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1. Introduction

Balayage is one of the most useful tools in linear potential theory and has been used
to obtain many important results therein. Heinonen, Kilpeläinen and Martio were
the first to use nonlinear balayage for studying A-harmonic functions on Rn in [22],
[23] and [24]. The purpose of this paper is to develop the nonlinear balayage theory
on metric spaces.

Analysis and nonlinear potential theory on metric measure spaces have under-
gone a rapid development during the last decade, see e.g. HajÃlasz [19], Heinonen–
Koskela [25], Koskela–MacManus [34], HajÃlasz–Koskela [20], Cheeger [16], Shanmu-
galingam [37], Kinnunen–Martio [28], [29] and more recently Keith–Zhong [26].

Using upper gradients, which were introduced by Heinonen and Koskela in [25],
it is possible to define (Newtonian) Sobolev-type spaces on general metric spaces.
Variational inequalities can then be used to define p-harmonic and superharmonic
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functions (see Section 3). In our generality there are no corresponding partial dif-
ferential equations, which causes some difficulties. Nevertheless, under rather mild
assumptions on the metric space, a large part of the theory of p-harmonic and su-
perharmonic functions on weighted Rn has been extended to metric spaces, see,
e.g., Shanmugalingam [38], [39], Kinnunen–Martio [30], Kinnunen–Shanmugalin-
gam [32], [33], Björn–Björn–Shanmugalingam [9], [10] and Björn–Björn [5]. Exam-
ples of spaces satisfying our assumptions include weighted Rn, manifolds, Heisen-
berg groups and more general Carnot groups and Carnot–Carathéodory spaces, see,
e.g., [5], [10] and HajÃlasz–Koskela [20].

Balayage is a regularized infimum of the family of superharmonic functions lying
above a given obstacle. First, we use the fundamental convergence theorem from
Björn–Björn–Parviainen [8] to show that regularizing changes the infimum only
on a set of capacity zero and that the resulting function is superharmonic. This
makes it possible for us to develop the theory of balayage in a way different from
Heinonen–Kilpeläinen–Martio [24], where a substantial part of the balayage theory
was developed before proving that the infimum only needs to be regularized on a
set of capacity zero. We generalize the balayage results from [22], [23] and [24] to
metric spaces, but in most cases our proofs are different.

Sets of capacity zero in potential theory correspond to sets of measure zero
in the study of Lp-spaces and can sometimes be disregarded. In linear potential
theory there are two ways of defining the balayage, depending on if sets of capacity
zero are ignored or not, and it is almost immediate that they are equivalent. This
equivalence is then used to obtain many important consequences. In the nonlinear
case it is not known whether the two definitions, which we call R- and Q-balayage,
see Section 4, always coincide. A partial result on their equality was obtained in
Heinonen–Kilpeläinen [23] in Rn. We extend this result to metric spaces and also
provide other sufficient conditions for when the two types of balayage coincide. This
is particularly useful in our characterizations of polar sets by means of barriers in
Section 8.

We develop the theories of R- and Q-balayage in parallel, proving results for
both types of balayage where possible. In most cases we are able to obtain results
for the Q-balayage, but in connection with Perron solutions we can only obtain
some parts for the R-balayage.

On metric spaces, obstacle problems have earlier been used instead of balayage
to prove various results in nonlinear potential theory. In Section 5, we study the
relationship between balayage and obstacle problems. We also study the continuity
of balayage and show that even for irregular obstacles, the balayage is p-harmonic
in the set where it lies strictly above the obstacle, see Section 6.

As an application of the theory of balayage, in Section 7 we provide two types of
characterizations of regular boundary points in terms of balayage. These comple-
ment the large number of characterizations obtained in Björn–Björn [5]. Finally we
use balayage for calculating capacities. Our results are also used in Mäkäläinen [35]
to obtain a characterization of removable singularities for Hölder continuous Cheeger
p-harmonic functions on metric spaces.

Many of our results are new also in Rn. The results and proofs given in this paper
hold also for Cheeger p-harmonic functions, as discussed in e.g. Björn–MacManus–
Shanmugalingam [14] and Björn–Björn–Shanmugalingam [9], and for A-harmonic
functions as defined on pp. 56–57 of Heinonen–Kilpeläinen–Martio [24].

Acknowledgement. We would like to thank Olli Martio for letting us use his
notes [36] in this research. The first two authors were supported by the Swedish
Science Research Council. This research belongs to the European Science Foun-
dation Networking Programme Harmonic and Complex Analysis and Applications
HCAA.
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2. Preliminaries

We assume throughout the paper that 1 < p < ∞ and that X = (X, d, µ) is
a complete metric space endowed with a metric d and a positive complete Borel
measure µ which is doubling, i.e. there exists a constant Cµ ≥ 1 such that for all
balls B = B(x0, r) := {x ∈ X : d(x, x0) < r} in X,

0 < µ(2B) ≤ Cµµ(B),

where λB = B(x0, λr). It follows that X is proper, i.e. that closed bounded sets
are compact.

In this paper, a path in X is a rectifiable nonconstant continuous mapping from
a compact interval. A path can thus be parametrized by arc length ds.

We follow Heinonen–Koskela [25] introducing upper gradients as follows (they
called them very weak gradients).

Definition 2.1. A nonnegative Borel function g on X is an upper gradient of an
extended real-valued function f on X if for all paths γ : [0, lγ ] → X,

|f(γ(0))− f(γ(lγ))| ≤
∫

γ

g ds (2.1)

whenever both f(γ(0)) and f(γ(lγ)) are finite, and
∫

γ
g ds = ∞ otherwise. If g is a

nonnegative measurable function on X and if (2.1) holds for p-a.e. path, then g is
a p-weak upper gradient of f .

By saying that (2.1) holds for p-a.e. path, we mean that it fails only for a
path family with zero p-modulus, see Definition 2.1 in Shanmugalingam [37]. It is
implicitly assumed that

∫
γ

g ds is defined (with a value in [0,∞]) for p-a.e. path.

The p-weak upper gradients were introduced in Koskela–MacManus [34]. They
also showed that if g ∈ Lp(X) is a p-weak upper gradient of f , then one can find a
sequence {gj}∞j=1 of upper gradients of f such that gj → g in Lp(X). If f has an
upper gradient in Lp(X), then it has a minimal p-weak upper gradient gf ∈ Lp(X)
in the sense that for every p-weak upper gradient g ∈ Lp(X) of f , gf ≤ g a.e., see
Corollary 3.7 in Shanmugalingam [38].

Next we define a version of Sobolev spaces on the metric space X due to Shan-
mugalingam [37]. Cheeger [16] gave an alternative definition which leads to the
same space, when p > 1.

Definition 2.2. Whenever u ∈ Lp(X), let

‖u‖N1,p(X) =
(∫

X

|u|p dµ + inf
g

∫

X

gp dµ

)1/p

,

where the infimum is taken over all upper gradients of u. The Newtonian space on
X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) < ∞}/∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

Definition 2.3. The capacity of a set E ⊂ X is the number

Cp(E) = inf ‖u‖p
N1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E.
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By truncation, the infimum can be taken over u such that 0 ≤ u ≤ 1. The
capacity is countably subadditive. For this and other properties as well as equivalent
definitions of the capacity we refer to Kilpeläinen–Kinnunen–Martio [27], Kinnunen–
Martio [28], [29], and Björn–Björn [7].

We say that a property holds quasieverywhere (q.e.) if the set of points for
which the property does not hold has capacity zero. The capacity is the correct
gauge for distinguishing between two Newtonian functions. Indeed, if u ∈ N1,p(X),
then u ∼ v if and only if u = v q.e. in X. Moreover, if u, v ∈ N1,p(X) and u = v
a.e., then u ∼ v.

The following consequence of Mazur’s lemma will be useful. For a proof see
Björn–Björn–Parviainen [8].

Lemma 2.4. Assume that {ui}∞i=1 is bounded in N1,p(X) and that ui → u q.e.
Then u ∈ N1,p(X) and

∫

X

gp
u dµ ≤ lim inf

i→∞

∫

X

gp
ui

dµ.

We assume further that X supports a weak (1, p)-Poincaré inequality, i.e. there
exist constants C > 0 and λ ≥ 1 such that for all balls B ⊂ X, all integrable
functions f on X and for all upper gradients g of f ,

∫

B

|f − fB | dµ ≤ C(diam B)
(∫

λB

gp dµ

)1/p

, (2.2)

where fB :=
∫

B
f dµ :=

∫
B

f dµ/µ(B).
By the Hölder inequality, it is easy to see that if X supports a weak (1, p)-

Poincaré inequality, then it supports a weak (1, q)-Poincaré inequality for every
q > p. A deep theorem of Keith and Zhong [26] shows that X even supports a weak
(1, p)-Poincaré inequality for some p < p, which was earlier a standard assumption
for the theory of p-harmonic functions on metric spaces. In the definition of the
Poincaré inequality we can equivalently assume that g is a p-weak upper gradient.

Under these assumptions, Lipschitz functions are dense in N1,p(X), and the
functions in N1,p(X) are quasicontinuous, see Shanmugalingam [37] and Björn–
Björn–Shanmugalingam [11]. This means that in the Euclidean setting, N1,p(Rn)
is the refined Sobolev space.

We need a Newtonian space with zero boundary values defined as follows for an
open set Ω ⊂ X,

N1,p
0 (Ω) = {f |Ω : f ∈ N1,p(X) and f = 0 in X \ Ω}.

One can replace the assumption ”f = 0 in X \Ω” with ”f = 0 q.e. in X \Ω” without
changing the obtained space. We say that f ∈ N1,p

loc (Ω) if for every x ∈ Ω there is rx

such that f ∈ N1,p(B(x, rx)). This is clearly equivalent to saying that f ∈ N1,p(V )
for every open V b Ω. By saying that V b Ω we mean that V is a compact subset
of Ω.

3. Minimizers and superharmonic functions

Let us recall that we assume that X is a complete metric space supporting a weak
(1, p)-Poincaré inequality and that µ is doubling. Assume also from now on that Ω
is a nonempty open set which is either unbounded or is such that Cp(X \ Ω) > 0.
(See Section 9 for the exceptional case when X is bounded and Cp(X \ Ω) = 0.)
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Definition 3.1. A function u ∈ N1,p
loc (Ω) is a minimizer in Ω if for all ϕ ∈ N1,p

0 (Ω)
we have that ∫

ϕ6=0

gp
u dµ ≤

∫

ϕ 6=0

gp
u+ϕ dµ. (3.1)

A function u ∈ N1,p
loc (Ω) is a superminimizer in Ω if (3.1) holds for all nonnegative

ϕ ∈ N1,p
0 (Ω).

