(Rp/T )1/(p−2) gives the
first statement in Theorem 3.1. Furthermore, the result implies the following
corollary, which will be used in the proof of the gradient estimate, the third
statement in Theorem 3.1. Note carefully that we do not use the scaling
argument in the proof. The customary way to obtain the same result is to
blow-up the solution near the initial instant, see for example Choe-Lee [14].
The advantage of our proof is its local nature, and, in particular, we apply
only the local Sobolev inequality and doubling condition.

Corollary 3.18. Let u be a non-negative subsolution in B(x0, R) × (t0 −
T, t0). Suppose further that

ρ =
(
Rdµ ess sup

t0−T<t<t0

∫
B(x0,R)

u dµ
)(p−2)/λ

T 1/λ ≤ R,

where λ = dµ(p − 2) + p. Then there is a constant C = C(p, α, β, Cµ, Cp)
such that

ess sup
Q

u ≤ CT−dµ/λ
(
Rdµ ess sup

t0−T<t<t0

∫
B(x0,R)

u dµ
)p/λ

,

where Q = B(x0, ρ/2)× (t0 − T/2, t0).

Proof. We apply the first statement in Theorem 3.1 with ρ/2 instead of R
and obtain

ess sup
Q

u ≤C
(ρp
T

)1/(p−2)
+ C

T

ρp

(
ess sup

t0−T<t<t0

∫
B(x0,ρ)

u dµ
)p−1

.
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The doubling condition implies

µ(B(x0, R)) ≤ Cµ

(R
ρ

)dµ
µ(B(x0, ρ)).

Hence we get

ess sup
t0−T<t<t0

∫
B(x0,ρ)

u dµ ≤ Cµ

(R
ρ

)dµ
ess sup

t0−T<t<t0

∫
B(x0,R)

u dµ,

and, consequently,

ess sup
Q

u ≤C
(ρp
T

)1/(p−2)
+ C

T

ρλ+dµ

(
Rdµ ess sup

t0−T<t<t0

∫
B(x0,R)

u dµ
)p−1

.

The result follows by inserting the definition of ρ into the inequality above.
�

Furthermore, in view of Remark 3.10, if the subsolution has zero initial
data, one may repeat the proofs of Lemmas 3.15 and 3.17 using the test
functions depending only on the spatial variable x. Hence the positivity
assumption up−2 ≥ Rp/T may be removed.

Lemma 3.19. Let u be a non-negative subsolution in B(x0, R)×(t0, t0+T ).
Suppose further that

lim
h→0

∫ t0+2h

t0+h

∫
B(x0,R)

u2 dµ dt = 0.

Then there are constants Ci = Ci(p, α, β, Cµ, Cp, δ0), i = 1, 2, δ0 > 0, such
that

ess sup
B(x0,σR)×(t0,t0+T )

u ≤
( C1

(1− σ)C2

T

Rp

∫ t0+T

t0

∫
B(x0,R)

up−2+δ dµ dt
)1/δ

,

δ ≥ δ0, and

ess sup
B(x0,σR)×(t0,t0+T )

u ≤ C1

(1− σ)C2

T

Rp

(
ess sup

t0<t<t0+T

∫
B(x0,R)

u dµ
)p−1

for all 0 < σ < 1.

We apply the result to prove the second statement in Theorem 3.1.

Proof of Theorem 3.1 ii). We set Rj = (2−j−1 + 1)R/2 and denote

Υj = ess sup
B(x0,Rj)×(t0,t0+τ)

u.

On the one hand, we have from Lemma 3.19 that

Υj+1 ≤Cj τ

Rp

∫ t0+τ

t0

∫
B(x0,Rj)

up−1 dµ dt

≤Cj τ

Rp
Υ1+p−2

j .

An iteration argument (see e.g. [17], Lemma 4.1, p. 12) yields that Υj → 0
as j → ∞, if

Υ0 ≤
( τ

Rp

)−1/(p−2)
C−1/(p−2)2 . (3.20)
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On the other hand, the second statement in Lemma 3.19 gives

Υ0 ≤ C
τ

Rp

(
ess sup

t0<t<t0+τ

∫
B(x0,R)

u dµ
)p−1

. (3.21)

The right hand side of (3.21) is smaller than the right hand side of (3.20)
due to the condition (3.3). This finishes the proof. �

We finally prove the estimate for the gradient. Similar proof for solutions
can be found in [17] and in the global setting in [14]. The main ingredient
of the proof is Corollary 3.18. Notice that due to the local nature of the
corollary, also the gradient estimate is local.

Proof of Theorem 3.1 iii). Without losing the generality, we may assume
that t0 = 0. Recall that by the assumption, we have

τ ≤ RpN2−p
τ = Rp

(
ess sup
0<t<τ

∫
B(x0,2R)

u dµ
)2−p

. (3.22)

First, we use Hölder’s inequality and get∫ τ

0

∫
B(x0,R)

|∇u|p−1 dµ dt

=

∫ τ

0

∫
B(x0,R)

|∇u|p−1u1/2u−1/2t1/(2p)t−1/(2p) dµ dt

≤

(∫ τ

0

∫
B(x0,R)

up/2 t−1/2 dµ dt

)1/p

×

(∫ τ

0

∫
B(x0,R)

u−p/(2p−2)t1/(2p−2)|∇u|p dµ dt

)(p−1)/p

.

