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Abstract. We extend the theory of the thermal capacity for the
heat equation to nonlinear parabolic equations of the p-Laplacian
type. We study definitions and properties of the nonlinear para-
bolic capacity and show that the capacity of a compact set can be
represented via a capacitary potential. As an application, we show
that polar sets of superparabolic functions are of zero capacity.
Main technical tools include estimates for equations with measure
data and obstacle problems.

1. Introduction

The concept of capacity is of fundamental importance in the classical
potential theory. For example, a Wiener type criterion for boundary
regularity, a characterization of polar sets and removability results are
expressed in terms of capacities. In the stationary case, capacity is
related to the underlying Sobolev space, but the situation is more del-
icate for parabolic partial differential equations. Indeed, the definition
of the true thermal capacity seems to be related more closely to the
partial differential equation than to the underlying function space.

As far as we are aware, this work is the first attempt to extend the
theory of the thermal capacity to nonlinear partial differential equa-
tions of the form

∂u

∂t
− divA(x, t,∇u) = 0.

The principal prototype is the p-parabolic equation

∂u

∂t
− div(|∇u|p−2∇u) = 0

with 1 < p < ∞. When p 6= 2, linear tools such as Green’s func-
tions and representation formulas are not at our disposal. Hence the
nonlinear parabolic capacity of a set E ⊂ Rn+1 is defined as

cap(E) = sup{µ(Rn+1) : 0 ≤ uµ ≤ 1, suppµ ⊂ E},
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where µ is a nonnegative Radon measure, and uµ is a weak solution to
the measure data problem

∂uµ
∂t
− divA(x, t,∇uµ) = µ,

with zero boundary values on the parabolic boundary of the reference
domain. The case where the reference set is the whole Rn+1 can be
reached via a limiting procedure.

Several parabolic capacities have been introduced in the quadratic
case when p = 2. The thermal capacity related to the heat equation,
and its generalizations have been studied, for example, by Lanconelli
[26] and Watson [40]. For applications to boundary regularity and
removability problems, we refer to Evans and Gariepy [11], Gariepy and
Ziemer [12], [13] and Lanconelli [26], [27]. Boundary regularity has been
also studied in [28] and polar sets in [36] and [40]. The monumental
work [8] contains plenty of material about potential theory related to
the heat equation. Capacities introduced in [2], [9], [10], [14], [33],
[34], [35] and [41] are defined in terms of function spaces. Droniou,
Porretta and Prignet [9], as well as Saraiva [34], [35], also consider the
nonquadratic case. As examples in [13] show, some of these capacities
may have different zero sets and, consequently, they are more restrictive
than the classical thermal capacity. The main motivation for using the
thermal capacity is that it gives optimal results for boundary regularity
and removable sets.

One of our main results, Theorem 5.7, gives a representation of the
capacity of a compact set through capacitary potentials. This extends
Theorem 1.1 in [26]. As an application, we show that polar sets of
superparabolic functions are of zero parabolic capacity. For the heat
equation, we have supercaloric functions or supertemperatures, see [38].
In the nonlinear case, superparabolic functions are defined through the
parabolic comparison principle, as proposed in [17], but there are also
several alternative characterizations. For example, they can be defined
as limits of increasing sequences of continuous supersolutions and every
superparabolic function is a solution of a measure data problem, see
[19], [20] and [22]. In contrast with the elliptic case in [30] and [15]
(see also [16]), the class of superparabolic functions is not closed under
scaling. Our argument is based on rather delicate estimates for scaled
obstacle problems and convergence results.

2. Nonlinear parabolic PDEs

2.1. Parabolic Sobolev Spaces. Let Ω be a regular bounded open
set in Rn with n ≥ 2. We denote

Ω∞ = Ω× (0,∞)
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and

Ωt1,t2 = Ω× (t1, t2)

for −∞ < t1 < t2 <∞. The parabolic boundary of Ωt1,t2 is

∂pΩt1,t2 =
(
∂Ω× [t1, t2]

)
∪ (Ω× {t1}).

As usual, W 1,p(Ω) denotes the Sobolev space of functions in Lp(Ω)
whose first distributional partial derivatives belong to Lp(Ω) with the
norm

||u||W 1,p(Ω) = ||u||Lp(Ω) + ||∇u||Lp(Ω) .

The Sobolev space W 1,p
0 (Ω) is the completion of C∞0 (Ω) in the norm of

W 1,p(Ω).
The parabolic space Lp(0,∞;W 1,p(Ω)) is the collection of measurable

functions u(x, t) such that for almost every t ∈ (0,∞), the function
x 7→ u(x, t) belongs to W 1,p(Ω), and∫ ∞

0

||u||pW 1,p(Ω) dt <∞

is finite. Analogously, the space Lp(0,∞;W 1,p
0 (Ω)) is a collection of

measurable functions u ∈ Lp(0,∞;W 1,p(Ω)) such that for almost ev-
ery t ∈ (0,∞), the function x 7→ u(x, t) belongs to W 1,p

0 (Ω). The
local space Lploc(0,∞;W 1,p

loc (Ω)) consist of functions that belong to the
parabolic Sobolev space in every space time cylinder Ω′×(t1, t2) b Ω∞.

2.2. Stucture properties. We consider capacities related to nonlin-
ear parabolic partial differential equations of type

∂u

∂t
− divA(x, t,∇u) = 0,

where A : Ω∞ × Rn → Rn satisfies the following stuctural conditions:

(1) (x, t) 7→ A(x, t, ξ) is measurable for every ξ ∈ Rn,
(2) ξ 7→ A(x, t, ξ) is continuous for almost every (x, t) ∈ Ω∞,
(3) there exist constants 0 < α ≤ β <∞ such that for every ξ ∈ Rn

and for almost every (x, t) ∈ Ω∞, we have

A(x, t, ξ) · ξ ≥ α |ξ|p and |A(x, t, ξ)| ≤ β |ξ|p−1 ,

and
(4) A satisfies the monotonicity condition(

A(x, t, ξ1)−A(x, t, ξ2)
)
· (ξ1 − ξ2) > 0 (2.1)

whenever (x, t, ξi) ∈ Ω∞ × Rn, i = 1, 2, and ξ1 6= ξ2.

Although this class of equations is relevant for all p > 1, we shall only
consider the case

p >
2n

n+ 2
. (2.2)
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Next we recall the definition of a weak solution. We shall use a
shorthand notation A(ξ) = A(x, t, ξ).

Definition 2.3. A function u ∈ Lploc(0,∞;W 1,p
loc (Ω)), 1 < p < ∞, is a

weak solution of
∂u

∂t
− divA(∇u) = 0 (2.4)

in Ω∞, if ∫
Ω∞

(
A(∇u) · ∇ϕ− u∂ϕ

∂t

)
dz = 0 (2.5)

for every test function ϕ ∈ C∞0 (Ω∞). For short, we denote z = (x, t)
and dz = dx dt. A function u is a supersolution if the integral in
(2.5) is nonnegative for all nonnegative test functions. In a general
open subset U of Rn+1, the above notions are to be understood in
a local sense, that is, u is a solution if it is a solution in every set
Ω× (t2, t2) b U .

It follows immediately from the definition that, if u is a weak (su-
per)solution, then u + α, α ∈ R, is a weak (super)solution. Observe
that αu α ∈ R is not a weak (super)solution in general. The sum of
weak (super)solutions is not a weak (super)solution in general, but,
however, the pointwise minimum of weak (super)solutions is a weak
supersolution.