By Proposition 3.2 in A. Björn [3] it is enough to test (3.1) with (all and non-
negative, respectively) ϕ ∈ Lipc(Ω).

We follow Björn–Björn [7] in the definition of the obstacle problem. This defini-
tion is a special case of the definition used by Farnana [18] for the double obstacle
problem.

Definition 3.2. Let V ⊂ X be a nonempty bounded open set with Cp(X \V ) > 0.
Let f ∈ N1,p(V ) and ψ : V → [−∞,∞]. Then we define

Kψ,f (V ) = {v ∈ N1,p(V ) : v − f ∈ N1,p
0 (V ) and v ≥ ψ q.e. in V }.

Furthermore, a function u ∈ Kψ,f (V ) is a solution of the Kψ,f (V )-obstacle problem
if ∫

V

gp
u dµ ≤

∫

V

gp
v dµ for all v ∈ Kψ,f (V ).

We also let Kψ,f = Kψ,f (Ω).

Kinnunen–Martio [30] made a similar definition but with “q.e.” replaced by
“a.e.”, which was sufficient for their purposes. Classical Sobolev functions in Eu-
clidean spaces are defined only up to a.e. equivalence classes, so the a.e. obstacle
problem is the only reasonable interpretation in that case. On the other hand, New-
tonian functions are defined up to q.e. equivalence classes and correspond to the
fine representatives of Sobolev functions. Hence, the q.e. definition is more natural
for them.

If ψ ∈ N1,p
loc (Ω), then the two types of obstacle problems coincide, but more

generally there are differences, see the discussion in Farnana [18]. In particular, if
E ⊂ Ω has zero measure but positive capacity, then our definition of the obstacle
problem leads to the capacitary potential of E in Ω, whereas solutions of the a.e.
obstacle problem are trivial. In several of our results, e.g. in Theorem 5.3 and
Proposition 5.6, it will be important that we work with the definition above.

In nonlinear potential theory, even in the Euclidean case, obstacle problems
and Sobolev spaces are a useful tool. In the classical linear theory, these notions,
being essentially replaced by potentials, are often not visible at all, cf. Armitage–
Gardiner [1] or Doob [17].

We shall use the ess lim inf-regularization

u∗(x) = ess lim inf
y→x

u(y) := lim
R→0

ess inf
B(x,R)

u. (3.2)

It is easily verified that u∗ is indeed lower semicontinuous.
If Ω is bounded and Kψ,f 6= ∅, then there is a solution u of the Kψ,f -obstacle

problem, and the solution is unique up to equivalence in N1,p(Ω). The proof of
this fact is slightly more involved than the proof of Theorem 3.2 in [30] for the a.e.-
obstacle problem, see either Farnana [18] or Björn–Björn [7]. Moreover u∗ = u q.e.
and u∗ is the unique ess lim inf-regularized solution of the Kψ,f -obstacle problem.

A function u is a superminimizer if and only if it is a solution of the Ku,u(Ω′)-
obstacle problem for every nonempty open subset Ω′ b Ω. On the other hand, if Ω
is bounded, then a solution of the Kψ,f -obstacle problem is a superminimizer, and a
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superminimizer u ∈ N1,p(Ω) is a solution of the Ku,u-obstacle problem. Moreover,
if u is a superminimizer then u = u∗ q.e. and u∗ is superharmonic (see below). If
ψ ≡ −∞, the obstacle problem reduces to the usual Dirichlet problem.

By Proposition 3.8 and Corollary 5.5 in Kinnunen–Shanmugalingam [32] a min-
imizer can be modified on a set of capacity zero so that it becomes locally Hölder
continuous. A p-harmonic function is a continuous minimizer. For f ∈ N1,p(V ),
we define HV f to be the continuous solution of the K−∞,f (V )-obstacle problem.

Definition 3.3. A function u : Ω → (−∞,∞] is superharmonic in Ω if
(i) u is lower semicontinuous;
(ii) u is not identically ∞ in any component of Ω;
(iii) for every nonempty open set V b Ω and all functions v ∈ Lip(X), we have

that HV v ≤ u in Ω′ whenever v ≤ u on ∂V .
A function u : Ω → [−∞,∞) is subharmonic if −u is superharmonic.

This definition is equivalent to the definitions used in Heinonen–Kilpeläinen–
Martio [24] and Kinnunen–Martio [30], see A. Björn [2].

If u and v are superharmonic, α > 0 and β ∈ R, then αu + β and min{u, v} are
superharmonic, but in general u+v is not. Superharmonic functions are ess lim inf-
regularized, and a function in N1,p

loc (Ω) is superharmonic if and only if it is an
ess lim inf-regularized superminimizer. However, there are superharmonic functions
not belonging to N1,p

loc (Ω), and thus they are not superminimizers, see also a discus-
sion in Björn–Björn–Parviainen [8]. A superharmonic function u satisfies the strong
minimum principle: If u attains its minimum in Ω at some point x ∈ Ω, then u is
constant in the component containing x. For the facts above on superminimizers,
superharmonic functions and obstacle problems we refer to [30].

The following comparison lemma is proved for the a.e.-obstacle problem in
Björn–Björn [5], Lemma 5.4, the proof is the same in our case, see also Farnana [18],
where the corresponding result is proved for the more general double (q.e.)-obstacle
problem.

Lemma 3.4. Assume that Ω is bounded. Let ψj : Ω → R and fj ∈ N1,p(Ω) be
such that Kψj ,fj 6= ∅, and let uj be the ess lim inf-regularized solution of the Kψj ,fj -
obstacle problem, j = 1, 2. Assume that ψ1 ≤ ψ2 q.e. in Ω and that (f1 − f2)+ ∈
N1,p

0 (Ω), then u1 ≤ u2 in Ω.

We will need two results for superminimizers and superharmonic functions from
Björn–Björn–Parviainen [8].

Proposition 3.5. If u is superharmonic in Ω and bounded from above by an
N1,p

loc (Ω)-function, then u is a superminimizer.

For the second result, called the fundamental convergence theorem, we first need
to define the lim inf-regularization of a function f : Ω → R as

f̂(x) = lim
r→0

inf
Ω∩B(x,r)

f, x ∈ Ω.

It follows that f̂ ≤ f , and it is easy to show that f̂ is lower semicontinuous.

Theorem 3.6. (The fundamental convergence theorem) Let F be a nonempty fam-
ily of superharmonic functions in Ω. Assume that there is a function f ∈ N1,p

loc (Ω)
such that u ≥ f a.e. in Ω for all u ∈ F . Let w = inf F . Then the following are
true:

(a) ŵ is superharmonic;
(b) ŵ = w∗ in Ω;
(c) ŵ = w q.e. in Ω.
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We will also use Choquet’s topological lemma. We say that a family of functions
U is downward directed if for each u, v ∈ U there is w ∈ U with w ≤ min{u, v}.
Lemma 3.7. (Choquet’s topological lemma) Let U = {uγ : γ ∈ I} be a nonempty
family of functions uγ : Ω → R. Let u = inf U . If U is downward directed, then
there is a decreasing sequence of functions vj ∈ U with v = limj→∞ vj such that
v̂ = û.

Proof. The proof of Lemma 8.3 in Heinonen–Kilpeläinen–Martio [24] generalizes
directly to metric spaces. Just remember that our metric space X is separable. See
also Björn–Björn [7].

One way of solving the Dirichlet problem for p-harmonic functions is by using
the Perron method, which was studied in Björn–Björn–Shanmugalingam [10] in the
metric space setting.

Definition 3.8. Assume that Ω is bounded. Let f : ∂Ω → R. Let Uf be the set of
all superharmonic functions u on Ω bounded from below such that

lim inf
Ω3y→x

u(y) ≥ f(x) for all x ∈ ∂Ω.

The upper Perron solution of f is defined by

Pf(x) = inf
u∈Uf

u(x), x ∈ Ω.

Similarly, we define Lf to be the set of all subharmonic functions u on Ω bounded
from above such that

lim sup
Ω3y→x

u(y) ≤ f(x) for all x ∈ ∂Ω,

and the lower Perron solution of f is

Pf(x) = sup
u∈Lf

u(x), x ∈ Ω.

If Pf = Pf , then we set PΩf = Pf = Pf , and f is said to be resolutive.

In Theorem 6.1 in Björn–Björn–Shanmugalingam [10], it is shown that if f ∈
C(Ω), then f is resolutive. Moreover, if f ∈ N1,p(X), then f is resolutive and
Pf = Hf , by Theorem 5.1 in [10].

Definition 3.9. Assume that Ω is bounded. A point x0 ∈ ∂Ω is regular if

lim
Ω3y→x0

Pf(y) = f(x0) for all f ∈ C(∂Ω).

The set Ω is regular, if all x0 ∈ ∂Ω are regular. If x0 ∈ ∂Ω is not regular, then it is
irregular.

In Theorems 4.2 and 6.1 in Björn–Björn [5], regular boundary points were char-
acterized in several ways by means of barriers and obstacle problems. We recall
the characterizations in order to analyze the Poisson modification in the irregular
points. Contrast to the Euclidean case, even the balls may not be regular in the
metric spaces as pointed out below. In Section 7 we obtain some other characteri-
zations in terms of balayage.

Theorem 3.10. Assume that Ω is bounded. Let x0 ∈ ∂Ω, δ > 0 and B = B(x0, δ).
Then the following are equivalent :
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(a) The point x0 is a regular boundary point.
(b) The point x0 is regular with respect to B ∩ Ω.
(c) It is true that

lim
Ω3y→x0

Pf(y) = f(x0)

for all bounded f : ∂Ω → R which are continuous at x0.
(d) It is true that

lim sup
Ω3y→x0

Pf(y) ≤ f(x0)

for all functions f : ∂Ω → R which are bounded from above on ∂Ω and upper
semicontinuous at x0.

Proof. (a) ⇒ (d) This is Proposition 7.1 in Björn–Björn–Shanmugalingam [10].
(d) ⇒ (c) This was shown in the proof of Corollary 7.2 in [10].
(a) ⇔ (c) This is part of Theorem 4.2 in Björn–Björn [5]
(a) ⇔ (b) This is part of Theorem 6.1 in [5]

We will also use the Kellogg property which was obtained in Björn–Björn–
Shanmugalingam [9], Theorem 3.9, to analyze the irregular points in a context
of the Poisson modification.