Since (3.22) implies that

t1/λ(RdµNt)
(p−2)/λ ≤ τ1/λ(RdµNτ )

(p−2)/λ ≤ R, (3.23)

we have by Corollary 3.18 and the doubling condition that

ess sup
B(x0,3R/2)×(t/2,t)

u ≤ Ct−dµ/λ(RdµNt)
p/λ ≤ Ct−dµ/λ(RdµNτ )

p/λ

for every 0 < t ≤ τ . This implies that

Ψ1(τ) :=

∫ τ

0

∫
B(x0,R)

up/2t−1/2 dµ dt

≤
∫ τ

0
t−1/2∥u∥p/2−1

L∞(B(x0,R)×(t/2,t))

∫
B(x0,R)

u dµ dt

≤CNτ (R
dµNτ )

p(p−2)/(2λ)

∫ τ

0
t−1/2−dµ(p−2)/(2λ) dt

=CNτ (R
dµNτ )

p(p−2)/(2λ)τp/(2λ).

Next, we choose

ε =
p− 2

2p− 2
, ϕ = t1/(p(2p−2))θ,
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where θ ∈ C∞
0 (B(x0, 3R/2)) depends only on the spatial variable, 0 ≤ θ ≤ 1,

θ = 1 in B(x0, R), and |∇θ| ≤ C/R. By Remark 3.9, we may substitute the
choices into (3.8) and obtain

Ψ2(τ) :=

∫ τ

0

∫
B(x0,R)

|∇u|pu−1+(p−2)/(2p−2)t1/(2p−2) dµ dt

≤C
(p− 1

p− 2

)p ∫ τ

0

∫
B(x0,3R/2)

up−1+(p−2)/(2p−2)t1/(2p−2)|∇θ|p dµ dt

+ C
p− 1

p− 2

∫ τ

0

∫
B(x0,3R/2)

u1+(p−2)/(2p−2)t−1+1/(2p−2) dµ dt

− C
p− 1

p− 2

∫
B(x0,3R/2)

u1+(p−2)/(2p−2)(x, τ)τ1/(2p−2)θp(x) dµ(x).

Here we have also used the doubling condition. We further estimate

Ψ2(τ) ≤
C

Rp

∫ τ

0

∫
B(x0,3R/2)

up−1+(p−2)/(2p−2)t1/(2p−2) dµ dt

+ C

∫ τ

0

∫
B(x0,3R/2)

u1+(p−2)/(2p−2)t−1+1/(2p−2) dµ dt.

For the first term on the right hand side, we have∫ τ

0

∫
B(x0,3R/2)

up−1+(p−2)/(2p−2)t1/(2p−2) dµ dt

≤
∫ τ

0
∥u∥(p−2)(1+1/(2p−2))

L∞(B(x0,3R/2)×(t/2,t))t
1/(2p−2)

∫
B(x0,3R/2)

u dµ dt

≤CNτ (R
dµNτ )

(p/λ)(p−2)(1+1/(2p−2))

∫ τ

0
t−(dµ(p−2)/λ)(1+1/(2p−2))+1/(2p−2) dt

=CNτ (R
dµNτ )

(p/λ)(p−2)(1+1/(2p−2))τp(2p−1)/(λ(2p−2))

=CNτ

(
(RdµNτ )

p−2τ
)p/λ

(RdµNτ )
(p/λ)(p−2)/(2p−2)τp/(λ(2p−2))

≤CNτR
p(RdµNτ )

(p/λ)(p−2)/(2p−2)τp/(λ(2p−2)),

where the last inequality follows by (3.23). Similarly, the second term can
be estimated as∫ τ

0

∫
B(x0,3R/2)

u1+(p−2)/(2p−2)t−1+1/(2p−2) dµ dt

≤CNτ (R
dµNτ )

(p/λ)(p−2)/(2p−2)

∫ τ

0
t−(dµ/λ)(p−2)/(2p−2)−1+1/(2p−2) dt

=CNτ (R
dµNτ )

(p/λ)(p−2)/(2p−2)τp/(λ(2p−2)).

Combining the estimates, we arrive at

Ψ2(τ) ≤ CNτ (R
dµNτ )

(p/λ)(p−2)/(2p−2)τp/(λ(2p−2)).

Thus we conclude that∫ τ

0

∫
B(x0,R)

|∇u|p−1 dµ dt ≤ Ψ1(τ)
1/pΨ2(τ)

(p−1)/p

≤ C
(
(RdµNτ )

p−2τ
)1/λ

Nτ ,
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which proves the claim. �

3.1. Zero lateral boundary data. We yet complement the results of the
previous section. In particular, we show that every subsolution to the Dirich-
let boundary value problem with zero lateral boundary data is bounded
above by a constant independent of the initial data.

Lemma 3.24. Let u be a non-negative subsolution in Ω× (t0−T, t0), where
Ω is a bounded, and R = diam(Ω) <∞. Suppose that

u ∈ Lp(t0 − T, t0;W
1,p
0 (Ω))

Then there exists a constant C = C(p, α, β, Cµ, Cp) such that for all δ ≥ 0,
we have

ess sup
Q

u ≤
(
C
(Rp

T

)κ/(κ−1)
∫ t0

t0−T

∫
Ω
uδ dµ

)1/(δ+(p−2)κ/(κ−1)
,

where Q = Ω× (t0 − T/2, t0).

Proof. We set Tj = σT + (ρ− σ)2−jT , 0 < σ < ρ < 1, and

Γj = (t0 − Tj , t0 − hTj), Qj = Ω× Γj ,

where 0 < h < σ/2. We choose test functions ϕj ∈ C∞
0 (Γj) such that

0 ≤ ϕj ≤ 1, ϕj = 1 in Γj+1, and(∂ϕp
∂t

)
+
≤ C2j

T (ρ− σ)
.

Furthermore, let ε ≥ 1. Due to the fact that u has zero lateral boundary
values in Sobolev sense, it has zero extension outside of Ω. Hence, by Remark
3.11, we may insert ϕj into (3.16), and obtain∫

Qj+1

u(1+ε)(κ−1)/κ+p−1+ε dµ dt

≤Cε2p4jpR
p

T

( 1

ρ− σ

∫
Qj

u1+ε dµ dt
)2−1/κ

.