2.3. Regularity. Under the assumption (2.2), weak solutions are lo-
cally Hölder continuous after a possible redefinition on a set of measure
zero, see DiBenedetto [6] and DiBenedetto, Gianazza and Vespri [7].
See also Wu, Zhao, Yin, and Li [42]. Hence every weak solution has a
continuous representative and a continuous weak solution is called an
A-parabolic function.

In this work we are mainly interested in weak supersolutions. Ac-
cording to the next result, every weak supersolution has a lower semi-
continuous representative. Recall that the lower semicontinuous regu-
larization of a function u is defined as

û(x, t) = ess lim inf
(y,s)→(x,t)

u(y, s) = lim
τ→0

ess inf
Br(x)×(t−τp,t+τp)

u. (2.6)

For the proof of the following result we refer to [24].

Theorem 2.7. Let u be a weak supersolution in Ω∞. Then the lower
semicontinuous regularization û of u is a weak supersolution and u = û
almost everywhere in Ω∞.

2.4. Superparabolic functions. So called superparabolic functions,
also called supertemperatures, play an important role in the parabolic
potential theory.

Definition 2.8. A function u : Ω∞ → (−∞,∞] is A-superparabolic
in Ω∞, if
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(1) u is lower semicontinuous,
(2) u is finite in a dense subset, and
(3) If h is a solution of (2.4) in Ω′t1,t2 = Ω′ × (t1, t2) b Ω∞, contin-

uous in Ω′t1,t2 , and h ≤ u on the parabolic boundary ∂pΩ
′
t1,t2

,
then h ≤ u in Ω′t1,t2 .

The reader should carefully distinguish between weak supersolutions
and superparabolic functions. Notice that a superparabolic function is
defined at every point in its domain, but a weak supersolution is defined
only up to a set of measure zero. However, the lower semicontinuous
representative û of a weak supersolution u is superparabolic, since the
comparison principle holds for supersolutions, see [17].

It has been shown in [20] and [19], see also [22], that every locally
bounded superparabolic function is a weak supersolution. Hence there
are no other locally bounded superparabolic functions except weak su-
persolutions. A prime example of an unbounded superparabolic func-
tion with respect to to the p-parabolic equation is the Barenblatt so-
lution Bp : Rn+1 → [0,∞),

Bp(x, t) =

t
−n/λ

(
c− p− 2

p
λ1/(1−p)

(
|x|
t1/λ

)p/(p−1))(p−1)/(p−2)

+

, t > 0,

0, t ≤ 0,

where λ = n(p− 2) + p, p > 2, and the constant c is usually chosen so
that ∫

Rn
Bp(x, t) dx = 1

for every t > 0. There is also a corresponding formula for the case
2n/(n + 1) < p ≤ 2. The Barenblatt solution is a weak solution of
the p-parabolic equation in the upper half space. However, it is not a
weak supersolution in Rn+1 because it does not belong to the correct
parabolic Sobolev space, see [19] and [20]. The truncations min{Bp, λ},
λ > 0, belong to the correct parabolic Sobolev space and, consequently,
are weak supersolutions in Rn+1. This shows that the the class of weak
supersolutions is not closed with respect to an increasing convergence.
In contrast, superparabolic functions have this property.

3. Measure data problems

Next we consider a measure data problem related to weak superso-
lutions and superparabolic functions.

Definition 3.1. Let µ be a nonnegative Radon measure on Rn+1. A
function u ∈ Lploc(0,∞;W 1,p

loc (Ω)) is a weak solution of

∂u

∂t
− divA(∇u) = µ, (3.2)
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if ∫
Ω∞

(
A(∇u) · ∇ϕ− u∂ϕ

∂t

)
dz =

∫
Ω∞

ϕ dµ, (3.3)

for every test function ϕ ∈ C∞0 (Ω∞).

Observe that every weak solution to a measure data problem is a
weak supersolution. Conversely, every weak supersolution is also a
solution to a measure data problem. Indeed, if u is a weak supersolution
in Ω∞, we have ∫

Ω∞

(
A(∇u) · ∇ϕ− u∂ϕ

∂t

)
dz ≥ 0

for every nonnegative ϕ ∈ C∞0 (Ω∞). The Riesz representation theorem
implies that there exists a Radon measure µu such that∫

Ω∞

(
A(∇u) · ∇ϕ− u∂ϕ

∂t

)
dz =

∫
Ω∞

ϕ dµu,

for every test function ϕ ∈ C∞0 (Ω∞). The measure µu is called the Riesz
measure of u. This shows that weak supersolutions and weak solutions
to a measure data problem are the same class of functions. Moreover,
by Theorem 2.7 we may assume that they are lower semicontinuous.

In a similar fashion, as shown in [21], every superparabolic func-
tion satisfies the equation with a finite Radon measure on the right-
hand side, and conversely, for every finite Radon measure there exists
a superparabolic function which is solution to the corresponding equa-
tion with measure data. The integrability of superparabolic functions
[19], see also [3] and [4], and the convergence theorem in [22] play an
essential role in this context.

The following convergence result will be an essential tool in this work.

Theorem 3.4. Suppose that ui, i = 1, 2, . . . , is a sequence of uniformly
bounded weak supersolutions in Ω∞ such that ui → u almost everywhere
in Ω∞. Then u is a weak supersolution in Ω∞ and

lim
i→∞

∫
Ω∞

ϕ dµui =

∫
Ω∞

ϕ dµu

for every ϕ ∈ C∞0 (Ω∞), i.e. µui → µu weakly as i→∞.

The proof of the previous result is a slight modification of the proof
of Theorem 5.3 in [22], see also [29].

Remark 3.5. In general, the time derivative ut does not exist in the
Sobolev sense. This is a principal, well-recognized difficulty with the
definition. Indeed, in proving estimates, usually a test function that
depends on the solution itself is needed. Then the appearance of the
forbidden ut cannot be avoided. One way to overcome this difficulty is
to use convolution in the time direction. Let

ϕh(x, t) =

∫
R
ϕ(x, t− s)ζh(s) ds, (3.6)
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where ϕ ∈ C∞0 (Ω∞) and ζh(s) is a standard mollifier, whose support
is contained in (−h, h) with h < dist (supp(ϕ),Ω× {0}). We insert ϕh
into (3.3), change variables and apply Fubini’s theorem to obtain∫

Ω∞

(
A(∇u)h · ∇ϕ− uh

∂ϕ

∂t

)
dz =

∫
Ω∞

ϕh dµ (3.7)

and ∫
Ω∞

(
A(∇u)h · ∇ϕ+ ϕ

∂uh
∂t

)
dz =

∫
Ω∞

ϕh dµ. (3.8)

3.1. Boundary data. In this work we use weak solutions of (3.2) in
Ω∞ with zero boundary data, that is, zero boundary values on the
lateral boundary ∂Ω × (0,∞) and zero initial values at Ω × {t = 0}.
By this we mean that u ∈ Lp(0,∞;W 1,p

0 (Ω)) and

lim
h→0

1

h

∫ h

0

∫
Ω

|u|2 dz = 0.

For existence results, in the case when µ belongs to the dual of the
parabolic Sobolev space, we refer to [32]. See also [1] and [5]. General
results for a finite Radon measure can be found in [3], [4] and [21].

3.2. Asymptotical behaviour. If the Riesz measure is compactly
supported, then the corresponding solution u with zero boundary data
tends uniformly to zero as t → ∞. For the p-parabolic equation, this
follows by a comparison with respect to the Barenblatt solution. Here
we sketch an argument that applies for equations with more general
structure.