Theorem 3.11. (The Kellogg property) Assume that Ω is bounded. Then it is true
that

Cp({x ∈ ∂Ω : x is irregular}) = 0.

We will use the following two pasting lemmas for superminimizers and super-
harmonic functions, respectively. Lemma 3.12 was proved for quasisuperminimizers
in Björn–Martio [12].

Lemma 3.12. Assume that Ω′ ⊂ Ω is open, and that u and u′ are superminimizers
in Ω and Ω′, respectively. Let

v =

{
min{u, u′}, in Ω′

u, in Ω \ Ω′.

If v ∈ N1,p
loc (Ω), then v is a superminimizer in Ω.

Lemma 3.13. Assume that Ω′ ⊂ Ω is open, and that u and u′ are superharmonic
in Ω and Ω′, respectively. Let

v =

{
min{u, u′}, in Ω′

u, in Ω \ Ω′.

If v is lower semicontinuous, then it is superharmonic in Ω.

Proof. As our definition of superharmonicity is equivalent to the one used in Hei-
nonen–Kilpeläinen–Martio [24], the proof of Lemma 7.9 in [24] generalizes directly
to metric spaces.

Next we introduce the Poisson modification, which is used in the proofs of Theo-
rem 5.8 and Corollary 6.2. In both cases, in view of Theorem 1.1 in Björn–Björn [6],
we could have done the Poisson modifications with respect to regular sets. We have
refrained from this and our proofs therefore do not depend on approximations by
regular sets. (Actually, we do use this in the proof of Lemma 3.13, but in Björn–
Björn [7] there is a proof without this ingredient.)
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Note that in metric spaces, balls need not be regular, for a simple example see
Example 3.1 in [6]. There even exist metric spaces satisfying our assumptions, in
which no balls are regular. More precisely, Proposition 7 in Capogna–Garofalo [15]
shows that the complement of the Carnot–Carathéodory ball B(0, r) in the Heisen-
berg group Hn, n ≥ 1, near each of its poles (0,±r2) is contained in a Euclidean
cone. Theorem 3.4 in Hansen–Hueber [21] then shows that if n ≥ 2 and p = 2,
then the Euclidean cone is thin at its vertex, i.e. its complement (and thus also the
Carnot–Carathéodory ball B(0, r)) is not regular. Due to the group structure this
means that in Hn, n ≥ 2, p = 2, there do not exist any regular balls, and in particu-
lar no base of regular balls. On the other hand, by Corollary 1.2 in Björn–Björn [6]
there always exists a base of regular sets.

Proposition 3.14. (Poisson modification for superharmonic functions) Assume
that u is superharmonic in Ω and let G b Ω be open. Let further

v =

{
u, in Ω \G,

PGu, in G.

Then

v∗(x) =





u(x), x ∈ Ω \G,

PGu(x), x ∈ G,

min
{

u(x), lim inf
G3y→x

PGu(y)
}

, x ∈ ∂G.

(3.3)

Moreover, v∗ is superharmonic in Ω and p-harmonic in G, and v∗ ≤ v ≤ u in Ω.
Let E = {x ∈ ∂G : x is irregular with respect to G}. Then v∗ = v in Ω \ E, in

particular v∗ = v q.e. in Ω.

For u locally bounded from above, part of this result was given in Lemma 4.2 in
Björn–Björn–Shanmugalingam [10]. See also Theorem 9.1 in Kinnunen–Martio [31].

Observe that in general, v is not lower semicontinuous, and hence not superhar-
monic. However, if G is regular, then E = ∅ and v∗ = v.

Proof. As u is superharmonic, it is lower semicontinuous and does not take the value
−∞. Hence u is bounded from below on G. Thus u ∈ Uu(G) and u ≥ PGu ≥ PGu
in G. Therefore v ≤ u in Ω. As v is ess lim inf-regularized in Ω \ ∂G, it is easy to
see that v∗ is given by (3.3) and that v∗ ≤ v in Ω.

Next we want to show that v∗ is superharmonic. Let uk = min{u, k} and

vk =

{
uk, in Ω \G,

PGuk, in G.

Then v∗k is given by an expression similar to (3.3). Functions in Lu(G) are bounded
from above, from which it follows that PGuk → PGu in G, and thus vk → v in Ω,
as k →∞.

By Corollary 7.8 in Kinnunen–Martio [30], uk ∈ N1,p
loc (Ω). Thus PGuk = HGuk,

by Theorem 5.1 in Björn–Björn–Shanmugalingam [10], from which it follows that
vk ∈ N1,p

loc (Ω). Since vk ≤ uk (in the same way as v ≤ u) it follows from Lemma 3.12
that vk is a superminimizer in Ω.

Thus v∗k is superharmonic in Ω and vk = v∗k q.e. in Ω. It follows that v =
limk→∞ v∗k q.e. in Ω. By Lemma 7.1 in [30], limk→∞ v∗k is superharmonic in Ω and
thus ess lim inf-regularized. Hence, v∗ = limk→∞ v∗k everywhere in Ω. That v∗ is
p-harmonic in G follows from Theorem 4.1 in [10].

As u is lower semicontinuous and bounded from below on G, Theorem 3.10(d)
applied to −u shows that

lim inf
G3y→x

PGu(y) = u(x) for x ∈ ∂G \ E.
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Thus, v∗ = u = v in Ω \ E and, by the Kellogg property (Theorem 3.11), v∗ = v
q.e. in Ω.

4. Balayage

The balayage is roughly speaking the smallest superharmonic function lying above a
given obstacle function. Before analyzing its connection to the obstacle problem, we
develop the basic theory of balayage on metric spaces. In particular, we prove that
sets of capacity zero can sometimes be neglected. This is useful in many applications
of the theory.

Definition 4.1. Let

Φψ = Φψ(Ω) = {u : u is superharmonic in Ω and u ≥ ψ in Ω},
Ψψ = Ψψ(Ω) = {u : u is superharmonic in Ω and u ≥ ψ q.e. in Ω},
Rψ = Rψ(Ω) = inf Φψ,

Qψ = Qψ(Ω) = inf Ψψ.

The lim inf-regularizations R̂ψ and Q̂ψ are called the R- and Q-balayages of ψ in
Ω, respectively. If Φψ = ∅, then we set R̂ψ = ∞ and similarly for Q̂ψ.

In this paper, we always assume that the obstacle function ψ in the definition
of the balayage is bounded from below by an N1,p

loc (Ω)-function.
Clearly, Q̂ψ ≤ R̂ψ. As superharmonic functions are lim inf-regularized it follows

directly that R̂ψ ≤ Rψ and Q̂ψ ≤ Qψ. The two definitions of balayage are known to
be equivalent in the linear theory, see Theorem 5.7.3(ii) in Armitage–Gardiner [1],
but in the nonlinear case this is still an open problem, even in Rn. A partial
result was obtained in Heinonen–Kilpeläinen [23], which we here generalize to metric
spaces in Theorem 4.10. See also Section 10 for comments on the linear case.

We start this section by deriving a number of rather basic conclusions about
the balayage. We prove several different results on when the R- and Q-balayages
coincide and end the section with some convergence results.

Definition 4.2. For E ⊂ Ω we define

Φψ
E = ΦψχE , Rψ

E = RψχE , Ψψ
E = ΨψχE and Qψ

E = QψχE ,

where χE is the characteristic function of E.

Proposition 4.3. (a) If ψ1 ≤ ψ2 and Ω1 ⊂ Ω2, then R̂ψ1(Ω1) ≤ R̂ψ2(Ω2) and
Q̂ψ1(Ω1) ≤ Q̂ψ2(Ω2) in Ω1.

(b) If E ⊂ F ⊂ Ω and ψ ≥ 0, then R̂ψ
E ≤ R̂ψ

F and Q̂ψ
E ≤ Q̂ψ

F .
(c) If λ > 0 and µ ∈ R, then R̂λψ+µ = λR̂ψ + µ and Q̂λψ+µ = λQ̂ψ + µ.

Proof. These are easy observations following directly from the definition.

As a consequence of the fundamental convergence theorem we obtain the fol-
lowing result rather easily. Compare this to Section 8 in Heinonen–Kilpeläinen–
Martio [24], where the theory of the R-balayage is developed in a different order.
Observe also that the Q-balayage gives the right representative even without the
regularization as shown below.

Theorem 4.4. It is true that

R̂ψ = (Rψ)∗ in Ω and R̂ψ = Rψ ≥ ψ q.e. in Ω. (4.1)
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Moreover, if Φψ 6= ∅, then the balayage R̂ψ is superharmonic.
Similarly,

Q̂ψ = (Qψ)∗ = Qψ in Ω and Q̂ψ ≥ ψ q.e. in Ω, (4.2)

and if Ψψ 6= ∅, then Q̂ψ is superharmonic.

Proof. The identities (4.1) and (4.2) are trivial in the cases when Φψ = ∅ and
Ψψ = ∅, respectively. We thus assume that Φψ 6= ∅ and Ψψ 6= ∅, respectively, in
the rest of the proof.

The result now follows directly from Theorem 3.6 with one exception. Trivially
Rψ ≥ ψ everywhere in Ω, and thus, by Theorem 3.6, R̂ψ = Rψ ≥ ψ q.e. in Ω.

For the Q-balayage the corresponding inequality is a little more subtle. By
Choquet’s topological lemma (Lemma 3.7) there is a decreasing sequence of super-
harmonic functions vj ∈ Ψψ with v = limj→∞ vj such that v̂ = Q̂ψ. As vj ≥ ψ q.e.,
it follows that v ≥ ψ q.e. in Ω. By Theorem 3.6, we have that Q̂ψ = v̂ = v ≥ ψ q.e.
in Ω. As Q̂ψ is superharmonic, we have Q̂ψ ∈ Ψψ and hence Q̂ψ ≥ Qψ everywhere
in Ω. The converse inequality is trivial.

The following corollary immediately follows from the previous theorem by using
the ess lim inf-regularization.

Corollary 4.5. It is true that

R̂ψ ≥ Q̂ψ ≥ ψ∗ in Ω.

We say that ψ is essentially lower semicontinuous if ψ∗ ≥ ψ.

Proposition 4.6. If ψ is essentially lower semicontinuous, in particular if ψ is
lower semicontinuous, then

R̂ψ = Q̂ψ ≥ ψ∗ ≥ ψ in Ω.