Observe that we apply the Sobolev inequality in a ball with the radius R.
Let εj be a solution to the difference equation

1 + εj+1 = (1 + εj)
κ− 1

κ
+ p− 1 + εj , ε0 = s, s ≥ 1.

The equation has the solution

εj =
(
s+ 1 +

κ(p− 2)

κ− 1

)(
2− 1

κ

)j
− κ(p− 2)

κ− 1
− 1.

We set αj = 1 + εj and conclude∫
Qj+1

uαj+1 dµ dt ≤
(Rp

T

)κ/(κ−1)

×
((CRp

T

)κ/(κ−1)( 1

ρ− σ

)(2κ−1)/(κ−1)
∫
Qj

uα0 dµ dt
)(2−1/κ)j+1

.
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Taking power 1/αj+1 from both sides and letting j → ∞, h→ 0, implies

ess sup
Uσ

u ≤
(
C
(Rp

T

)κ/(κ−1)( 1

ρ− σ

)C ∫
Uρ

u1+s dµ dt
)1/(1+s+(p−2)κ/(κ−1))

,

where Uσ = B(x0, R)× (t0 − σpT, t0). This proves the result for δ ≥ 2. For
0 ≤ δ < 2, we obtain by the previous estimate with s = 1 that

ess sup
Uσ

u ≤
(
ess sup

Uρ

u2−δ

× C
(Rp

T

)κ/(κ−1)( 1

ρ− σ

)C ∫
Uρ

uδ dµ dt
)1/(2+(p−2)κ/(κ−1))

≤1

2
ess sup

Uρ

u

+
((Rp

T

)κ/(κ−1)( C

ρ− σ

)C ∫
Uρ

uδ dµ dt
)1/(δ+(p−2)κ/(κ−1))

and the result follows by the iteration. �

In the degenerate case the diffusion is very fast, whenever the gradient
is large. This fact leads to a uniform estimate for the weak solution in the
case of zero lateral boundary values after a waiting time: simply choose
δ = 0 in the previous lemma. Notice that the estimate is independent of
the initial data. Intuitively, with large initial data, the diffusion is faster
and the solution decreases more rapidly. Notice that this is not true for the
linear heat equation since the multiples of solutions remain solutions.

Corollary 3.25. Let u be a non-negative subsolution in Ω × (t0 − T, t0),
where Ω is an open set and R = diam(Ω) <∞. Suppose further that

u ∈ Lp
loc(t0 − T, t0;W

1,p
0 (Ω)).

Then there exists a constant C = C(p, α, β, Cµ, Cp) such that

ess sup
B(x0,R)×(t0−T/2,t0)

u ≤C
(Rp

T

)1/(p−2)
.

4. Compactness for solutions

In this section, we show that every bounded sequence of solutions has a
subsequence converging to a solution. This result has a central role in the
proof of the main result. The compactness result is proved by first apply-
ing parabolic counterpart of Rellich’s theorem to obtain strong convergence
for solutions and weak convergence for gradients. However, the passage to
the limit in the weak formulation requires much more information than the
weak convergence of the gradient. We establish the essential pointwise con-
vergence of the gradient by applying the monotonicity of the equation via
Cauchy sequences and a priori estimates.

Lemma 4.1. Let ui, i = 1, 2, . . . be a sequence of uniformly essentially
bounded weak solutions inMτ1,τ2 =M×(τ1, τ2). Then the sequence ∇ui, i =
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1, 2, . . . is locally uniformly bounded in Lp(Mτ1,τ2). Furthermore, there exists
a subsequence still denoted by ui, i = 1, 2, . . . such that

ui → u in Lp
loc(Mτ1,τ2) and

∇ui ⇀ ∇u weakly in Lp
loc(Mτ1,τ2).

(4.2)

Proof. First, we show that the sequence ui, i = 1, 2, . . ., is bounded in
Lp(t1, t2;W

1,p(Ω′)), where Ω′
t1,t2 = Ω′ × (t1, t2) b Mτ1,τ2 , and that the

distributional time derivatives of ui are bounded in the dual space of
Lp(t1, t2;W

1,p
0 (Ω′)). Then we use standard compactness theorems.

To begin with, observe that by the Caccioppoli inequality, cf. Lemma 3.6,
the sequence ∇ui, i = 1, 2, . . ., is locally uniformly bounded in Mτ1,τ2 . In
addition, this fact, the definition of a weak solution, and the growth bounds
of A imply

∣∣∣∣∣
∫
Ω′

t1,t2

∂ϕ

∂t
ui dµ dt

∣∣∣∣∣ ≤ C

(∫
Ω′

t1,t2

|∇ui|p dµ dt

)(p−1)/p(∫
Ω′

t1,t2

|∇ϕ|p dµ dt

)1/p

≤ C ||ϕ||
Lp(t1,t2;W

1,p
0 (Ω′)) ,

for any ϕ ∈ C∞(Ω′
t1,t2) ∩ Lp(t1, t2;W

1,p
0 (Ω′)). By the density of smooth

functions, the time derivative of ui is bounded in the dual space of
Lp(t1, t2;W

1,p
0 (Ω′)).

Now, according to the parabolic version of Rellich’s theorem (Lions-Aubin
theorem), see for example page 106 of Showalter [35], Boccardo et. al. [10],
and Simon [36], there exists a subsequence, still denoted by ui, i = 1, 2, . . .,
satisfying (4.2). �

Theorem 4.3. Let u, and ui, i = 1, 2, . . . be as in Lemma 4.1. Then u is
a weak solution in Mτ1,τ2.