Choose T > 0 so large that suppµ ⊂ ΩT and let T < t1 < t2 < ∞.
Then uµ is a weak solution in Ω × (T,∞) and it has zero boundary
values on the lateral boundary. We define a cutoff function η, which is
independent of the space variable, by

η(t) =



0, t ≤ t1 − h,
1− t1−t

h
, t1 − h < t < t1,

1, t1 ≤ t ≤ t2,

1− t−t2
h
, t2 ≤ t < t2 + h,

0, t ≥ t2 + h.

Formally, we use ηu as a test function in (2.5) and obtain∫
Ω∞

(
A(∇u) · ∇(ηu)− u ∂

∂t
(ηu)

)
dz = 0.

For the elliptic term, we have∫
Ω∞

A(∇u) · ∇(ηu) dz =

∫
Ω∞

ηA(∇u) · ∇u dz

→
∫ t2

t1

∫
Ω

A(∇u) · ∇u dx dt
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as h→ 0. For the remaining term, an integration by parts gives

−
∫

Ω∞

u
∂

∂t
(ηu) dz =

∫
Ω∞

ηu
∂u

∂t
dz → 1

2

∫ t2

t1

∫
Ω

∂(u2)

∂t
dx dt

=
1

2

∫
Ω

u(x, t2)2 dx− 1

2

∫
Ω

u(x, t1)2 dx

as h→ 0. Hence we arrive at

1

2

∫
Ω

u(x, t1)2 dx− 1

2

∫
Ω

u(x, t2)2 dx =

∫ t2

t1

∫
Ω

A(∇u) · ∇u dx dt

Let τ > T . By denoting

I(τ) =
1

2

∫
Ω

u(x, τ)2 dx,

we have

I(τ + δ)− I(τ)

δ
= −1

δ

∫ τ+δ

τ

∫
Ω

A(∇u) · ∇u dx dt

and by passing to the limit as δ → 0, we obtain

I ′(τ) = −
∫

Ω

A(∇u(x, τ)) · ∇u(x, τ) dx

for almost every τ > T . The structure conditions and the Sobolev and
Hölder inequalities imply that∫

Ω

A(∇u(x, τ)) · ∇u(x, τ) dx ≥ α

∫
Ω

|∇u(x, τ)|p dx

≥ C
(∫

Ω

u(x, τ)2 dx
)p/2

= CI(τ)p/2,

where the constant C depends only on Ω, the structure constants, p
and n. From this we conclude that

I ′(τ) ≤ −CI(τ)p/2,

which together with the fact that I(T ) < ∞ implies that I(τ) → 0 as
τ → ∞. If 2n/(p + 2) < p ≤ 2, then the differential inequality above
implies extinction in finite time and the claim is clear. In the case
p > 2, the claim follows from Lemma 3.24 in [25].

3.3. Two comparison results. Next we present two rather elemen-
tary, but extremely useful, technical results related to measure data
problems.

Lemma 3.9. If u and v are weak solutions of (3.2) in Ω∞ with zero
boundary data, and µv ≤ µu, then v ≤ u in Ω∞.
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Proof. We define a cutoff function η, which is independent of the space
variable, by

η(t) =


1, t ≤ T,

1 + T−t
h
, T < t < T + h,

0, t ≥ T.

Formally, we use η(v − u)+ as a test function in (3.3) for u and v. By
subtracting the equations and using the assumption that µv ≤ µu, we
obtain

0 ≤
∫

Ω∞

η(v − u)+ dµu −
∫

Ω∞

η(v − u)+ dµv

=

∫
Ω∞

(
A(∇u)−A(∇v)

)
· ∇
(
η(v − u)+

)
dz

−
∫

Ω∞

(u− v)
∂

∂t
(η(v − u)+) dz.

By monotonicity, the first term on the right hand side can be estimated
as ∫

Ω∞

η
(
A(∇u)−A(∇v)

)
· ∇(v − u)+ dz

= −
∫

Ω∞∩{v>u}
η
(
A(∇u)−A(∇v)

)
· (∇u−∇v) dz ≤ 0.

Since u has zero initial values at t = 0, an integration by parts implies
that

0 ≤ −
∫

Ω∞

(u− v)
∂

∂t
(η(v − u)+) dz

=
1

2

∫
Ω∞

∂η

∂t

[
(v − u)2

+

]
dz = − 1

2h

∫ T+h

T

∫
Ω

(v − u)2
+ dx dt.

By passing to the limit as h → 0, by the Lebesgue differentiation
theorem, we arrive at ∫

Ω

(v − u)2
+(x, T ) dx ≤ 0

for almost every T > 0 and, consequently, (v − u)+ = 0 almost every-
where in Ω∞. This proves the claim. �

The proof of the following lemma is very similar to the proof of
Lemma 3.9. However, for the sake of completeness, we reproduce some
details here.

Lemma 3.10. Let u and v be weak solutions of (3.2) in Ω∞ with zero
boundary data. If v ≤ u in Ω∞, then∫

Ω∞

(u− v) dµv ≤
∫

Ω∞

(u− v) dµu.
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Proof. Let η be the same cutoff function as in the proof of Lemma 3.9.
We use η(u− v) as a test function in (3.3), and obtain∫

Ω∞

η(u− v) dµu −
∫

Ω∞

η(u− v) dµv

=

∫
Ω∞

η
(
A(∇u)−A(∇v)

)
· ∇(u− v) dz

−
∫

Ω∞

(u− v)
∂

∂t
(η(u− v)) dz.

By monotonicity, the first term on the right hand side is nonnegative
and, as in the proof of Lemma 3.9, we have∫

Ω∞

(u− v)
∂

∂t
(η(u− v)) dz = − 1

2h

∫ T+h

T

∫
Ω

(u− v)2 dz.

By passing to the limit as h → 0, by the Lebesgue differentiation
theorem, we have∫ T

0

∫
Ω

(u− v) dµu −
∫ T

0

∫
Ω

(u− v) dµv ≥
1

2

∫
Ω

(u− v)2(x, T ) dx ≥ 0

for almost every T > 0. This proves the claim. �

4. Obstacle problems

Since we do not have representation formulas in the nonlinear par-
abolic potential theory, the obstacle problem is the main device to
construct superparabolic functions with prescribed properties.

Definition 4.1. Let ψ be a bounded measurable function in Ω∞, and
consider the class

Φψ = {v : v is superparabolic in Ω∞ and v ≥ ψ in Ω∞}.

Define
Rψ = inf{v : v ∈ Φψ}.

We say that Rψ is the solution to the obstacle problem in Ω∞ with the
obstacle ψ. We also consider the lower semicontinuous regularization

R̂ψ.

For a bounded obstacle, the solution always exists and is unique.
Moreover, the lower semicontinuous representative of a solution is super-
parabolic and, since it is bounded, it is also a weak supersolution in
Ω∞. Theorem 2.7 and [31] imply that

R̂ψ = Rψ

almost everywhere in Ω∞. If, in addition, ψ ∈ C(Ω∞), then the solution
of the obstacle problem has the following properties:

• Rψ ∈ C(Ω∞),
• Rψ is a weak solution in the set {Rψ > ψ}, and
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• Rψ is the smallest superparabolic function above ψ , i.e. if v is
a superparabolic function in Ω∞ and v ≥ ψ , then v ≥ Rψ.

For these results, see [23] and [31].
We shall see that the capacitary functions for compact sets are given

by parabolic potentials. The potential of a compact subset K of Ω∞
is defined to be the solution of the obstacle problem with the obstacle
χK and we denote

RK = RχK .

Again, we also consider the lower semicontinuous regularization R̂K .