Proof. In view of Corollary 4.5 we only need to show that R̂ψ ≤ Q̂ψ. But as Q̂ψ ≥ ψ
we have that Q̂ψ ∈ Φψ, and hence R̂ψ ≤ Rψ ≤ Q̂ψ.

This in particular shows that if ψ ≥ 0 is superharmonic in Ω and E ⊂ Ω (which
is the situation often considered in linear balayage) then R̂ψ

E = Rψ
E = Q̂ψ

E , provided
that E is open, cf. Theorem 5.3.4(v) in Armitage–Gardiner [1].

Proposition 4.7. If ψ is superharmonic, then

R̂ψ = Q̂ψ = ψ in Ω.

Proof. We have that R̂ψ = Q̂ψ ≥ ψ by Proposition 4.6. On the other hand, as
ψ ∈ Φψ we have that R̂ψ ≤ ψ.

Proposition 4.8. If ψ ≥ 0 is superharmonic and E ⊂ Ω, then

R̂ψ
E = Q̂ψ

E = ψ q.e. in E and everywhere in intE.

In particular,
R̂1

E = Q̂1
E = 1 q.e. in E.

Proof. As ψ ∈ Ψψ
E we have that Q̂ψ

E ≤ R̂ψ
E ≤ ψ̂ = ψ. On the other hand, by

Theorem 4.4, ψ = ψχE ≤ Q̂ψ
E q.e. in E. Thus Q̂ψ

E = ψ q.e. in E.
As Q̂ψ

E and ψ are both ess lim inf-regularized they must coincide in intE.
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Proposition 4.9. If R̂ψ ∈ N1,p
loc (Ω), in particular if ψ is bounded, then R̂ψ is an

ess lim inf-regularized superminimizer in Ω.
Similarly, if Q̂ψ ∈ N1,p

loc (Ω), in particular if ψ is bounded, then Q̂ψ is an
ess lim inf-regularized superminimizer in Ω.

Proof. The proofs for R̂ψ and Q̂ψ are similar, we give the proof for Q̂ψ. By The-
orem 4.4, Q̂ψ is superharmonic, and hence ess lim inf-regularized. If ψ is bounded,
then so is Q̂ψ, and as a bounded superharmonic function, Q̂ψ is a superminimizer
in N1,p

loc (Ω), by Corollary 7.8 in Kinnunen–Martio [30]. If Q̂ψ merely belongs to
N1,p

loc (Ω) we instead use Corollary 7.9 in [30] to deduce that Q̂ψ is a supermini-
mizer.

Next we show that if Q̂ψ ∈ N1,p(Ω), then the R- and Q-balayages coincide. The
proof is similar to the corresponding proof for unweighted Rn in Heinonen–Kilpe-
läinen [23], Lemma 2.1. For the reader’s convenience we include a proof here with
the necessary references to the metric space literature. Later in Corollary 5.4 and
Corollary 6.3, we provide conditions in terms of the obstacle ψ.

The idea in the proof is to add a correction term to Q̂ψ so that the resulting
function lies above the obstacle also in the exceptional set {x ∈ Ω : Q̂ψ(x) < ψ(x)}.
Then we use the corresponding solutions of the obstacle problem and the fact that
the exceptional set is of capacity zero to show that R̂ψ ≤ Q̂ψ. This suffices to prove
the claim since the converse inequality follows by definition.

Theorem 4.10. Assume that Ω is bounded. If Q̂ψ ∈ N1,p(Ω), then Q̂ψ = R̂ψ.

Proof. Let E = {x ∈ Ω : Q̂ψ(x) < ψ(x)}. Theorem 4.4, implies that Cp(E) = 0.
By Corollary 1.3 in Björn–Björn–Shanmugalingam [11], Cp is an outer capacity, i.e.
there exists, for j = 1, 2, ..., an open set Gj ⊃ E with Cp(Gj) < 2−jp and thus a
nonnegative ϕj ∈ N1,p(X) such that ‖ϕj‖N1,p(X) < 2−j and ϕj ≥ χGj .

Let ϕ =
∑∞

j=1 ϕj and let w be the ess lim inf-regularized solution of the Kϕ,ϕ-
obstacle problem. Then 0 ≤ w ∈ N1,p(Ω) is a lower semicontinuous function and
w = ∞ in E. Let

ψj = Q̂ψ +
w

j

and let vj be the ess lim inf-regularized solution of the Kψj ,ψj -obstacle problem. We
have, as ψj is lower semicontinuous, that

vj(x) = ess lim inf
y→x

vj(y) ≥ ess lim inf
y→x

ψj(y) ≥ ψj(x) ≥ ψ(x) for all x ∈ Ω.

Now
v := lim

j→∞
vj ≥ Rψ ≥ R̂ψ.

On the other hand, ψj → Q̂ψ in N1,p(Ω), and Q̂ψ is a solution of the K bQψ, bQψ -
obstacle problem since it is superharmonic. It follows from Proposition 3.2 in
Kinnunen–Shanmugalingam [33], which also appears as Proposition 5.5 in Björn–
Björn–Shanmugalingam [10], that v = Q̂ψ q.e. in Ω. Hence

Q̂ψ(x) = ess lim inf
y→x

v(y) ≥ ess lim inf
y→x

R̂ψ(y) = R̂ψ(x) for all x ∈ Ω.

For the Q-balayage, we have the following convergence result for increasing se-
quences. It is not known if the corresponding result for the R-balayage holds. In
fact, if the corresponding result would hold for the R-balayage, then it would follow
that the R- and Q-balayages coincide for all functions.
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Proposition 4.11. Let Ω1 ⊂ Ω2 ⊂ ... ⊂ Ω =
⋃∞

j=1 Ωj be open sets and ψj : Ωj →
(−∞,∞] be a sequence of functions such that for each j there exists a function
fj ∈ N1,p

loc (Ωj) so that ψj+1 ≥ ψj ≥ fj in Ωj. Let further ψ = limj→∞ ψj and
assume that Ψψ 6= ∅. Then

lim
j→∞

Q̂ψj (Ωj) = Q̂ψ(Ω).

Proof. By Proposition 4.3, we have that {Q̂ψk(Ωk)}∞k=j is a nondecreasing sequence
of superharmonic functions in Ωj , j = 1, 2, ... . Let v = limj→∞ Q̂ψj (Ωj). Clearly,
Q̂ψj (Ωj) ≤ Q̂ψ for all j, and thus the inequality v ≤ Q̂ψ is true. Moreover Q̂ψ is
superharmonic and hence not identically ∞ in any component of Ω. By Lemma 7.1
in Kinnunen–Martio [30], v is superharmonic in Ωj for every j and thus in Ω. On
the other hand, Q̂ψj (Ωj) ≥ ψj q.e. in Ωj for all j. It follows that v ≥ ψ q.e. in Ω,
and thus v ≥ Q̂ψ in Ω.

Proposition 4.12. Assume that ψj → ψ uniformly in Ω. Then Q̂ψj → Q̂ψ and
R̂ψj → R̂ψ uniformly in Ω.

Proof. This follows directly from the fact that if ψ− ε ≤ ψj ≤ ψ + ε, then Q̂ψ− ε ≤
Q̂ψj ≤ Q̂ψ + ε and R̂ψ − ε ≤ R̂ψj ≤ R̂ψ + ε.

This result can be applied using the following observation, which follows directly
from Proposition 4.12.

Proposition 4.13. Assume that ψj → ψ uniformly in Ω, and that Q̂ψj = R̂ψj for
all j. Then Q̂ψ = R̂ψ.

Remark 4.14. A function u : Ω → (−∞,∞] is hyperharmonic if it is lower semicon-
tinuous and satisfies (iii) of Definition 3.3. It follows that a function is hyperhar-
monic if and only if in every component it is either superharmonic or identically
∞.

In the definition of the balayage we could have used hyperharmonic functions
lying above ψ (everywhere or q.e.). The difference would, of course, only be in how
the balayage is defined for ψ such that Φψ = ∅ or Ψψ = ∅ (still using superharmonic
functions in the definitions of Φψ and Ψψ). To be more precise, it would be possible
for R̂ψ (and Q̂ψ) to be identically ∞ in some component while still superharmonic
in some other component.

Using hyperharmonic functions in the definition we would directly find that if
G is a component of Ω, then

R̂ψ(Ω)|G = R̂ψ(G) and Q̂ψ(Ω)|G = Q̂ψ(G),

without any condition on ψ (at present we need to require that Φψ 6= ∅ and Ψψ 6= ∅,
respectively). Also Proposition 4.11 would hold without assuming that Ψψ 6= ∅.

5. Balayage, obstacle problem and continuity

In this section, we show that the balayage has a connection to the obstacle problem.
This fact has many immediate consequences. Indeed, we apply the balayage in
calculating capacities and consider the continuity of the balayage. We also derive a
condition for the p-harmonicity of the solution of the obstacle problem. This result
provides a starting point for the analysis of the p-harmonicity of the balayage in
the next section.

In view of the next lemma, the solution of the obstacle problem can be approx-
imated by solutions of obstacle problems in smaller sets.
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Lemma 5.1. Assume that Ω is bounded. Let Ω1 ⊂ Ω2 ⊂ ... ⊂ Ω =
⋃∞

j=1 Ωj be open
sets. Let also ψ : Ω → [−∞,∞] and f ∈ N1,p(Ω) be such that f ≥ ψ q.e. in Ω and
there exists U b Ω so that ψ = f q.e. in Ω \ U . Let vj be the ess lim inf-regularized
solution of the Kψ,f (Ωj)-obstacle problem, j = 1, 2, ... . Then v = limj→∞ vj is the
ess lim inf-regularized solution of the Kψ,f (Ω)-obstacle problem.

Proof. We can assume that U ⊂ Ω1 and extend each vj by f to Ω. Since vj+1 is an
ess lim inf-regularized solution of the Kvj+1,vj+1(Ωj)-obstacle problem, and vj+1 ≥ ψ
q.e. in Ω and vj+1 ≥ f = vj q.e. in Ω \Ωj , the comparison Lemma 3.4 implies that
vj+1 ≥ vj for all j = 1, 2, ... . Hence v = limj→∞ vj exists everywhere in Ω and again
by the comparison lemma v ≤ u, where u is the ess lim inf-regularized solution of
the Kψ,f -obstacle problem. As v is an increasing limit of superharmonic functions
in each Ωj , it is itself superharmonic in each Ωj , and hence in Ω, by Theorem 7.1
in Kinnunen–Martio [30]. In particular v is ess lim inf-regularized.