Proof. Passing to a subsequence, if necessary, Lemma 4.1 provides the local
weak convergence for the gradients and the local Lp-convergence for the
weak supersolutions. It remains to establish a pointwise convergence almost
everywhere for the gradients, since together with the continuity of A this
allows us to pass to limit under the integral sign. To this end, choose uj and
uk from the subsequence. Both uj and uk are weak solutions, and hence we
obtain, by subtracting the equations, that

−
∫
M×(τ1,τ2)

(uj − uk)
∂ϕ

∂t
dµ dt

+

∫
M×(τ1,τ2)

⟨
A(x, t,∇uj)−A(x, t,∇uk),∇ϕ

⟩
dµ dt = 0.

(4.4)

Next let θ ∈ C∞
0 (Mτ1,τ2) and choose formally the test function

ϕ = θ(x, t)(uj(x, t)− uk(x, t)).
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By inserting it into (4.4), we obtain∫
Mτ1,τ2

⟨
A(x, t,∇uj)−A(x, t,∇uk), (∇uj −∇uk)θ

⟩
dµ dt

≤−
∫
Mτ1,τ2

⟨
A(x, t,∇uj)−A(x, t,∇uk), (uj − uk)∇θ

⟩
dµ dt

+

∫
Mτ1,τ2

(uj − uk)
∂(θ(uj − uk))

∂t
dµ dt.

To justify the reasoning, the estimate should be free of the time derivatives
of uj and uk, and therefore, we integrate by parts and end up with∫

Mτ1,τ2

(uj − uk)
∂(θ(uj − uk)

∂t
dµ dt =

1

2

∫
Mτ1,τ2

(uj − uk)
2∂θ

∂t
dµ dt.

Furthermore, Hölder’s inequality, the growth bounds, and the fact that
the sequence ∇ui, i = 1, 2, . . ., is locally uniformly bounded in Lp(Mτ1,τ2),
imply ∫

Mτ1,τ2

⟨
A(x, t,∇uj)−A(x, t,∇uk), (uj − uk)∇θ

⟩
dµ dt

≤C

(∫
Mτ1,τ2

|uj − uk|p |∇θ|p dµ dt

)1/p

.

We combine the estimates and deduce∫
Mτ1,τ2

⟨
(A(x, t,∇uj)−A(x, t,∇uj)), (∇uj −∇uk)θ

⟩
dµ dt

≤C
∫
Mτ1,τ2

∣∣∣∣∂θ∂t
∣∣∣∣ |uj − uk|2 dµ dt

+ C

(∫
Mτ1,τ2

|uj − uk|p|∇θ|p dµ dt

)1/p

.

(4.5)

Since ui, i = 1, 2, . . ., converges in Lp
loc(Mτ1,τ2), it follows that the right

hand side can be made as small as we wish.
The rest of the proof is rather standard, see, for example, Boccardo-

Gallouët [11], and also [28]. For the convenience of the reader, we repeat
the proof. We shall show that (4.5) implies, passing to a subsequence, if
necessary, that ∇ui, i = 1, 2, . . . is a Cauchy sequence in convergence in
measure, that is, for any Ω′

t1,t2 = Ω′ × (t1, t2) b Mτ1,τ2 and for all δ, η > 0
we can choose large enough j and k so that∣∣{(x, t) ∈ Ω′

t1,t2 : |∇uj −∇uk| ≥ δ
}∣∣ < η.

Here | · | stands for the measure of the space-time set. Together with the fact
that the norms of the gradients are locally uniformly bounded this implies
the pointwise convergence almost everywhere.
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We define the following sets

Ejk =
{
(x, t) ∈ Ω′

t1,t2 : |∇uj(x, t)−∇uk(x, t)| ≥ ρ
}
,

Ujk =
{
(x, t) ∈ Ω′

t1,t2 : |uj(x, t)− uk(x, t)| ≤ δ
}
, {Ujk = Ω′

t1,t2 \ Ujk,

Vjk =
{
(x, t) ∈ Ω′

t1,t2 : |∇uj(x, t)|, |∇uk(x, t)| ≤ λ
}
, {Vjk = Ω′

t1,t2 \ Vjk.

First, we observe that ∣∣Ejk

∣∣ ≤ ∣∣Ejk ∩ Ujk

∣∣+ ∣∣{Ujk

∣∣,
and, hence, it is enough to show that the measure of the sets on the right
can be made smaller than any η > 0. We further estimate∣∣Ejk ∩ Ujk

∣∣ ≤ ∣∣Ejk ∩ Ujk ∩ Vjk
∣∣+ ∣∣{Vjk∣∣.

Note that the sequence ui, i = 1, 2, . . ., converges in measure due to the
strong convergence. It follows that∣∣{Ujk

∣∣ < η

3

for j and k large enough, and since the Lp-norms of the gradients are
bounded, there exists λ > 0 such that∣∣{Vjk∣∣ ≤ η

3
.

Consequently, it is enough to concentrate on the measure of the set Ejk ∩
Ujk ∩ Vjk. We define

γ(x, t) = inf
⟨
A(x, t, ξ)−A(x, t, ζ), ξ − ζ

⟩
,

where the infimum is taken over the compact set{
(ξ, ζ) ∈ TxM × TxM : |ξ|, |ζ| ≤ λ, |A(x, t, ξ)−A(x, t, ζ)| ≥ ρ

}
.