Both RK and R̂K are weak supersolutions with zero boundary data
in Ω∞. Moreover, they both are weak supersolutions in Ω∞ and weak
solutions of in Ω∞ \K. For the corresponding Riesz measures, we have

µR̂K = µRK ,

since R̂K = RK almost everywhere in Ω∞. Since Ω is a smooth and
bounded open subset of Rn and K is a compact subset of Ω∞, we
conclude that

• RK belongs to Lp(0,∞;W 1,p(Ω)),
• RK is continuous outside K in Ω∞, and
• RK takes zero boundary values continuously on the parabolic

boundary ∂pΩ∞.

Next we show that by approximating the characteristic function by
a decreasing sequence of continuous functions, we obtain a sequence of
solutions to the obstacle problem that converges to the potential. This
kind of approximation property also holds, more generally, for upper
semicontinuous obstacles as shown in [31].

Lemma 4.2. Let K be a compact subset of Ω∞ and assume that ψi ∈
C∞0 (Ω∞), i = 1, 2, . . . , is a decreasing sequence such that ψi → χK
pointwise in Ω∞ as i → ∞. Then Rψi → RK pointwise in Ω∞ and
µRψi → µRK weakly as i→∞.

Proof. It follows immediately from the definition of the obstacle prob-
lem that Rψi , i = 1, 2, . . . , is a decreasing sequence of continuous weak
supersolutions. By Theorem 3.4, the pointwise limit function u is an
upper semicontinuous weak supersolution in Ω∞. The weak conver-
gence of the corresponding Riesz measures follows from Theorem 3.4
as well.

We are left to show that u = RK in Ω∞. Since ui ≥ RK and ui → u
pointwise as i → ∞, we see that u ≥ RK in Ω∞. To establish the
reverse inequality, we may use the comparison principle and show that
every superparabolic function that lies above χK must also lie above u.

To this end, let v be a superparabolic function such that v ≥ χK .
Since v is lower semicontinuous, u is upper semicontinous, and u takes
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zero boundary values continuously on ∂pΩ∞, it follows that the set

F = {u ≥ v + ε}
is closed for every ε > 0. Since u ≤ 1, the sets K and F are disjoint and
hence F is a subset of Ω∞ \K. There is a neighborhood U b Ω∞ \K
of F such that u is a weak solution in U and u < v + ε on ∂U . The
upper semicontinuity of u and lower semicontinuity of v in Ω∞ imply
that

lim sup
U3y→z

u(y) ≤ u(z) < v(z) + ε ≤ lim inf
U3y→z

v(y) + ε

for all z ∈ ∂U . The comparison principle, see [22], then gives that
u ≤ v + ε in U and thus u ≤ v + ε in Ω∞. This holds for every ε > 0
and hence u ≤ v. We have thus shown that u ≤ RK . This completes
the proof. �

5. Parabolic capacity

We shall mainly work with capacities of compact sets, but we begin
with a general definition. Since we are interested in local properties,
we restrict our attention to Ω∞, where Ω is a bounded smooth open
subset of Rn. As already observed, this is convenient in arguments
based on comparison principles and we also have regularity results up
to the boundary. We emphasize that Ω∞ is merely a reference set for
us and the assumed smoothness properties are rather irrelevant.

Definition 5.1. The parabolic capacity of an arbitrary subset E of
Ω∞ is

cap(E) = sup{µ(Ω∞) : 0 ≤ uµ ≤ 1, suppµ ⊂ E},
where µ is a Radon measure, and uµ is a weak solution to the measure
data problem (3.2) in Ω∞ with zero boundary data. If the set, over
which the supremum is taken, is not bounded from above, then we set
cap(E) =∞.

Remark 5.2. (1) Observe, that in the definition of the parabolic ca-
pacity, the solution uµ of the measure data problem can be assumed
to be superparabolic after a possible redefinition on a set of measure
zero. Hence the parabolic capacity can be expressed in terms of super-
parabolic functions as

cap(E) = supµu(Ω∞),

where the supremum is taken over all superparabolic functions u in Ω∞
with 0 ≤ u ≤ 1 and suppµu ⊂ E.

(2) Since suppµ ⊂ E in the definition of the parabolic capacity,
nothing changes if we consider the capacity relative to Ω × (−∞,∞).
Indeed, we can always take the zero extension of uµ to the lower half
space so that the the Riesz measure remains unchainged. This also
explains, why we may assume that superparabolic functions, vanish on
the initial boundary.
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On the other hand, if E is a bounded subset of Ω∞, then E b ΩT

for some T > 0 and we can consider the capacity of E relative to
ΩT . In this case, we can always extend uµ to Ω × [T,∞) by taking
the solution to the boundary value problem with the initial values uµ
at Ω × {t = T} and zero boundary values on the later boundary. In
practice, this means that the different definitions give the same concept
of capacity and, for simplicity, we have chosen to work with Ω∞.

(3) The case when the reference set is the whole Rn+1 can be ob-
tained by a limiting procedure. Indeed, we can exhaust Rn with an
expanding sequence of bounded and smooth open sets Ωi, i = 1, 2, . . . ,
and solve the measure data problem with zero boundary values in each
Ωi × (−∞,∞). We obtain an increasing sequence of superparabolic
functions and hence the limit function is superparabolic. The general
theory can be based on this observation, but we do not need this feature
here.

It also follows immediately from the definition that if E1 ⊂ E2, then

cap(E1) ≤ cap(E2).

Thus the parabolic capacity is a monotonic set function. The next
result shows that the parabolic capacity is also countably subadditive.

Theorem 5.3. Let Ei, i = 1, 2, . . . , be arbitrary subsets of Ω∞ and
E =

⋃∞
i=1Ei. Then

cap(E) ≤
∞∑
i=1

cap(Ei).

Proof. Suppose first that cap(E) <∞. Then for every ε > 0 there is a
Radon measure µ such that 0 ≤ uµ ≤ 1, suppµ ⊂ E and

µ(Ω∞) ≥ cap(E)− ε.

Let µi be the restriction of µ to the set Ei. Then Lemma 3.9 implies
that 0 ≤ uµi ≤ uµ ≤ 1 in Ω∞ and, consequently, we have

µi(Ω∞) ≤ cap(Ei)

for every i = 1, 2, . . . It follows that

cap(E) ≤ µ(Ω∞) + ε ≤
∞∑
i=1

µi(Ω∞) + ε ≤
∞∑
i=1

cap(Ei) + ε,

and the claim follows by letting ε→ 0.
If cap(E) =∞, then for any M > 0 there exists a Radon measure µ

such that 0 ≤ uµ ≤ 1, suppµ ⊂ E and µ(Ω∞) ≥ M . Then, as above,
we have

M ≤ µ(Ω∞) ≤
∞∑
i=1

µi(Ω∞) ≤
∞∑
i=1

cap(Ei),
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and since M can be taken as large as we wish, we conclude that
∞∑
i=1

cap(Ei) =∞.

�

Lemma 5.4. Let Ei, i = 1, 2, . . ., be subsets of Ω∞ with the property
E1 ⊂ E2 ⊂ . . ., and denote E =

⋃∞
i=1 Ei. Then

lim
i→∞

cap(Ei) = cap(E).

Proof. By monotonicity, we have

lim
i→∞

cap(Ei) ≤ cap(E).

To prove the opposite inequality, first we assume that cap(E) <∞.
Then for every ε > 0, there is a Radon measure µ such that 0 ≤ uµ ≤ 1,
suppµ ⊂ E and

µ(E) ≥ cap(E)− ε.
Since µ is Borel regular, we have

lim
i→∞

µ(Ei) = µ(E).

This implies that

cap(E) ≤ µ(E) + ε = lim
i→∞

µ(Ei) + ε.