As v1 ∈ Kψ,f (Ωj) for all j = 1, 2, ..., we have that
∫

Ω

gp
vj

dµ ≤
∫

Ω

gp
v1

dµ,

i.e. the sequence vj is bounded in N1,p(Ω) and Lemma 2.4 shows that v ∈ N1,p(Ω).
Hence v is a solution of the Kv,v-obstacle problem. As v ≥ ψ q.e. in Ω and v ≥ ψ = f
q.e. in Ω \ U , the comparison Lemma 3.4 shows that v ≥ u, and thus v = u.

Definition 5.2. The variational capacity of E b Ω with respect to Ω is

capp(E, Ω) = inf
u

∫

Ω

gp
u dµ,

where the infimum is taken over all u ∈ N1,p
0 (Ω) such that u ≥ 1 on E.

Under our assumptions the two capacities (capp and Cp) are more or less equiv-
alent, see J. Björn [13], Lemma 3.3. In particular they have the same sets of zero
capacity.

Next we show that the balayage coincides with the solution of the obstacle
problem. Locally, this is a straightforward consequence of the comparison prin-
ciple: Clearly, the Q-balayage is the smallest superharmonic function q.e. above
the obstacle and, on the other hand, the comparison lemma implies the converse
inequality. This is the content of Proposition 5.6.

Globally, we only know that the balayage is in N1,p
loc (Ω) in the setting of The-

orem 5.3. Therefore, in order to use the comparison lemma, we approximate the
domain from inside. Theorem 5.3 immediately shows that the balayage is a capac-
itary function.

Theorem 5.3. Assume that Ω is bounded. Assume further that there exist f ∈
N1,p(Ω) and U b Ω such that f ≥ ψ q.e. in Ω and ψ = f q.e. in Ω \ U . Then
Q̂ψ is the ess lim inf-regularized solution of the Kψ,f -obstacle problem. Moreover
Q̂ψ = R̂ψ.

In particular, if E b Ω then

capp(E, Ω) =
∫

Ω

gp
w dµ,

where w = Q̂1
E = R̂1

E.

Corollary 5.4. Assume that Ω is bounded. If ψ ∈ N1,p(Ω), then Q̂ψ = R̂ψ.
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Corollary 5.5. Assume that Ω is bounded and that E b Ω. If there is a function
f ∈ N1,p

loc (Ω) such that ψ ≤ f in E, in particular if ψ is bounded in E, then
Q̂ψ

E = R̂ψ
E.

Proof of Theorem 5.3. Choose open sets Ω1 ⊂ Ω2 ⊂ ... b Ω =
⋃∞

j=1 Ωj such that
U ⊂ Ω1. Let vj be the ess lim inf-regularized solution of the Kψ,f (Ωj)-obstacle
problem, j = 1, 2, ..., extended by f to the whole of Ω. Then vj → v by Lemma 5.1,
where v is the ess lim inf-regularized solution of the Kψ,f -obstacle problem.

Let u = Q̂ψ. As v is superharmonic in Ω and v ≥ ψ q.e. in Ω, we have that u ≤ v.
Since u is superharmonic, it follows from Proposition 3.5 that u is a superminimizer,
and hence u ∈ N1,p

loc (Ω).
As u is the ess lim inf-regularized solution of the Ku,u(Ωj)-obstacle problem, and

u ≥ ψ = f q.e. in Ωj \ U and u ≥ ψ q.e. in Ωj , the comparison Lemma 3.4 shows
that u ≥ vj in Ωj . Letting j →∞ shows that u ≥ v in Ω, and thus u = v ∈ N1,p(Ω).

It follows from Theorem 4.10 that Q̂ψ = R̂ψ.

Proposition 5.6. Assume that V ⊂ Ω is open and bounded and that Q̂ψ ∈ N1,p(V ).
Then Q̂ψ is the ess lim inf-regularized solution of the Kψ, bQψ (V )-obstacle problem.

Proof. Fix k for the moment and let ψk = min{ψ, k}. Now uk := Q̂ψk be-
longs to N1,p

loc (Ω) and by Proposition 4.9 it is an ess lim inf-regularized supermin-
imizer in Ω. Similarly, by Corollary 7.9 in Kinnunen–Martio [30], u := Q̂ψ is
an ess lim inf-regularized superminimizer in V . Let vk and v be the ess lim inf-
regularized solutions of theKψk,uk

(V )- andKψ,u(V )-obstacle problems, respectively.
As uk and u are the ess lim inf-regularized solutions of the Kuk,uk

(V )- and Ku,u(V )-
obstacle problems, respectively, the comparison Lemma 3.4 shows that vk ≤ uk and
vk ≤ v ≤ u in V . Then

w =

{
uk, in Ω \ V,

vk, in V,

is a superminimizer in Ω, by Lemma 3.12 (that w ∈ N1,p
loc (Ω) follows from the fact

that uk − vk ∈ N1,p
0 (V )). As w∗ ≥ ψk q.e. in Ω, we have that w∗ ∈ Ψψk , and hence

w∗ ≥ uk. In particular, in V we obtain that uk ≤ w∗ = vk ≤ uk.
We conclude, by Proposition 4.11, that

v ≥ lim
k→∞

vk = lim
k→∞

uk = u,

and thus that v = u.

The following result about obstacle problems is a generalization of Theorem 5.5
in Kinnunen–Martio [30] and will be used later.

Theorem 5.7. Assume that Ω is bounded and that Kψ,f 6= ∅. Let u be the
ess lim inf-regularized solution of the Kψ,f -obstacle problem. Then u is continuous
at all points in

E := {x ∈ Ω : u(x) ≥ ψ(x) 6= ∞ and ψ is upper semicontinuous at x}.
Moreover, u is p-harmonic in

G :=
∞⋃

j=1

int{x ∈ Ω : u(x) > ψ(x) + 1/j}.

In particular, u is p-harmonic (and continuous) in

G′ := int{x ∈ Ω : u(x) > ψ(x) and ψ is upper semicontinuous at x}.
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Proof. The proof of Theorem 5.5 in [30] shows that u is continuous at points in E.
Let ϕ ∈ Lipc(G). By compactness, there is j > 0 such that u > ψ + 1/j in

suppϕ. Therefore there is 0 < t < 1 such that

w := (1− t)u + t(u + ϕ) = u + tϕ ≥ ψ in Ω,

and thus w ∈ Kψ,f (Ω). Hence, using convexity,
∫

ϕ 6=0

gp
u dµ ≤

∫

ϕ6=0

gp
w dµ ≤

∫

ϕ 6=0

((1− t)gu + tgu+ϕ)p dµ

≤ (1− t)
∫

ϕ 6=0

gp
u dµ + t

∫

ϕ 6=0

gp
u+ϕ dµ.

Subtracting the first term in the right-hand side and dividing by t shows that
∫

ϕ 6=0

gp
u dµ ≤

∫

ϕ 6=0

gp
u+ϕ dµ.

Thus, u is an ess lim inf-regularized minimizer, i.e. p-harmonic, in G.
Finally, if y ∈ G′ then there exists a neighbourhood V of y such that u > ψ

and ψ is upper semicontinuous in V . We have shown that u is continuous in V and
it follows that u > ψ + 1/j in V ′ for some neighbourhood V ′ ⊂ V of x and some
nonnegative j. Hence V ′ ⊂ G, which concludes the proof.

As a corollary to Proposition 5.6 and Theorem 5.7, we prove a counterpart of
Theorem 5.7 for the balayage in Theorem 6.5 below.

Next we consider the continuity of the balayage. The upper semicontinuity of
the obstacle function turns out to be the essential condition here.

Theorem 5.8. Assume that Ψψ 6= ∅. Then Q̂ψ is continuous at all points in

E := {x ∈ Ω : Q̂ψ(x) ≥ ψ(x) 6= ∞ and ψ is upper semicontinuous at x}.
We state the obvious consequence of this result for continuous functions in Corol-

lary 6.9.

Proof. Let x0 ∈ E and ε > 0. By the lower and upper semicontinuity of Q̂ψ and ψ,
respectively, and the condition Q̂ψ(x0) ≥ ψ(x0) 6= ∞, it follows that there is a ball
B = B(x0, r) b Ω such that

Q̂ψ + 2ε ≥ ψ(x0) + ε ≥ ψ on B.

Let u = Q̂ψ + 2ε and

v(x) =





u(x), x ∈ Ω \B,

PBu(x), x ∈ B,

min
{

u(x), lim inf
B3y→x

PBu(y)
}

, x ∈ ∂B,

be the Poisson modification of u. By Proposition 3.14, v ≤ u is superharmonic in
Ω and p-harmonic in B. Also, as ψ(x0) + ε ∈ Lu(B), we have that

v ≥ ψ(x0) + ε ≥ ψ on B.

On the other hand v = Q̂ψ + 2ε ≥ ψ q.e. in Ω \B. Thus v ∈ Ψψ and Q̂ψ ≤ v in Ω.
Therefore

lim sup
x→x0

Q̂ψ(x) ≤ lim
x→x0

v(x) = v(x0) ≤ Q̂ψ(x0) + 2ε.

Letting ε → 0 shows that Q̂ψ is upper semicontinuous at x0, and as Q̂ψ is lower
semicontinuous (everywhere) in Ω the continuity of Q̂ψ at x0 follows.
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6. p-harmonicity of balayage

In this section, we consider the p-harmonicity of the balayage. Generally speaking,
the balayage is p-harmonic if the obstacle is subharmonic or the balayage is strictly
above the obstacle. Furthermore, as a corollary, we obtain another condition for
the equivalence of the R- and Q-balayages in Corollary 6.3. The main tools are the
Poisson modification and the connection to the obstacle problem from the previous
section.

Theorem 6.1. Assume that ψ is subharmonic in some open set U ⊂ Ω. If Φψ 6= ∅,
then R̂ψ is p-harmonic in U and Rψ = R̂ψ ≥ ψ in U .

Similarly, if Ψψ 6= ∅, then Q̂ψ is p-harmonic in U and Qψ = Q̂ψ ≥ ψ in U .

Corollary 6.2. If E  Ω is relatively closed then both R̂ψ
E and Q̂ψ

E are p-harmonic
in Ω \ E, provided that they are not identically ∞.