Due to the continuity of ξ 7→ A(x, t, ξ), the above set is compact. Hence the
monotonicity of A implies that γ(x, t) > 0 for almost every (x, t) ∈ Ω′

t1,t2 .
According to (4.5), we obtain by choosing θ = 1 in Ω′

t1,t2 = Ω′× (t1, t2) that
for every δ > 0,∫

Ejk∩Ujk∩Vjk

γ(x, t) dµ dt

≤
∫
Ujk

⟨
A(x, t,∇uj)−A(x, t,∇uk),∇(uj − uk)

⟩
dµ dt ≤ Cδ

for j and k large enough. Since γ(x, t) > 0 for almost every (x, t) ∈ Ω′
t1,t2 ,

it follows that

|Ejk ∩ Ujk ∩ Vjk| ≤
η

3
for δ small enough and j, k large enough. Combining the facts, we deduce∣∣{(x, t) ∈ Ω′

t1,t2 : |∇uj(x, t)−∇uk(x, t)| ≥ ρ
}∣∣ ≤ η

for large enough j and k.
Since the sequence ui, i = 1, 2, . . . is bounded, converges to u, and ∇ui,

i = 1, 2, . . ., is a Cauchy sequence in convergence in measure, it follows that
∇ui converges to ∇u in measure in Ω′

t1,t2 . Consequently, there exists a
subsequence that converges almost everywhere to ∇u in Ω′

t1,t2 .
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Next, by the continuity of ξ 7→ A(x, t, ξ), we obtain that A(x, t,∇ui),
i = 1, 2, . . ., converges to A(x, t,∇u) almost everywhere in Ω′

t1,t2 . Moreover,

A(x, t,∇ui) is uniformly bounded in L
p/(p−1)
loc (Ω′

t1,t2). These two facts imply

the weak convergence of A(x, t,∇ui) in Lp/(p−1)
loc (Ω′

t1,t2).
Collecting the facts, both terms in the definition of a weak supersolution

converge to right limits since Ω′
t1,t2 b Mτ1,τ2 was arbitrary, proving the

assertion. �
Actually, the pointwise convergence of the gradients in the proof above im-

plies the strong convergence of the gradients in Lp
loc(Mτ1,τ2). Indeed, point-

wise convergence together with the uniform Lp-bound implies the strong
convergence in Lq for any q strictly less than p, see, for example, [28]. Nev-
ertheless, due to higher integrability, see Kinnunen-Lewis [26] and also [32],
we can repeat the reasoning for p + ε and, thus, get rid off the restriction
q < p.

5. Existence

In this section, we prove the existence of a solution to the Cauchy problem.
To begin with, we prove the existence of weak solutions for all times when
the initial data is in L2 and is compactly supported. We next establish the
existence for finite compactly supported Radon measures and then extend
to the non-compact case where ν(M) is possibly infinite: We construct a
sequence of functions approximating the initial measure and thus, obtain a
sequence of approximating solutions. Finally, the compactness result from
the previous section completes the proof.

The starting point is to employ the existence theorem for a Dirichlet
problem div

(
A(x, t,∇u)

)
=
∂u

∂t
in Ω× (0, T ),

u(·, 0) = u0 ∈ L2(Ω),
(5.1)

where
u ∈ Lp(0, T ; W 1,p

0 (Ω)) ∩ C([0, T ) ; L2(Ω))

and Ω is bounded. In particular, u attains its initial values continuously in
L2-sense, that is,

lim
t→0

∫
Ω

(
u(x, t)− u0(x)

)2
dµ = 0. (5.2)

The result is based on a general principle on the monotone operators, see,
for example, Lions [30] or Showalter [35], p. 126. See also Alt-Luckhaus [2]
and Hüngerbuhler [25].

Theorem 5.3. Let T > 0 and Ω be an open bounded subset of M . Then
there exists a unique weak solution to the Dirichlet problem (5.1).

The existence of the weak solution to the Cauchy problem (2.2) with the
L2-initial data is more involved.

Theorem 5.4. Suppose that u0 ∈ L2(M) has a compact support. Then
there exists a unique solution

u ∈ Lp
loc(0, T ; W 1,p

loc (M)) ∩ C([0, T ) ; L2
loc(M))
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to the Cauchy problem. Moreover,∫
M
u(x, t) dµ =

∫
M
u0(x) dµ

and ∫
M

max(±u(x, t), 0) dµ ≤
∫
M

max(±u0(x), 0) dµ

for all t > 0.

Proof. Suppose that the support of u0 belongs to B(x0, R0), R0 > 1, and
let R ≥ 2R0. Let v solve (5.1) in B(x0, R) × (0, T ), T > 0, with the
initial data v0 = u0. Such a solution exists by Theorem 5.3. The functions
v+ = max(v, 0) and v− = max(−v, 0) are non-negative subsolutions and
they attain initial values (u0)+ and (u0)−, respectively, by the L2-continuity.
Moreover, by (3.12), we have∫

B(x0,R)
v2±(x, t) dµ(x) ≤

∫
B(x0,R)

(u0(x))
2
± dµ(x) =: N2

0

for all t > 0. Thus it follows by Hölder’s inequality that

sup
t≥0

∫
B(x0,R)

v±(x, t) dµ(x) ≤
N0√

µ(B(x0, R))
≤ N0√

µ(B(x0, 1))
.

The second statement in Theorem 3.1 then implies that v± = 0 almost
everywhere near the boundary of B(x0, R) up to the time TR, which has
a positive lower bound depending only on p, α, β, Cp, Cµ, N0, and grows
linearly with Rp. Consequently, we can extend the solution v to be zero
in the set (M \ B(x0, R)) × (0, TR). Because R is arbitrary, we obtain the
existence of the solution in M × (0,∞).

The second statement follows easily from the weak formulation. As we
have shown, for every fixed T > 0, the support of u(·, t), 0 < t < T , belongs
to a compact setKt. Let ϕ ∈ C∞

0 (M) be a time-independent cut-off function
such that ϕ = 1 on Kt. Clearly,∫ t

0

∫
M

⟨
A(x, s,∇u±),∇ϕ

⟩
dµ ds = 0.

Thus Remark 3.13 implies that∫
M
u(x, t) dµ =

∫
M
u(x, t)ϕ(x) dµ =

∫
M
u0(x)ϕ(x) dµ =

∫
M
u0(x) dµ

and ∫
M
u±(x, t) dµ ≤

∫
M
(u0(x))± dµ

for all τ > 0.
Finally, let u be any solution to the Cauchy problem. By the second

statement in Theorem 3.1 and Remark 3.5, we may choose for any time T a
radius R independent of u such that the support of u(·, t) belongs to B(0, R)
for every 0 < t < T . This fact together with the comparison principle implies
the uniqueness of the solution. �



24 TUOMO KUUSI AND MIKKO PARVIAINEN

In order to use the preliminary result, we need to establish an approxi-
mation procedure for finite Radon measures in a sense of weak convergence
of measures. This is the content of the following lemma.