Let µi be the restriction of µ to the set Ei. By Lemma 3.9, we
conclude that 0 ≤ uµi ≤ uµ ≤ 1 in Ω∞ and consequently

µ(Ei) = µi(Ω∞) ≤ cap(Ei).

This implies that

cap(E) ≤ lim
i→∞

cap(Ei) + ε

and the claim follows by letting ε→ 0.
Finally, if cap(E) =∞, then for any M > 0 there exists µ such that

0 ≤ uµ ≤ 1, suppµ ⊂ E and µ(E) ≥ M . Then a similar reasoning as
above shows that

M ≤ µ(E) = lim
i→∞

µ(Ei) ≤ lim
i→∞

cap(Ei).

Since M can be chosen as large as we wish, we have

lim
i→∞

cap(Ei) =∞.

�

The next result shows that the capacity is inner regular.

Lemma 5.5. Let E ⊂ Ω∞ be a Borel set. Then

cap(E) = sup{cap(K) : K ⊂ E, K compact}
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Proof. By monotonicity, we have

cap(E) ≥ sup{cap(K) : K ⊂ E, K compact}
To prove the reverse inequality, first assume that cap(E) < ∞. For

every ε > 0, there is a Radon measure µ such that 0 ≤ uµ ≤ 1,
suppµ ⊂ E and

µ(E) ≥ cap(E)− ε

2
.

Since µ(E) <∞, there is a compact set K ⊂ E such that

µ(K) ≥ µ(E)− ε

2
.

Let ν be the restriction of µ to the set K. Lemma 3.9 implies that
0 ≤ uν ≤ uµ ≤ 1 in Ω∞ and consequently

µ(K) = ν(Ω∞) ≤ cap(K).

From this we obtain

cap(K) ≥ µ(K) ≥ µ(E)− ε

2
≥ cap(E)− ε.

The claim follows in the case cap(E) <∞.
If cap(E) = ∞, then for any M > 0 there exists µ such that 0 ≤

uµ ≤ 1, suppµ ⊂ E and µ(E) ≥ M . For every ε > 0, there exists
r > 0 such that

µ(E ∩B(0, r)) ≥M − ε

2
.

Since µ(E ∩ B(0, r)) < ∞, there is a compact set K ⊂ (E ∩ B(0, r))
such that

µ(K) ≥ µ(E ∩B(0, r))− ε

2
≥M − ε.

As above, this implies that cap(K) ≥M − ε and the claim follows. �

The following lemma is useful in proving the main result, Theorem
5.7, of this section. In the elliptic case, similar estimates have been
obtained in [37].

Lemma 5.6. Let K is a compact subset of Ω∞. Assume that u and v
are lower semicontinuous weak supersolutions in Ω∞ and that u con-
tinuous in Ω∞, outside some compact subset of Ω∞. Moreover, assume
that u > 1 in K, u = 0 on ∂pΩ∞ and 0 ≤ v ≤ 1 in Ω∞. Then

µv(K) ≤ µu(Ω∞).

Here µu and µv are the Riesz measures of u and v, respectively.

Proof. The lower semicontinuity of u and compactness of K imply that
minK u > 1 and hence

ε =
1

4
(min
K

u− 1)

is a positive number. With this choice, we see that U = {u > 1 + ε} is
an open set with K ⊂ U b Ω∞.
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Denote

vε = v + ε and wε = min{vε, u}.
Observe, that both vε and wε are weak supersolutions in Ω∞. Since
vε ≤ 1 + ε, we have wε = vε in U . On the other hand, since u vanishes
on the parabolic boundary and vε ≥ ε, we have wε = u in Ω∞ \ K ′,
where K ′ b Ω∞ is a compact set, which can be chosen to be so large
that U ⊂ K ′. Hence wε is a weak supersolution which coincides with
u near the parabolic boundary and vε inside the domain.

Let ϕ ∈ C∞0 (U) be such that 0 ≤ ϕ ≤ 1 and ϕ = 1 on K. Since
vε = wε in U , we have

µv(K) ≤
∫
U

ϕ dµv =

∫
U

ϕ dµvε

=

∫
U

ϕ dµwε ≤ µwε(U) ≤ µwε(K
′).

On the other hand, let ϕ ∈ C∞0 (Ω∞) such that 0 ≤ ϕ ≤ 1 and ϕ = 1
on K ′. The fact that that both the gradient and the time derivative of
ϕ vanish in K ′ together with wε = u in Ω∞ \K ′ gives∫

Ω∞

ϕ dµwε −
∫

Ω∞

ϕ dµu

=

∫
Ω∞\K′

((
A(∇wε)−A(∇u)

)
· ∇ϕ− (wε − u)

∂ϕ

∂t

)
dz = 0

and hence

µwε(K
′) ≤

∫
Ω∞

ϕ dµwε =

∫
Ω∞

ϕ dµu ≤ µu(Ω∞).

This completes the proof. �

The following theorem gives a characterization of the parabolic ca-
pacity of compact sets through capacitary potentials. We state the

result for the superparabolic function R̂K . For the case p = 2, see
Lanconelli [26]. The proof is based on Lemma 5.6 and Theorem 3.4
above.

Theorem 5.7. Let K be a compact subset of Ω∞. Then

cap(K) = µR̂K (K),

where µR̂K is the Riesz measure of R̂K.

Proof. Since R̂K is a superparabolic function with the property 0 ≤
R̂K ≤ 1, it follows immediately from the definition of the capacity that

µR̂K (K) ≤ cap(K).

In order to see the inequality in the other direction, we choose a
decreasing sequence εi → 0. Let ψi ∈ C∞0 (Ω∞), i = 1, 2, . . . , be a
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decreasing sequence functions such that ψi → χK pointwise in Ω∞ as
i→∞,

ψi = 1 + εi on K,

and ψi = 0 outside K ′ for some compact K ′ with K ⊂ K ′ b Ω∞. We
denote by ui, i = 1, 2, . . . , the solutions of the corresponding obstacle
problems with the obstacles ψi.

Let v be a weak supersolution in Ω∞ with the property 0 ≤ v ≤ 1.
Lemma 5.6, and the fact that ui is a weak solution of (2.4) in Ω∞ \K ′,
imply that

µv(K) ≤ µui(Ω∞) = µui(K
′).

On the other hand, by Lemma 4.2, we conclude that ui → R̂K almost
everywhere in Ω∞ and µui → µR̂K weakly as i → ∞. Here we use the
fact that Lemma 4.2 holds also for the lower semicontinuous represen-

tative R̂K , if we replace the pointwise convergence with convergence

almost everywhere, see Theorem 2.7. Since R̂K is a weak solution of
(2.4) in Ω∞ \K, we obtain

lim sup
i→∞

µui(K
′) ≤ µR̂K (K ′) = µR̂K (K).

Combining the previous inequalities, we arrive at

µv(K) ≤ µR̂K (K),

and, by taking a supremum on the left hand side, we obtain

cap(K) ≤ µR̂K (K).

This completes the proof. �

The following result is a version of the standard limiting theorem for
capacities of a shrinking sequence of compact sets.

Lemma 5.8. Let Ki ⊂ Ω∞, i = 1, 2, . . ., be compact sets such that
K1 ⊃ K2 ⊃ . . . and K =

⋂∞
i=1 Ki. Then

lim
i→∞

cap(Ki) = cap(K).