Proof of Theorem 6.1. We prove the result for the Q-balayage Q̂ψ. The proof for
R̂ψ is similar. By Choquet’s topological lemma, there exists a decreasing sequence
of functions vi ∈ Ψψ such that v = limi→∞ vi and

v̂ = Q̂ψ in Ω. (6.1)

Let V b U be open, and let si be the Poisson modification of vi in V given by

si(x) =





vi(x), if x ∈ Ω \ V ,

PV vi(x), if x ∈ V,

min
{

vi(x), lim inf
V 3y→x

PV vi(y)
}

, if x ∈ ∂V.

By Proposition 3.14, si is p-harmonic in V and superharmonic in Ω. By the com-
parison principle we have that si+1 ≤ si ≤ vi.

Let W be open and such that V b W b U . Let m = supW ψ which is finite as ψ
is upper semicontinuous and does not take the value ∞ in U . Let v′i = min{vi,m}
and s′i = min{si, m}. Since s′i is the ess lim inf-regularized solution of the Ks′i,v

′
i
(W )-

obstacle problem and HW v′i, by definition, is the ess lim inf-regularized solution of
the K−∞,v′i(W )-obstacle problem, the comparison Lemma 3.4 shows that HW v′i ≤ s′i
in W . Similarly ψ ≤ HW v′i in W (apply Lemma 3.4 to −ψ and −v′i). Therefore
ψ ≤ s′i ≤ si in W and q.e. in Ω. Thus

Qψ ≤ s := lim
i→∞

si ≤ v

and hence by (6.1), it follows that Q̂ψ = ŝ. As Q̂ψ is superharmonic in Ω it is
bounded from below on V , and thus by Harnack’s convergence theorem (Proposi-
tion 5.1 in Shanmugalingam [39]) s is p-harmonic in V . It follows that s = ŝ in V
and consequently

ψ ≤ s = ŝ = Q̂ψ ≤ Qψ ≤ s in V,

i.e. Q̂ψ ≥ ψ is p-harmonic in V , and as V was arbitrary also in U .

Corollary 6.3. Assume that Ψψ 6= ∅, that ψ is subharmonic in some open U ⊂ Ω,
and that ψ is essentially lower semicontinuous in Ω \ U . Then Q̂ψ = Qψ = R̂ψ =
Rψ ≥ ψ in Ω.

Proof. By Theorem 6.1, Q̂ψ ≥ ψ in U . On the other hand, by Corollary 4.5,
Q̂ψ ≥ ψ∗ ≥ ψ in Ω \ U . Hence Q̂ψ ∈ Φψ and R̂ψ ≤ Rψ ≤ Q̂ψ ≤ R̂ψ. The
inequalities Q̂ψ ≤ Qψ ≤ Rψ complete the proof.
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The sheaf property is open for p-harmonic functions on metric spaces (with our
assumptions), i.e. if u is p-harmonic in two open sets U and V it is not known if
u is p-harmonic in U ∪ V . (For Cheeger p-harmonic functions this is known.) The
sheaf property is also open for sub- and superharmonic functions. For this reason
it may be worth pointing out the following slight generalization of Corollary 6.3.

Corollary 6.4. Let Uj, j = 1, 2, ..., be open sets. Assume that Ψψ 6= ∅, that ψ
is subharmonic in Uj for each j, and that ψ is essentially lower semicontinuous in
Ω \⋃∞

j=1 Uj. Then Q̂ψ = Qψ = R̂ψ = Rψ ≥ ψ in Ω.

The proof is similar to the proof of Corollary 6.3.

Theorem 6.5. Assume that Q̂ψ ∈ N1,p
loc (Ω). Then Q̂ψ is p-harmonic in

G :=
∞⋃

j=1

int{x ∈ Ω : Q̂ψ(x) > ψ(x) + 1/j}.

Proof. Let V b G. By Proposition 5.6, Q̂ψ is the ess lim inf-regularized solution of
the Kψ, bQψ (V )-obstacle problem. Theorem 5.7 then yields that Q̂ψ is p-harmonic in
V , and hence in G.

The following example shows that we cannot replace G by int{x ∈ Ω : Q̂ψ(x) >
ψ(x)} above. Nevertheless, for upper semicontinuous obstacles, and in particular
for continuous obstacles, this is possible, as we later show in Theorem 6.8 and
Corollary 6.9.

Example 6.6. Let Ω = (0, 1) ⊂ X = R, 1 < p < ∞, and let f(x) = 1− (
x− 1

2

)2.
Observe that the p-harmonic functions on Ω are functions of the form x 7→ ax + b,
and that a function is superharmonic if and only if it is concave (the situation is
the same for all p).

We enumerate the dyadic rational numbers as xj,k = (2j + 1 − 2k)/2k and let
ψ(xj,k) = f(xj,k) − 2−k for 2k−1 ≤ j < 2k, k = 1, 2, ... . Let further ψ(x) = −∞
for all other x. It is now easy to see that the least concave function on Ω lying
above ψ is f . Hence Rψ = R̂ψ = Qψ = Q̂ψ = f . However f > ψ in Ω and f is not
p-harmonic in Ω.

Next we deduce a generalization of Theorem 6.5. It turns out that if the set in
which the obstacle is near the balayage is of capacity zero, then it can be neglected.

Theorem 6.7. Assume that Q̂ψ ∈ N1,p
loc (Ω). Then Q̂ψ is p-harmonic in

G := {x ∈ Ω : Cp({y ∈ B(x, r) : Q̂ψ(y) ≤ ψ(y)+δ}) = 0 for some positive r and δ}.

Proof. Let Aj = {x ∈ Ω : Q̂ψ(x) > ψ(x) + 1/j} and

A′j = {x ∈ Ω : Cp(B(x, r) \Aj) = 0 for some r > 0}.
Then G =

⋃∞
j=1 A′j and G is open. Let now

ϕ =

{
−∞, in

⋃∞
j=1(A

′
j \Aj),

ψ, otherwise.

The separability of X implies that ϕ = ψ q.e., and hence Q̂ϕ = Q̂ψ. Moreover

G =
∞⋃

j=1

int{x ∈ Ω : Q̂ϕ(x) > ϕ(x) + 1/j}.

Thus Q̂ϕ is p-harmonic in G, by Theorem 6.5.
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Theorem 6.8. Assume that Ψψ 6= ∅. Then Q̂ψ is p-harmonic in

G := int{x ∈ Ω : Q̂ψ(x) > ψ(x) and ψ is upper semicontinuous at x}.

In particular, if ψ is upper semicontinuous in all of Ω, then Q̂ψ is p-harmonic in
the open set {x ∈ Ω : Q̂ψ(x) > ψ(x)}.

Proof. Let ψj = min{ψ, j}, j ∈ Z. By Proposition 4.11, Q̂ψj → Q̂ψ in Ω, as
j →∞. Thus for each x ∈ G we can find mx such that Q̂ψmx (x) > ψ(x). As Q̂ψmx

is lower semicontinuous and ψ is upper semicontinuous at x it follows that there is
a neighbourhood Bx 3 x such that Q̂ψmx > ψ in Bx.

Let V b G. As V is compact we can find a finite set {x1, ... , xn} such that V ⊂⋃n
j=1 Bxj

. Let k ≥ max1≤j≤n mxj
. Then Q̂ψk > ψ ≥ ψk in V . By Proposition 5.6,

Q̂ψk is the ess lim inf-regularized solution of theKψk, bQψk
(V )-obstacle problem. Since

ψk is upper semicontinuous in G, Theorem 5.7 implies that Q̂ψk is p-harmonic in
V .

As Q̂ψk is bounded from below on V it follows from Harnack’s convergence
theorem (Proposition 5.1 in Shanmugalingam [39]) that Q̂ψ = limk→∞ Q̂ψk is p-
harmonic in V , and as V was arbitrary also in G.

Corollary 6.9. Let ψ ∈ C(Ω) be such that Ψψ 6= ∅. Then R̂ψ = Q̂ψ ≥ ψ is
continuous everywhere in Ω and p-harmonic in

G := {x ∈ Ω : Q̂ψ(x) > ψ(x)}.

Proof. By Proposition 4.6, R̂ψ = Q̂ψ ≥ ψ. The continuity follows from Theorem 5.8.
As for the p-harmonicity, the set G is open by the continuity of ψ and the lower
semicontinuity of Q̂ψ. Thus Theorem 6.8 implies that Q̂ψ is p-harmonic in G.

As an application, we derive a global version of Theorem 7.7 in Kinnunen–
Martio [30] by using the balayage. See also Theorem 8.15 in Heinonen–Kilpeläinen–
Martio [24].

Theorem 6.10. Assume that u : Ω → (−∞,∞] is superharmonic. Then there is
an increasing sequence of continuous bounded superminimizers vi : Ω → R such
that limi→∞ vi = u everywhere in Ω. If u ≥ 0, then we can choose vi, i = 1, 2, ...,
nonnegative.

Proof. Since u is lower semicontinuous, there is an increasing sequence of continuous
functions ψi : Ω → R such that limi→∞ ψi = u. If u ≥ 0, then we require that
ψi ≥ 0. Replacing ψi by min{ψi, i}, we may assume that each ψi is bounded
from above. By Corollary 6.9, the functions R̂ψi are continuous superminimizers
and since u ∈ Φψi , we get that ψi ≤ R̂ψi ≤ u. Thus limi→∞ R̂ψi = u and since
ψi+1 ≥ ψi, we obtain that R̂ψi+1 ≥ R̂ψi .

7. Boundary regularity

Our aim in this section is to give characterizations of regularity for boundary points
in terms of balayage. Recall the discussion on boundary regularity in Section 3.

In this section we add the additional assumption that Ω is bounded. Recall that
we also assume that Ω is nonempty, open and such that Cp(X \ Ω) > 0.

The following lemma relates the balayage to the Perron solutions. We recall
that Ru

E denotes the infimum of superharmonic functions in Ω above uχE , R̂u
E the

lower semicontinuous regularization of Ru
E , and PΩ\Eu the upper Perron solution

in Ω \ E with boundary values u.
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Theorem 7.1. Assume that E  Ω is relatively closed, u ≥ 0 in Ω, u = 0 on ∂Ω
and Φu

E 6= ∅. Then the following hold :
(a) The balayage R̂u

E is p-harmonic in Ω \ E and

R̂u
E ≥ PΩ\Eu in Ω \ E.

(b) If u is superharmonic in Ω, then

Ru
E = R̂u

E = PΩ\Eu in Ω \ E.

(c) If E ⊂ Ω is compact and u is a superminimizer in Ω (not necessarily ess lim inf-
regularized), then R̂u

E = Q̂u
E in Ω and

R̂u
E = PΩ\Eu in Ω \ E.