Lemma 5.5. Let Ω ⊂M be an open set and let ν be a finite Radon measure
in Ω. Then there exists a sequence fj, i = 1, 2, . . ., in C∞(Ω) such that∫

Ω

∣∣fj∣∣ dµ ≤ |ν|(Ω),

and for all θ ∈ C∞
0 (Ω) we have∫

Ω
fjθ dµ→

∫
Ω
θ dν

as j → ∞.

Proof. By Vitali’s covering argument with a doubling measure, there exists

a countable collection of balls {B̃i,j} of radius 2−j centered in Ω and of

bounded overlap, such that Ω ⊂ ∪∞
i=1B̃i,j and {1

5B̃i,j} is disjoint. Define

Fj = {Bi,j} to be a collection of those balls in {B̃i,j} that are contained in
Ω.

We shall employ a partition of unity subordinate to Fj , i.e. collection of
non-negative smooth functions {ϕi,j}, such that ϕi,j is supported in Bi,j and∑∞

i=1 ϕi,j(x) = 1 for all x ∈ ∪iBi,j . We define

fi,j(x) =
( ∫

Bi,j

ϕi,j(y) dµ(y)
)−1

∫
Bi,j

ϕi,j(y) dν(y)ϕi,j(x),

which is a smooth function supported in Bi,j . We define

fj =

∞∑
i=1

fi,j .

Note that for all i and j the inequality∫
Bi,j

∣∣fi,j(x)∣∣ dµ(x) ≤ ∫
Bi,j

ϕi,j(x) d|ν|(x).

holds. By this estimate and Lebesgue’s monotone convergence theorem, we
obtain ∫

Ω

∣∣fj(x)∣∣ dµ(x) ≤ ∞∑
i=1

∫
Bi,j

ϕi,j(x) d|ν|(x) = |ν|(Ω).

Next we prove the convergence. To this end, take a function θ ∈ C∞
0 (Ω)

and j large enough such that spt θ ⊂ ∪iBi,j . By the smoothness of θ, there
is a constant C depending only on θ, such that

|θ(x)− θ(xi,j)| ≤ C2−j
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for all x ∈ Bi,j , where xi,j is the center of Bi,j . Thus,∣∣∣ ∫
Ω
θ dν −

∫
Ω
fjθ dµ

∣∣∣
≤

∞∑
i=1

∣∣∣ ∫
Ω
ϕi,jθ dν −

∫
Ω
ϕi,jθ(xi,j) dν +

∫
Ω
ϕi,jθ(xi,j) dν −

∫
Ω
fi,jθ dµ

∣∣∣
≤ 2C2−j

∞∑
i=1

∫
Ω
ϕi,j d|ν| ≤ C2−j |ν|(Ω).

This proves the weak convergence and hence the claim as j → ∞. �

We are now ready to prove existence results for initial measure problems.
To begin with, be assume that the initial measure is finite and compactly
supported.

Theorem 5.6. Let ν be a compactly supported Radon measure in M . Then
there exists a weak solution to the Cauchy problem (2.2) in M × (0,∞).

Proof. To prove the theorem, we find a weak solution u in M × (0,∞) such
that ∫

M
u(x, t)φ(x) dµ(x) →

∫
M
φ(x)dν(x), as t→ 0,

for every φ ∈ C∞
0 (M). Let Ω be an open bounded set in M such that ν

is supported in Ω. In view of Lemma 5.5, there exists a sequence u0i , i =
1, 2, . . . of smooth functions in C∞(Ω) and∫

Ω

∣∣u0i ∣∣ dµ ≤ |ν|(Ω) <∞.

Furthermore, ∫
M
u0iφdµ→

∫
M
φdν (5.7)

as i→ ∞ for every φ ∈ C∞
0 (Ω). Thus, by Theorem 5.4, there exists a weak

solution ui ∈ Lp
loc(0,∞ ; W 1,p

loc (M)) ∩ C([0,∞) ; L2
loc(M)), corresponding to

each u0i .
Let t0 > 0. According to Theorem 5.4

sup
t>0

∫
M

|ui| dµ ≤
∫
Ω

∣∣u0i ∣∣ dµ ≤ |ν|(Ω),

and, thus, the first statement in Theorem 3.1 and Remark 3.5 imply that
the sequence ui, i = 1, 2, . . . is essentially uniformly bounded inM×(t0,∞).
Thus, according to Theorem 4.3, there exists a weak solution u inM×(t0,∞)
and a subsequence, still denoted by ui, i = 1, 2, . . ., such that

ui → u in Lp
loc(M × (t0,∞)). (5.8)

The result extends to the whole of M × (0,∞). Indeed, we can replace t0
with t0/2 and repeat the reasoning for the subsequence, which was obtained
for t0. To continue, we repeat this infinitely many times and finally use the
diagonal argument.