Proof. Observe that RKi , i = 1, 2 . . . , is a bounded and decreasing
sequence of weak supersolutions in Ω∞. As in the proof of Lemma 4.2,
we conclude that RKi → RK pointwise in Ω∞ and that the measures
µRKi converge to µRK weakly as i → ∞. The weak convergence of

measures implies that with ϕ ∈ C∞0 (Ω∞) such that ϕ = 1 on K1, we
have

lim
i→∞

cap(Ki) = lim
i→∞

µRKi (K1) = lim
i→∞

∫
Ω∞

ϕ dµRKi

=

∫
Ω∞

ϕ dµRK = µRK (K1) = cap(K).

Here we also applied Theorem 5.7 twice. �
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The next result is a version of Theorem 5.7 for open sets.

Lemma 5.9. Let U b Ω∞ be an open set. Then

cap(U) = µRU (Ω∞).

Proof. We first notice that, if Ki, i = 1, 2, . . ., is an expanding se-
quence of compact sets such that U =

⋃∞
i=1Ki, then by Lemma 5.4

and Theorem 5.7, we have

cap(U) = lim
i→∞

cap(Ki) = lim
i→∞

µui(Ki),

where ui = R̂Ki . Note that the sequence ui, i = 1, 2, . . ., is increasing,
and hence it converges pointwise to a function u, which is, by Theorem
3.4, a weak supersolution and lower semicontinuous as a supremum of
lower semicontinuous functions. By the weak convergence, we obtain

cap(U) = lim
i→∞

cap(Ki) = lim
i→∞

∫
Ω∞

ϕ dµui

= lim
i→∞

∫
Ω∞

ϕ dµui =

∫
U

ϕdµu

for all ϕ ∈ C∞0 (Ω∞) such that ϕ = 1 on U . The outer regularity of µu
then implies that

µu(U) = cap(U).

Finally, by construction u ≥ χU so that u ≥ RU , and on the other hand

ui = R̂Ki ≤ RU implies that u ≤ RU . This shows that u = RU and
proves the assertion. �

6. Polar sets of superparabolic functions

In this section we show that the infinity set of a superparabolic func-
tion is of zero capacity. In the time independent case, superharmonic
functions can be scaled to obtain appropriate test functions for the
capacity. However, the class of superparabolic functions is not closed
under scaling and hence we derive estimates for scaled obstacles in-
stead.

Our strategy is first consider a compact set which is a finite union
of closed space time boxes. Such a set is regular enough so that the
solution of the obstacle problem has desired continuity properties. Fi-
nally, a general compact set can always be approximated by a shrinking
sequence of such sets. According to the next result, the Riesz measure
of the solution of such an obstacle problem does not charge the tops of
the boxes.

Lemma 6.1. Let Qj ⊂ Ω, j = 1, 2, . . . , N , be a finite collection of
closed cubes and assume that

K =
N⋃
j=1

Qj × [t2j−1, t2j] ⊂ Ω∞,
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where 0 < t2j−1 < t2j <∞ for every j = 1, 2, . . . , N . If u is a solution
to the obstacle problem in Ω∞ with the obstacle λχK, λ > 0, then

lim
h→0

N∑
j=1

µu(Qj × [t2j − h, t2j]) = 0.

Here µu is the Riesz measure of u.

Proof. Since the obstacle is bounded and compactly supported in Ω∞,
we have u ∈ Lp(0,∞;W 1,p

0 (Ω)). Moreover, since Ω is smooth, the
function u is continuous in Ω∞ \ K and u = 0 on ∂pΩ∞. Since K
satisfies a uniform measure density condition, by Chapters 3 and 4 of
DiBenedetto’s monograph [6], we conclude that u is continuous in

N⋃
j=1

Qj × [t2j − h, t2j + h],

where h < h0 with h0 small enough.
For j = 1, 2, . . . , N , define a cutoff function

χh =


1 + (t− t2j + 2h)/h, t2j − 3h < t ≤ t2j − 2h,

1 t2j − 2h < t < t2j + 2h,

1 + (t2j + 2h− t)/h, t2j + 2h < t ≤ t2j + 3h,

0 otherwise,

where 0 < h < h0/3.
Let then uh stand for the standard mollification in the time variable

as in (3.6). We test the equation for u with ϕ = (uhχ
h)h, which is

clearly admissible. Since 0 ≤ u ≤ λ, u = λ and χh = 1 in Qj × [t2j −
h, t2j], we have

λ

4
≤ ϕ ≤ λ in Qj × [t2j − h, t2j].

Thus (3.7) gives

µu(Qj × [t2j − h, t2j]) ≤
4

λ

∫
Ω∞

ϕ dµu

=
4

λ

∫
Ω∞

(
A(∇u)h · ∇(uhχ

h)− uh
∂(uhχ

h)

∂t

)
dz.

Integrating the second term on the right hand side by parts, we see
that

−
∫

Ω∞

uh
∂(uhχ

h)

∂t
dz = −1

2

∫
Ω∞

u2
h

∂χh

∂t
dz.

By continuity of u and symmetry of χh, we have∫
Ω∞

u2
h

∂χh

∂t
dz → 0
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as h → 0. On the other hand, by the standard properties of the
mollifiers, for the elliptic term we obtain∫

Ω∞

A(∇u)h · ∇(uhχ
h) dz =

∫
Ω∞

A(∇u)h · ∇(uh)χ
h dz → 0

as h→ 0. Hence we conclude that

lim
h→0

µu(Qj × [t2j − h, t2j]) = 0

for j = 1, 2, . . . , N , from which the claim follows. �

In the proof of the next result we utilize a forward in time mollifica-
tion

u∗(x, t) =
1

h

∫ ∞
t

u(x, s)e(t−s)/h ds, h > 0.

Notation hides the dependence on h. It is rather straightforward to
show that u∗ → u and ∇u∗ → ∇u in Lp(Ω∞) as h → 0, if u and ∇u
belong to Lp(Ω∞). Observe also that

∂u∗

∂t
=
u∗ − u
h

. (6.2)

For further properties and more details, we refer, for example, to [19].

Lemma 6.3. Assume that K is a finite union of boxes as in Lemma 6.1.
Let u1 be the solution of the obstacle problem in Ω∞ with the obstacle
χK and let uλ be the solution of the corresponding problem with λχK,
λ > 0. Then∫

Ω∞

|∇u1|p dz ≤ C
(
λ−p + λ−p/(p−1))

∫
Ω∞

|∇uλ|p dz

and ∫
Ω∞

|∇uλ|p dz ≤ C
(
λp + λp/(p−1)

) ∫
Ω∞

|∇u1|p dz.

The constant C depends only on the structure constants of the equation
and p.

Proof. Denote

ϕ1 = λuλ − λ2u1 and ϕλ = λu1 − uλ.
Observe that ϕ1 and ϕλ vanish on ∂pΩ∞ and also on K. We use the
test functions (ϕ1)∗ in the equation for u1 and (ϕλ)

∗ in the equation
for uλ. By summing up the equations we obtain∫

Ω∞

(ϕ1)∗ dµu1 +

∫
Ω∞

(ϕλ)
∗ dµuλ

=

∫
Ω∞

(
A(∇u1) · ∇(ϕ1)∗ +A(∇uλ) · ∇(ϕλ)

∗) dz

−
∫

Ω∞

(
u1
∂(ϕ1)∗

∂t
+ uλ

∂(ϕλ)
∗

∂t

)
dz.
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Note that the functions (ϕ1)∗ and (ϕλ)
∗ do not necessarily vanish on

the initial boundary Ω × {t = 0}, but there are no boundary terms,
since u1 and uλ have zero initial values.