Proof. (a) Since by Corollary 6.2, R̂u
E is p-harmonic in Ω \ E, it remains to show

that R̂u
E ≥ PΩ\Eu in Ω \ E. This is a consequence of the lower semicontinuity of

superharmonic functions and the continuity of the upper Perron solution. Indeed, if
w ∈ Φu

E and we extend w by zero on ∂Ω, then by lower semicontinuity we have that
lim infΩ3y→x w(y) ≥ w(x) ≥ u(x) for every x ∈ ∂(Ω \ E). Hence w ≥ PΩ\Eu ≥ 0
and thus Ru

E ≥ PΩ\Eu in Ω\E. Theorem 4.1 in Björn–Björn–Shanmugalingam [10]
shows that PΩ\Eu is p-harmonic, and in particular continuous, in Ω \ E. By the
continuity of PΩ\Eu, it follows that R̂u

E ≥ PΩ\Eu in Ω \ E.
(b) If u is superharmonic in Ω, then the converse inequality is a conse-

quence of the pasting lemma. More precisely, choose u′ ∈ Uu(Ω \ E). Then
lim infΩ\E3y→x u′(y) ≥ u(x) for all x ∈ ∂(Ω \ E). An application of the pasting
Lemma 3.13 shows that

v =

{
min{u, u′}, in Ω′ := Ω \ E,

u, in Ω \ Ω′ = E,

is superharmonic in Ω and hence v ∈ Φu
E . Taking infimum over all u′ ∈ Uu(Ω \ E)

shows that PΩ\Eu ≥ Ru
E ≥ R̂u

E in Ω \ E.
(c) The crucial point here is that u ∈ N1,p

loc (Ω) and that both the Q-balayage
and the Newtonian space ignore sets of capacity zero. Indeed, choose η ∈ Lipc(Ω)
such that χE ≤ η ≤ 1. Then u = uη on ∂(Ω \ E) and uη ∈ N1,p(X). It follows
from Theorem 5.1 in Björn–Björn–Shanmugalingam [10] that u is resolutive with
respect to Ω \ E.

By Corollary 5.5 we get that R̂u
E = Q̂u

E in Ω. Since u = u∗ q.e. and u∗ is
superharmonic, this together with (b) and the resolutivity of u and u∗ implies that

R̂u
E = Q̂u

E = Q̂u∗
E = R̂u∗

E = PΩ\Eu∗ = PΩ\Eu in Ω \ E,

where the last equality follows from Theorem 5.1 in Björn–Björn–Shanmugalin-
gam [10] and the fact that uη and u∗η belong to the same equivalence class in
N1,p(X).

The following theorem gives a sufficient condition on the balayage to guarantee
that a boundary point is regular.

Theorem 7.2. Assume that x0 ∈ ∂Ω. If

R̂1
V \Ω(V )(x0) = 1 for all bounded open sets V 3 x0,

or
Q̂1

V \Ω(V )(x0) = 1 for all bounded open sets V 3 x0,

then x0 is a regular boundary point.
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Proof. Since Q̂1
V \Ω(V ) ≤ R̂1

V \Ω(V ) ≤ 1, it is enough to prove the result for the
R-balayage. Let f ∈ C(∂Ω) and ε > 0 be arbitrary. We can assume that f(x0) = 0.
By continuity, there exists an open set V 3 x0 such that |f | < ε in ∂Ω ∩ V . Let
E = V \ Ω and M = max∂Ω |f |. Then f ≤ ε + M(1− χE) on ∂Ω and hence

Pf = Pf ≤ ε + M(1− PχE) in Ω. (7.1)

Theorem 7.1 (b) applied to Ω′ = Ω ∪ V and u = χΩ′ together with Proposition 4.3
yields

PχE = R̂u
E(Ω′) = R̂1

E(Ω′) ≥ R̂1
E(V ) in V ∩ Ω.

Inserting this into (7.1) gives

Pf ≤ ε + M(1− R̂1
E(V )) in V ∩ Ω,

and hence by the lower semicontinuity of R̂1
E(V ),

lim sup
Ω3y→x0

Pf(y) ≤ ε + M
(
1− lim inf

Ω3y→x0
R̂1

E(V )(y)
)
≤ ε + M(1− R̂1

V \Ω(V )(x0)) = ε.

Applying the same argument with f replaced by −f , and letting ε → 0 implies that

lim
Ω3y→x0

Pf(y) = 0 = f(x0)

as desired.

Remark 7.3. In Heinonen–Kilpeläinen–Martio [24], an analogue of Theorem 7.2 was
used to prove the Kellogg property. For metric spaces, the Kellogg property was
proved by a different method in Björn–Björn–Shanmugalingam [9], Theorem 3.9.

We are now ready to prove a balayage characterization for regular boundary
points. In Theorem 7.7 we give another type of balayage characterization for regular
boundary points.

Theorem 7.4. Assume that x0 ∈ ∂Ω. Then the following are equivalent :
(a) The point x0 is regular ;
(b) For all bounded open sets V 3 x0,

R̂1
V \Ω(V )(x0) = 1;

(c) For all bounded open sets V 3 x0,

Q̂1
V \Ω(V )(x0) = 1;

(d) It is true that

R̂u
U\Ω(V )(x0) = u(x0),

whenever U b V are bounded open sets with x0 ∈ U and u ≥ 0 is superhar-
monic in V ;

(e) It is true that

Q̂u
U\Ω(V )(x0) = u(x0),

whenever U b V are bounded open sets with x0 ∈ U and u ≥ 0 is superhar-
monic in V .
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Proof. Since the Q-balayage is majorized by the R-balayage and both u and the con-
stant function 1 are competing in the definition of the R-balayage, the implications
(c)⇒(b) and (e)⇒(d) are trivial.

(d)⇒(b) and (e)⇒(c) Fix an arbitrary open set U b V such that x0 ∈ U . Since
constant functions are superharmonic, we have that

1 ≥ R̂1
V \Ω(V )(x0) ≥ R̂1

U\Ω(V )(x0) = 1

and similarly for the Q-balayage.
(b)⇒(a) This follows from Theorem 7.2.
(a)⇒(e) Theorem 6.10 provides us with an increasing sequence {fj}∞j=1 of non-

negative, bounded, and continuous superminimizers in V such that limj→∞ fj = u
on U . Let fj = 0 on ∂V . Theorem 7.1 with E = U \ Ω b V implies that for all
j = 1, 2, ...,

PV \Efj = R̂
fj

E (V ) = R
fj

E (V ) in V \ E.

By Corollary 4.4 in Björn–Björn [5], x0 is regular for V \ E, and thus by Theo-
rem 3.10(c),

fj(x0) = lim
V \E3y→x0

PV \Efj(y) = lim inf
V \E3y→x0

R
fj

E (V )(y).

At the same time, fj ≤ R
fj

E in E and hence

fj(x0) ≤ lim inf
E3y→x0

R
fj

E (V )(y).

The last two inequalities and Theorem 7.1(c) imply that

fj(x0) ≤ lim inf
y→x0

R
fj

E (V )(y) = R̂
fj

E (V )(x0) = Q̂
fj

E (V )(x0) ≤ Q̂u
E(V )(x0).

Letting j →∞ yields u(x0) ≤ Q̂u
E(V )(x0) and the converse inequality follows from

the definition of the balayage.

Before studying connections between balayage and barriers, we show that at a
regular boundary point the balayage attains the boundary value given by a contin-
uous function, cf. Theorem 9.26 in Heinonen–Kilpeläinen–Martio [24].

Theorem 7.5. Assume that Φψ 6= ∅ and that there exists an open set U b Ω,
such that ψ is bounded in Ω \ U . If x0 ∈ ∂Ω is a regular boundary point and ψ is
continuous at x0 (in the sense that the limit ψ(x0) := limΩ3y→x0 ψ(y) exists), then

lim
Ω3y→x0

Q̂ψ(y) = lim
Ω3y→x0

R̂ψ(y) = ψ(x0).

As in the proof of Theorem 7.4 we intend to use Theorem 3.10(c). To do so we
first need to construct a suitable bounded function.

Proof. We may assume that ψ(x0) = 0. Let ε > 0 be arbitrary and find a ball
B 3 x0 such that |ψ| < ε in B ∩ Ω ⊂ Ω \ U . Let also V be an open set such that
U b V b Ω \ B. Let M = supΩ\U |ψ| and fix some u ∈ Φψ. Since u ≥ ψ ≥ −M in
Ω \U , the lower semicontinuity of u shows that it is bounded from below in Ω. By
adding a constant to u, we can assume that u is nonnegative.

Let w = R̂u
U . By Proposition 4.8, w = u in U . Theorem 6.1 shows that w

is p-harmonic in Ω \ U and hence bounded on ∂V . We next want to show that
w = R̂w

V
. Indeed, R̂w

V
≤ w as w ∈ Φw

V
. On the other hand, as uχU = wχU ≤ wχV ,

Proposition 4.3 implies that w ≤ R̂w
V

. This and Theorem 7.1 show that w = PΩ\V w



Nonlinear balayage on metric spaces 23

in Ω \ V , where we let w = 0 on ∂Ω. In particular we see that w is bounded in
Ω \ V . Let further

v =

{
w + M, in Ω,

0, on ∂Ω.

Clearly, v ≥ M ≥ ψ in Ω \ U , and v = u + M ≥ ψ in U . Hence ψ ≤ ε + vχΩ\B in
Ω and it follows from Theorem 7.1 that

R̂ψ ≤ ε + R̂v
Ω\B = ε + PB∩Ωv in B ∩ Ω. (7.2)

By Theorem 3.10(b), x0 is regular for B ∩ Ω. Since v is bounded on ∂(B ∩ Ω)
and zero on ∂Ω, Theorem 3.10(c) together with (7.2) implies that

lim sup
Ω3y→x0

R̂ψ(y) ≤ ε + lim sup
Ω3y→x0

PB∩Ωv(y) ≤ ε.

At the same time, Q̂ψ ≥ ψ > −ε q.e. in B ∩ Ω, and hence, as Q̂ψ is ess lim inf-
regularized, Q̂ψ ≥ −ε everywhere in B ∩ Ω. It follows that

lim inf
Ω3y→x0

Q̂ψ(y) ≥ −ε

and letting ε → 0 finishes the proof.

We can now give some further characterizations of regular boundary points. To
do so we will use the concept of barriers.