Observe that we may lose L2-continuity at t = 0 when taking limits above.
Nevertheless, we can show that u takes the right initial values in the sense
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of distributions. Define a linear approximation of the characteristic function
as

χh,k
t1,t2

(t) =



0, t ≤ t1 − h

(t+ h− t1)/h, t1 − h < t < t1

1, t1 < t < t2

(t2 + k − t)/k, t2 < t < t2 + k

0, t ≥ t2 + k,

where 0 ≤ t1−h. Let φ ∈ C∞
0 (M) and choose φ(x)χh,k

t1,t2
(t) as a test function

in the weak formulation. We obtain∣∣∣∣∫ t2+k

t2

∫
M
uiφdµdt−

∫ t1−h

t1

∫
M
uiφdµdt

∣∣∣∣
≤
∣∣∣∣∫ t2+k

t1−h

∫
M

⟨
A(x, t,∇ui), χh,k

t1,t2
∇φ
⟩
dx dt

∣∣∣∣ .
(5.9)

Next we pass to limits in a particular order. Since t 7→ ui(·, t) is a continuous
function having values in L2, it follows that∫ t1−h

t1

∫
M
uiφdµdt→

∫
M
ui(x, t1)φ(x) dµ(x),

as h→ 0. Furthermore, the initial condition implies∫
M
ui(x, t1)φ(x) dµ(x) →

∫
M
u0i (x)φ(x) dµ(x),

as t1 → 0. As then i→ ∞, we obtain∫
M
u0i (x)φ(x) dµ(x) →

∫
M
φ(x) dν(x),

and ∫ t2+k

t2

∫
M
uiφdµdt→

∫ t2+k

t2

∫
M
uφdµ dt

due to (5.7) and (5.8). Finally, by passing to zero with k, it follows that∫ t2+k

t2

∫
M
uφdµ dt→

∫
M
u(x, t2)φ(x) dµ(x),

since the weak solution u belongs to C((0,∞), L2
loc(M)). Observe that we

only use the continuity on an open interval (0, T ).
Consider next the right hand side of (5.9). Let first h → 0 and t1 → 0

in this order. The growth bounds and (3.4) (see also the remark thereafter)
imply∣∣∣∣∫ t2+k

0

∫
M

⟨
A(x, t,∇ui), χ0,k

0,t2
∇φ
⟩
dµ dt

∣∣∣∣ ≤ C

∫ t2+k

0

∫
sptφ

|∇ui|p−1 dµ dt

≤ C(t2 + k)1/λ,

where λ = dµ(p − 2) + p and C depends on p, α, β, |ν|(Ω) and φ. Then we
pass to limits with i and k, merge the estimates, and obtain∣∣∣∣∫

M
u(x, t2)φ(x) dµ(x)−

∫
M
φ(x) dν(x)

∣∣∣∣ ≤ Ct
1/λ
2 . (5.10)
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The right hand side tends to zero, as t2 → 0, and we have shown that u
takes the right initial values. This completes the proof. �

The following theorem extends the existence result for Radon measures
with possibly unbounded support. First, we define the seminorm

|∥ν∥|ρ(x) := sup
R≥ρ

R−p/(p−2) |ν|(B(x,R))

µ(B(x,R))
, x ∈M.

We use the abbreviation

|∥ν∥| = lim
ρ→∞

|∥ν∥|ρ(x).

The quantity is independent of the choice of x since M is a length space as
a geodesic space, and µ is doubling.

Theorem 5.11. Suppose that ν is a Radon measure in M and

|∥ν∥| <∞. (5.12)

Then there exists a solution to the Cauchy problem (2.2) up to

T =
1

C|∥ν∥|p−2
,

where the constant C depends only on p, α, β, Cµ, and Cp.

Proof. As in the proof Theorem 5.6, we look for a weak solution u in M ×
(0, 1/(C|∥ν∥|p−2), such that∫

M
u(x, t)φ(x) dµ(x) →

∫
M
φ(x)dν(x) as t→ 0,

for every φ ∈ C∞
0 (M).

Let x0 ∈ M and let χB(x0,i), i = 1, 2, . . ., be a characteristic function
of B(x0, i) and νi = νχB(x0,i). Let ui be a solution to the corresponding
Cauchy problem with the initial trace νi. We define

Nτ (R) = sup
0<t<τ

∫
B(x0,R)

|ui| dµ and Gτ (R) = R−p/(p−2)Nτ (R).

The initial data νi is compactly supported, and thus the solution ui exists
in M × (0,∞), and by assumption (5.12), it follows that supRG(R) < ∞
for every τ > 0.

Let then ϕ ∈ C∞
0 (B(x0, 2R)) be a cut-off function such that ϕ = 1 in

B(x0, R) and |∇ϕ| ≤ C/R. From the definition of a weak solution (see also
Remark 3.13), we obtain∫

B(x0,2R)
|ui(x, s)|ϕ(x) dµ(x)

≤ |νi|(B(x0, 2R))

µ(B(x0, 2R))
+
C

R

∫ s

0

∫
B(x0,2R)

|∇ui|p−1 dµ dt

for any s > 0. We divide this on both sides by Rp/(p−2) and take
the supremum over the interval (0, τ). Moreover, since |νi|(B(x0, 2R)) ≤
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|ν|(B(x0, 2R)), we obtain

Gτ (R) ≤2p/(p−2)(2R)−p/(p−2) |ν|(B(x0, 2R))

µ(B(x0, 2R))

+ CR−1−p/(p−2)

∫ τ

0

∫
B(x0,2R)

|∇ui|p−1 dµ dt.

(5.13)

The third statement in Theorem 3.1 together with Remark 3.5 gives∫ τ

0

∫
B(x0,2R)

|∇ui|p−1 dµ dt ≤ C
(
(RdµNτ (4R))

p−2τ
)1/λ

Nτ (4R)

= CR1+p/(p−2)Gτ (4R)
1+(p−2)/λτ1/λ,

which holds for any T > 0 and for every

0 < τ < Rp(Nτ (4R))
2−p = 4−p/(p−2)Gτ (4R)

2−p. (5.14)

Hence, for such τ , we conclude

Gτ (R) ≤ 2p/(p−2)(2R)−p/(p−2) |ν|(B(x0, 2R))

µ(B(x0, 2R))
+ Cτ1/λGτ (4R)

1+(p−2)/λ.