Since

(ϕ1)∗ = (λuλ − λ2u1)∗ = λ(uλ − λu1)∗ = −λ(ϕλ)
∗,

the terms with the time derivatives produce

−
∫

Ω∞

(
u1
∂(ϕ1)∗

∂t
+ uλ

∂(ϕλ)
∗

∂t

)
dz

= −
∫

Ω∞

(−λu1 + uλ)
∂(ϕλ)

∗

∂t
dz

=

∫
Ω∞

ϕλ
∂(ϕλ)

∗

∂t
dz

=

∫
Ω∞

(ϕλ)
∗∂(ϕλ)

∗

∂t
dz +

∫
Ω∞

(ϕλ − (ϕλ)
∗)
∂(ϕλ)

∗

∂t
dz.

Observe, that∫
Ω∞

(ϕλ)
∗∂(ϕλ)

∗

∂t
dz =

1

2

∫
Ω∞

∂((ϕλ)
∗)2

∂t
dz

= −1

2

∫
Ω

(ϕλ)
∗(x, 0)2 dx ≤ 0,

On the other hand, by (6.2), we have∫
Ω∞

(ϕλ − (ϕλ)
∗)
∂(ϕλ)

∗

∂t
dz = −1

h

∫
Ω∞

((ϕλ)
∗ − ϕλ)2 dz ≤ 0.

It follows that

−
∫

Ω∞

(
u1
∂(ϕ1)∗

∂t
+ uλ

∂(ϕλ)
∗

∂t

)
dz ≤ 0

and consequently∫
Ω∞

(ϕ1)∗ dµu1 +

∫
Ω∞

(ϕλ)
∗ dµuλ

≤
∫

Ω∞

(
A(∇u1) · ∇(ϕ1)∗ +A(∇uλ) · ∇(ϕλ)

∗) dz.

Then we focus our attention on the source terms and will show that
they tend to zero as h → 0. Lemma 6.1 shows that for every ε > 0
there is h0 > 0 such that

N∑
j=1

(∫
Qj×[t2j−h0,t2j ]

|(ϕ1)∗| dµu1 +

∫
Qj×[t2j−h0,t2j ]

|(ϕλ)∗| dµuλ
)
≤ ε

2
.
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On the other hand, since ϕ1 = ϕλ = 0 in K, we have

|(ϕ1)∗(x, t) + (ϕλ)
∗(x, t)|

≤ 1

h

∫ ∞
t

(
|λuλ − λ2u1|+ |λu1 − uλ|

)
(x, s)e(t−s)/h ds

≤ λ2 + λ+ 1

h

∫ ∞
t+h0

e(t−s)/h ds = (λ2 + λ+ 1)e−h0/h

whenever x ∈
⋃∞
j=1Qj and t2j−1 ≤ t < t2j−h0, j = 1, 2, . . . , N . Taking

h so small that

N(λ2 + λ+ 1)e−h0/h(µu1(Ω∞) + µuλ(Ω∞)) ≤ ε

2
,

we obtain
N∑
j=1

(∫
Qj×[t2j−1,t2j−h0)

|(ϕ1)∗| dµu1 +

∫
Qj×[t2j−1,t2j−h0)

|(ϕλ)∗| dµuλ
)
≤ ε

2

and consequently∣∣∣ ∫
Ω∞

(ϕ1)∗ dµu1 +

∫
Ω∞

(ϕλ)
∗ dµuλ

∣∣∣ ≤ ε

for all sufficiently small h. It follows that∣∣∣ ∫
Ω∞

(ϕ1)∗ dµu1 +

∫
Ω∞

(ϕλ)
∗ dµuλ

∣∣∣→ 0 (6.4)

as h→ 0. Thus we have∫
Ω∞

(A(∇u1) · ∇ϕ1 +A(∇uλ) · ∇ϕλ) dz ≥ 0,

and hence ∫
Ω∞

(
λA(∇u1) · ∇uλ − λ2A(∇u1) · ∇u1

+ λA(∇uλ) · ∇u1 −A(∇uλ) · ∇uλ
)

dz ≥ 0.

By the structure conditions and Young’s inequality, we have

αλ2

∫
Ω∞

|∇u1|p dz

≤
∫

Ω∞

(
λβ|∇u1|p−1|∇uλ|+ λβ|∇uλ|p−1|∇u1| − α|∇uλ|p

)
dz

≤
∫

Ω∞

(αλ2

3
|∇u1|p + Cλ2−p|∇uλ|p

+
αλ2

3
|∇u1|p + Cλ2−p/(p−1)|∇uλ|p

)
dz.

By absorbing terms to the left side, we arrive at∫
Ω∞

|∇u1|p dz ≤ C
(
λ−p + λ−p/(p−1)

) ∫
Ω∞

|∇uλ|p dz.
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Finally, a similar argument shows that∫
Ω∞

|∇uλ|p dz ≤ C
(
λp + λp/(p−1)

) ∫
Ω∞

|∇u1|p dz.

This completes the proof. �

Lemma 6.5. Let u and v be weak supersolutions in Ω∞ and assume
that they are continuous in Ω∞, outside some compact subset of Ω∞.
If u ≥ v in Ω∞ and u = v on ∂pΩ∞, then

µv(Ω∞) ≤ µu(Ω∞).

Here µu and µv are the Riesz measures of u and v, respectively.

Proof. The proof consists of two steps. First, we use the continuity of
u and v near the the parabolic boundary. Let K ′ be a compact subset
of Ω∞ and, as in the proof of Lemma 5.6, denote

wε = min{v + ε, u}, ε > 0.

By continuity and the fact that u = v on the parabolic boundary, we
may choose ε > 0 small enough, so that wε = u in Ω∞ \ K ′. Let
ϕ ∈ C∞0 (Ω∞) be a cutoff function with the properties 0 ≤ ϕ ≤ 1 and
ϕ = 1 on K ′. Since both wε and u are weak supersolutions, it follows
that ∫

Ω∞

ϕ dµwε −
∫

Ω∞

ϕ dµu

=

∫
Ω∞

((
A(∇wε)−A(∇u)

)
· ∇ϕ− (wε − u)

∂ϕ

∂t

)
dz = 0,

because wε = u on the supports of ∇ϕ and ∂ϕ/∂t. This implies that

µwε(K
′) ≤

∫
Ω∞

ϕ dµwε =

∫
Ω∞

ϕ dµu ≤ µu(Ω∞)

for all small enough ε > 0.
Second, we use the assumption u ≥ v. It implies that wε converges

to v pointwise monotonically in Ω∞ as ε → 0. By Theorem 3.4, this
implies that µwε → µv weakly as ε → 0. Let η ∈ C∞0 (Ω∞) be a cutoff
function such that 0 ≤ η ≤ 1 and η = 1 in K and let K ′ be the support
of η. The weak convergence implies

µv(K) ≤
∫

Ω∞

η dµv = lim
ε→0

∫
Ω∞

η dµwε

≤ lim sup
ε→0

µwε(K
′) ≤ µu(Ω∞).

This proves the result by the inner regularity of µv. �

Lemma 6.6. Assume that K is a compact subset of Ω∞, let u1 be the
solution of the obstacle problem in Ω∞ with the obstacle χK and let uλ
be the solution of the corresponding problem with λχK, λ > 0. Then

µu1(Ω∞) ≤ C(λ1−p + λ−1/(p−1))µuλ(Ω∞) (6.7)
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and

µuλ(Ω∞) ≤ C(λp−1 + λ1/(p−1))µu1(Ω∞). (6.8)

Here µu1 and µuλ are the Riesz measures of u1 and uλ, respectively.