Definition 7.6. A function u is a barrier (with respect to Ω) at x0 ∈ ∂Ω if
(a) u is superharmonic in Ω;
(b) lim infΩ3y→x u(y) > 0 for every x ∈ ∂Ω \ {x0};
(c) limΩ3y→x0 u(y) = 0.

Theorem 7.7. Let x0 ∈ ∂Ω. Assume that Φψ 6= ∅, that there is an open set U b Ω
such that ψ is bounded in Ω \ U , and that

lim
Ω3y→x0

ψ(y) = 0 and lim inf
Ω3y→x

ψ(y) > 0 for all x ∈ ∂Ω \ {x0}.

Then the following are equivalent :
(a) x0 is regular ;
(b) there is a barrier at x0;
(c)

lim
Ω3y→x0

R̂ψ(y) = 0;

(d)
lim

Ω3y→x0
Q̂ψ(y) = 0.

Proof. (a) ⇔ (b) This is part of Theorem 4.2 in Björn–Björn [5]
(a) ⇒ (c) and (a) ⇒ (d) This follows directly from Theorem 7.5.
(d) ⇒ (b) and (c) ⇒ (b) Let x ∈ ∂Ω \ {x0}. As lim infΩ3y→x ψ(y) > 0, there

exist ε > 0 and a ball B 3 x such that ψ ≥ ε in B ∩ Ω. Theorem 4.4 implies that
Q̂ψ ≥ ε q.e. in B ∩Ω. As Q̂ψ is ess lim inf-regularized, R̂ψ ≥ Q̂ψ ≥ ε everywhere in
B ∩ Ω. Hence,

lim inf
Ω3y→x

R̂ψ(y) ≥ lim inf
Ω3y→x

Q̂ψ(y) ≥ ε > 0.

As Q̂ψ and R̂ψ are superharmonic and (c) or (d) hold, one of them is thus a barrier
at x0.
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8. Balayage and polar sets

In this section we characterize polar sets, in particular in terms of balayage. See
Kinnunen–Shanmugalingam [33] for earlier results on polar sets on metric spaces,
and Chapter 10 in Heinonen–Kilpeläinen–Martio [24] for the weighted Rn case.

Definition 8.1. A set E ⊂ Ω is polar, if there exists a superharmonic function in
Ω such that u = ∞ in E.

Theorem 8.2. Assume that Ω is bounded and that E ⊂ Ω. Then the following are
equivalent :

(a) E is polar ;
(b) there is a nonnegative superharmonic function u on Ω such that u = ∞ on

E;
(c) there is a nonnegative superharmonic u ∈ N1,p(Ω) such that u = ∞ on E;
(d) E is of capacity zero;
(e) R̂ψ

E ≡ 0 for all functions ψ;
(f) R̂ψ

E ≡ 0 for some function ψ > 0;
(g) Q̂ψ

E ≡ 0 for all functions ψ;
(h) Q̂ψ

E ≡ 0 for some function ψ > 0;
(i) there is a function u ∈ N1,p(Ω) such that u = ∞ on E.

The implication (a) ⇒ (d) was obtained in Kinnunen–Shanmugalingam [33],
Proposition 2.2. They also showed the converse implication under the assumption
that E is relatively closed, see Theorem 3.4 in [33].

Note that the equivalence (a) ⇔ (d) implies that a countable union of polar
sets is polar. This is trivial in the linear case, as a countable sum of superhamonic
functions is superharmonic (if not too large), but more difficult to show in the
nonlinear theory.

Proof. (e) ⇒ (f) ⇒ (h), (c) ⇒ (b) ⇒ (a) and (c) ⇒ (i) These implications are
trivial.

(h) ⇒ (d) By Theorem 4.4, 0 = Q̂ψ
E ≥ ψ > 0 q.e. in E. Hence E must have

capacity zero.
(d) ⇒ (c) By Corollary 1.3 in Björn–Björn–Shanmugalingam [11], Cp is an outer

capacity, i.e. there exists, for j = 1, 2, ..., an open set Gj ⊃ E with Cp(Gj) < 2−jp

and thus a nonnegative ϕj ∈ N1,p(X) such that ‖ϕj‖N1,p(X) < 2−j and ϕj ≥ χGj .
Let ϕ =

∑∞
j=1 ϕj and let w be the ess lim inf-regularized solution of the Kϕ,ϕ-

obstacle problem. Then w ∈ N1,p(Ω) is a nonnegative superharmonic function and
w = ∞ in E.

(b) ⇒ (f) Let G be a component of Ω. As u is superharmonic, there is x ∈ G
such that u(x) < ∞. Moreover εu ∈ Φ1

E for every ε > 0, and hence R1
E(x) ≤ εu(x).

Letting ε → 0 shows that R̂1
E(x) ≤ R1

E(x) ≤ 0. By the strong minimum principle
R̂1

E ≡ 0 in G. As G was an arbitrary component we have that R̂1
E ≡ 0 in Ω.

(a) ⇒ (d) Let u be a superharmonic function such that u = ∞ on E, Ωj =
{x ∈ Ω : dist(x,X \ Ω) > 1/j} and Ej = E ∩ Ωj , j = 1, 2, ... . As u is lower
semicontinuous it is bounded from below on Ωj . Hence it follows from the already
proved implication (b) ⇒ (d) (applied to u− infΩj u and Ωj) that Cp(Ej) = 0. By
countable subadditivity, E =

⋃∞
j=1 Ej is of zero capacity.

(d) ⇒ (g) By definition Ψψ
E = Ψ0. Hence Q̂ψ

E = Q̂0 ≡ 0.
(g) ⇒ (e) This follows from Theorem 4.10.
(i) ⇒ (d) We have that u/k ≥ 1 on E for all k > 0. Thus

Cp(E) ≤
∥∥∥u

k

∥∥∥
p

N1,p(Ω)
=
‖u‖p

N1,p(Ω)

kp
→ 0, as k →∞.
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9. The case Ω = X bounded

Assume now that X is bounded and that Ω is an open subset such that Cp(X \Ω) =
0. In this case we first should observe that Definition 3.1 of (super)minimizers does
not need any modifications. On the other hand, in the case when Ω = X we need
to modify (iii) in Definition 3.3 of superharmonic functions, the reason being that
if Ω = X then V := X b Ω, but HXv is not well-defined (one can talk about
solutions of the corresponding obstacle problem, but there will be no uniqueness).
The natural way is to also require that Cp(X\V ) > 0 in (iii), as done in A. Björn [2].
Note that this condition is automatically fulfilled when V b Ω apart from in the
case when Ω = X is bounded. In fact this modification, or something equivalent, is
the only possible way if we want the restriction of a superharmonic function to be
superharmonic. It follows (see below) that the only superharmonic functions on all
of a bounded X are the constant functions.

Let now ψ be a bounded function on Ω. One can define Qψ and Rψ (and their
regularizations) as before. Let us first look at ϕ ∈ Ψψ. As ψ is bounded, ϕ is
bounded from below. By Theorem 6.3 in A. Björn [4], ϕ has a superharmonic
extension ϕ̃ to all of X. As ϕ̃ is lower semicontinuous on the compact set X it
attains its minimum. By the minimum principle, ϕ̃ is constant in the component
of X containing the minimum point, but as X is connected it follows that ϕ̃ is
constant, and thus also ϕ is constant.

From this we see that Qψ = Q̂ψ ≡ ess supΩ ψ. Similarly Rψ = R̂ψ ≡ supΩ ψ.
The theory of balayage in this case does not become very interesting. Let us however
point out the following example.

Example 9.1. If there is a point x ∈ X such that Cp({x}) = 0, then Q̂ψ(X) ≡ 0
and R̂ψ(X) ≡ 1, where ψ = χ{x}.

The situation is also similar if X = R2 and p = 2 as in this case any super-
harmonic function bounded from below on X has an extension to a superharmonic
function on the Riemann sphere and is thus constant.

10. Open problems

Our results in the previous sections leave the following problems open. They all are
also open in the Euclidean setting.

Let us assume that Ω is bounded and that Cp(X \ Ω) > 0.

Open problem 10.1. Is it true that R̂ψ = Q̂ψ for all functions ψ?

In the linear case this is well known: Let E = {x ∈ Ω : Q̂ψ(x) < ψ(x)} and ϕ =
∞χE . As Cp(E) = 0, we know by Theorem 4.10 that R̂ϕ = Q̂ϕ = 0. Take u ∈ Ψψ

and v ∈ Φϕ, then u + v ∈ Φψ and thus Rψ ≤ Qψ + Rϕ and R̂ψ ≤ Q̂ψ + R̂ϕ = Q̂ψ.
The converse inequality is trivial.

In the nonlinear case this is more subtle. However, as we pointed out before
Proposition 4.11 it would be enough to have an R-version of Proposition 4.11 to ob-
tain a positive answer to Problem 10.1. A positive answer to the following problem
would also give a positive answer to Problem 10.1 at least for all bounded ψ.

Open problem 10.2. If ψ is a superminimizer is it then true that R̂ψ = ψ∗?

As ψ∗ is superharmonic and ψ∗ = ψ q.e. it follows from Proposition 4.7 that
Q̂ψ = ψ∗. It follows that Open problem 10.2 has a positive answer in the linear
case.

The following are some further obvious questions.
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Open problem 10.3. Can the condition Q̂ψ ∈ N1,p
loc (Ω) be removed from the

statements of either or both of Theorems 6.5 and 6.7?

Open problem 10.4. Can the condition that ψ is bounded in Ω \ U be omitted
from Theorem 7.5?

Open problem 10.5. Is the R-version of any of Theorems 4.10, 5.8, 6.5, 6.7, 6.8
or Proposition 5.6 true?

Open problem 10.6. Is the Q-version of Theorem 7.1 true?

In the linear case it is clear that Open problems 10.5 and 10.6 have positive
answers.

In many of our results we assume that Ω is bounded. This is often due to usage
of obstacle problems or boundary regularity for which the theory so far has been
developed mainly just for bounded sets (at least on metric spaces). We do not know
when this boundedness assumption is essential.
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on metric measure spaces, to appear in Ann. Acad. Sci. Fenn. Math.

36. Martio, O., Balayage in metric measure spaces, Handwritten notes, 2001.
37. Shanmugalingam, N., Newtonian spaces: An extension of Sobolev spaces to

metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), 243–279.
38. Shanmugalingam, N., Harmonic functions on metric spaces, Illinois J. Math.

45 (2001), 1021–1050.
39. Shanmugalingam, N., Some convergence results for p-harmonic functions on

metric measure spaces, Proc. London Math. Soc. 87 (2003), 226–246.