A careful choice of τ together with iteration provides a bound for Gτ (R):
The condition (5.14) is certainly satisfied, if we choose τ according to the
equation

τ = min
{
4−p/(p−2), (2C)−λ

}
Gτ (4R)

2−p. (5.15)

Such τ exists since Gτ (4R)
2−p is a continuous decreasing function of τ .

Furthermore, by the definition of |∥ν∥|, we find for every ε > 0 a constant
Rε such that the inequality

|∥ν∥|R ≤ |∥ν∥|+ ε

holds for every R > Rε. Collecting the facts, we deduce

Gτ (R) ≤ C(|∥ν∥|+ ε) +
1

2
Gτ (4R), (5.16)

for every R > Rε. By iterating (5.16), we end up with

Gτ (R) ≤ C(|∥ν∥|+ ε) (5.17)

for all R > Rε. Consequently, we obtain by (5.15) the lower bound

τ ≥ 1

C
(|∥ν∥|+ ε)2−p =: Tε.

Moreover, this implies by the first claim in Theorem 3.1 and Remark 3.5
that

ess sup
B(x0,R)×(t,Tε)

|ui| ≤ CRp/(p−2)
(
t−1/(p−2) + |∥ν∥|p−1

)
(5.18)

for every 0 < t < Tε and R > Rε.
We observe that the right hand side of the estimate (5.18) does not de-

pend on i, and thus the sequence ui, i = 1, 2, . . . is uniformly bounded
in B(x0, R) × (t, Tε). Consequently, there exists a subsequence still de-
noted by ui, i = 1, 2, . . . and a weak solution u such that ui → u in
Lp
loc(B(x0, R)× (t, Tε)) by Theorem 4.3. We can repeat the argument with

any finite R > Rε and also for any t = 2−kTε, k ∈ N. Thus, the function u
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is a weak solution in M × (x0, T ) by the diagonal argument, cf. the proof of
Theorem 5.6. By letting ε to zero, we obtain the first part of the claim.

It remains to show that u takes the right initial values. First, choose
φ ∈ C∞

0 (M). Similarly as in the derivation of estimate (5.10), the third
claim in Theorem 3.1, Remark 3.5, and (5.17) imply∣∣∣ ∫ t2+k

t2

∫
M
ui(x, t)φ(x) dµ(x) dt−

∫
M
φ(x) dνi(x)

∣∣∣ ≤ Ct
1/λ
2 , (5.19)

where sptφ ⊂ B(x0, R) and C depends on p, α, β,R, |∥µ∥|, ε, and φ. Since
νi = ν in sptφ for i large enough, it follows that∣∣∣∣∫

M
u(x, t2)φ(x) dµ(x)−

∫
M
φ(x) dν(x)

∣∣∣∣ ≤ Ct
1/λ
2 ,

as i→ ∞ and k → 0. Letting t2 → 0 completes the proof. �

6. Optimality of the existence result

In this section, we show in the Euclidean setting that if the weak solution
exists, then the initial trace satisfies the assumptions of the previous section.
In particular, the existence fails with more general measures and thus our
results are sharp. The proof is based on the following global weak Harnack
inequality, see [18], [29], as well as [14] and [19].

Theorem 6.1. Let u be a non-negative weak supersolution in Rn × (0, T ).
Then there exists a constant C = C(n, p, α, β) such that for every x0 ∈ Rn,
R > 0 and almost every 0 < t < T/4, we have∫

B(x0,R)
u(x, t) dx ≤

(CRp

T

)1/(p−2)
+ C

( T
Rp

)n/p
ess inf

Q
uλ/p,

where λ = n(p− 2) + p and Q = B(x0, 2R)× (T/2, T ).

Observe that if u is a solution, then the result holds for every 0 < t < T/4.

Theorem 6.2. Suppose that u is a non-negative weak solution in Rn×(0, T ).
Then there is a unique non-negative locally finite Radon measure ν such that

lim
t→0

∫
Rn

u(x, t)φ(x) dx→
∫
Rn

φ(x)dν(x) (6.3)

for every φ ∈ C∞
0 (Rn). Moreover, there exists a constant C = C(n, p, α, β)

such that
|∥ν∥| ≤ CT−1/(p−2).

Proof. To begin with, choose B(0, R) and a sequence τi, i = 1, 2, . . . tend-
ing to zero. By the global Harnack estimate, Theorem 6.1, it follows that
u(x, τi) dx, i = 1, 2, . . . is a bounded sequence of positive Radon measures in
B(0, R). Thus, the weak compactness for measures implies that there exists
a positive Radon measure ν such that (6.3) holds for a subsequence. The
diagonal argument with R = 1, 2, . . . extends the result to the whole of Rn.

It remains to show the uniqueness of ν. Theorem 6.1 implies for every
R ≥ 1 and 0 < t < T/4 that

R−p/(p−2)

∫
B(0,R)

u(x, t) dx ≤
(C
T

)1/(p−2)
+

CTn/p

Rλ/(p−2)
ess inf

Q
uλ/p, (6.4)
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where Q = B(0, 2R)×(T/2, T ) and λ = n(p−2)+p. By taking the essential
supremum in (6.4) with respect to t over the interval (0, T/4) and adopting
the notation from the proof of Theorem 5.11, we conclude that GT/4(R) is
bounded. Furthermore, similarly as in the proof of Theorem 5.11, we obtain
for any φ ∈ C∞

0 (Rn) and for all 0 < t1, t2 < T/4 that∣∣∣ ∫
Rn

u(x, t2)φ(x) dx−
∫
Rn

u(x, t1)φ(x) dx
∣∣∣ ≤ C(t2 − t1)

1/λ. (6.5)

Observe that C does not depend on t1 or t2. By replacing t1 by τi and
passing to a limit with i, we deduce that the initial trace is unique. The
estimate for |∥ν∥| follows from (6.4) by letting t→ 0 and R→ ∞. �
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