Proof. First assume thatK is a finite union of closed boxes as in Lemma
6.1 and in Lemma 6.3. Note carefully that for the double mollification,
we have

1

4
≤ ((u1)h)h ≤ 1 and

λ

4
≤ ((uλ)h)h ≤ λ

on K, if h > 0 is small enough. Here uh stands for the standard
mollification in the time direction. The function ((u1)h)h is admissible.
From this we conclude that

1

4
µu1(Ω∞) ≤

∫
Ω∞

((u1)h)h dµu1

=

∫
Ω∞

(
A(∇u1) · ∇((u1)h)h − u1

∂((u1)h)h
∂t

)
dz

≤ β
(∫

Ω∞

|∇u1|p dz
)(p−1)/p(∫

Ω∞

|∇((u1)h)h|p dz
)1/p

.

Here we used the fact that∫
Ω∞

u1
∂((u1)h)h

∂t
dz =

∫
Ω∞

u1

(∂(u1)h
∂t

)
h

dz

=

∫
Ω∞

(u1)h
∂(u1)h
∂t

dz =
1

2

∫
Ω∞

∂((u1)h)
2

∂t
dz = 0.

We let h→ 0 and obtain

1

4
µu1(Ω∞) ≤ β

∫
Ω∞

|∇u1|p dz.

A similar argument shows that

µuλ(Ω∞) ≥ α

λ

∫
Ω∞

|∇uλ|p dz.

A combination of the estimates above together with Lemma 6.3 implies
that

µu1(Ω∞) ≤ C(λ1−p + λ−1/(p−1))µuλ(Ω∞). (6.9)

This proves (6.7) in the case when K is a finite union of boxes.
Next we consider a general compact set K ⊂ Ω∞. We can exhaust

Ω∞ \K with an expanding sequence of polygonal sets. Hence there are
sets Kj, j = 1, 2, . . . , consisting of finite unions of boxes, so that

K1 ⊃ K2 ⊃ . . . and K =
∞⋂
j=1

Kj.
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We denote by u1,j and uλ,j the solutions of the obstacle problems in
Ω∞, related to the obstacles χKj and λχKj , respectively. On the one
hand, since u1,j ≥ u1 and u1,j = u1 on ∂pΩ∞, Lemma 6.5 gives

µu1(Ω∞) ≤ µu1,j(Ω∞).

Moreover, Lemma 6.5 implies that

µu1,j+1
(Ω∞) ≤ µu1,j(Ω∞)

for every j = 1, 2, . . . , and consequently, we have

µu1(Ω∞) ≤ lim
j→∞

µu1,j(Ω∞).

On the other hand, uλ,j, j = 1, 2, . . . , is a decreasing sequence in
j and it converges pointwise to uλ in Ω∞. Thus Theorem 3.4 implies
that µuλ,j → µuλ weakly as j →∞. From this we conclude that

lim sup
j→∞

µuλ,j(K1) ≤ µuλ(K1) = µuλ(Ω∞).

These inequalities together with (6.9), applied to u1,j and uλ,j, give

µu1(Ω∞) ≤ lim
j→∞

µu1,j(Ω∞)

≤ C(λ1−p + λ−1/(p−1)) lim
j→∞

µuλ,j(Ω∞)

≤ C(λ1−p + λ−1/(p−1))µuλ(Ω∞).

This proves (6.7). The proof of (6.8) is analogous and we leave the
details to the reader. �

Lemma 6.10. Let v be a weak supersolution with zero boundary data
in Ω∞. Then

µv(Ω∞) = µmin{v,λ}(Ω∞)

for every λ > 0.

Proof. Let ϕ ∈ C∞0 (Ω∞) such that ϕ = 1 in {v > λ}. Then∫
Ω∞

ϕ dµv −
∫

Ω∞

ϕ dµmin{v,λ}

=

∫
Ω∞

(
A(∇v) · ∇ϕ− v∂ϕ

∂t

)
dz

−
∫

Ω∞

(
A(∇min{v, λ}) · ∇ϕ−min{v, λ}∂ϕ

∂t

)
dz

=

∫
{v>λ}

(
A(∇v) · ∇ϕ− (v − λ)

∂ϕ

∂t

)
dz = 0,

since ∇ϕ = 0 and ∂ϕ
∂t

= 0 in {v > λ}. This implies the result. �

The following result gives an estimate for the capacity of the dis-
tribution set of a superparabolic function. For clarity, we denote the
solution of the obstacle problem with the obstacle uχK by Ru

K .
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Theorem 6.11. Let u be A-superparabolic in Ω∞ and λ > 1. Then
there is a constant C, independent of K, such that

cap({u > λ} ∩K) ≤ CµRuK (Ω∞)
(
λ1−p + λ−1/(p−1)

)
for all compact sets K in Ω∞.

Proof. There is a compact set K ′ in Ω∞ such that Ru
K is A-parabolic

and Ru
K ≤ λ in Ω∞ \K ′. Let ψi, i = 1, 2, . . . , be an increasing sequence

of continuous functions such that ψi = Ru
K in Ω∞ \K ′ and ψi converges

to R̂u
K pointwise in Ω∞ as i→∞. Let ui be the solution of the obstacle

problem with the obstacle ψi, i = 1, 2, . . . Observe that ui, i = 1, 2, . . . ,
is an increasing sequence of continuous weak supersolutions in Ω∞.
Since ui is a weak solution in Ω∞ \ K ′, the Riesz measure of ui is
supported in K ′ for every i = 1, 2, . . . The distribution sets {ui ≥ λ}
are compact and

{ui ≥ λ} ⊂ {ui+1 ≥ λ}
for i = 1, 2, . . . Since

({u > λ} ∩K) ⊂ {R̂u
K > λ} ⊂

∞⋃
i=1

{ui ≥ λ},

it follows by Lemma 5.4 that

cap({u > λ} ∩K) ≤ cap
( ∞⋃
i=1

{ui ≥ λ}
)

= lim
i→∞

cap({ui ≥ λ}).

Furthermore, let u1,i be the solution to the obstacle problem with
the obstacle χ{ui≥λ}, and uλ,i be the solution to the obstacle problem
with the obstacle λχ{ui≥λ}. According to Theorem 5.7 and Lemma 6.6,
we obtain

cap({ui ≥ λ}) = µu1,i(Ω∞)

≤ C(λ1−p + λ−1/(p−1))µuλ,i(Ω∞).

On the other hand, weak supersolutions ui and uλ,i are continuous near
the parabolic boundary ∂pΩ∞, ui ≥ uλ,i, and ui = uλ,i on ∂pΩ∞. Hence
Lemma 6.5 implies

µuλ,i(Ω∞) ≤ µmin{ui,λ}(Ω∞).

Using the fact that ui is a weak solution in Ω∞ \K ′, we have

µmin{ui,λ}(Ω∞) = µmin{ui,λ}(K
′).

Since min{ui, λ} converges to min{Ru
K , λ} pointwise in Ω∞ as i→∞,

Theorem 3.4 implies the weak convergence of the corresponding Riesz
measures and

lim sup
i→∞

µmin{ui,λ}(K
′) ≤ µmin{RuK ,λ}(K

′).

Combining the estimates together with

µmin{RuK ,λ}(K
′) = µRuK (K ′),
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see Lemma 6.10, we conclude that

cap({u > λ} ∩K) ≤ C(λ1−p + λ−1/(p−1)) lim sup
i→∞

µuλ,i(K
′)

≤ C(λ1−p + λ−1/(p−1)) lim sup
i→∞

µmin{ui,λ}(K
′)

≤ C(λ1−p + λ−1/(p−1))µRuK (Ω∞).

This completes the proof. �

The previous theorem immediately gives the following result for polar
sets.

Corollary 6.12. Let u be A-superparabolic in Ω∞. Then the parabolic
capacity of the polar set {z ∈ Ω∞ : u(z) =∞} is zero.
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