
Applying Semiautomatic Generation
of Conceptual Models to Decision
Support Systems Domain

Miika Nurminen, Panu Suominen,
Sami Äyrämö, Tommi Kärkkäinen

University of Jyväskylä
Department of Mathematical Information Technology (MIT)

Research Group on Computational Sciences, Software
Engineering and Education (COSSE)

Faculty of Information Technology

The IASTED International Conference on Software Engineering (SE 2009)
February 17, 2009, Innsbruck, Austria

Outline

1. Basic Concepts & Related Work

2. DSS Specification (Use Cases)

3. Generating a Conceptual Model for DSSs (UCOT)

4. Conclusion

Basic Concepts

• In requirements analysis domain understanding and shared ontology
between stakeholders is needed

– A domain/analysis model understood and accepted to abstract the shared
view is required

– Use cases provide a process-like view of the requirements with both
contextual and structural information for problem solving

• Object orientation in analysis may require unnecessary qualifications
from relevant stakeholders (deciders)

• NLP (and other CS ”stuff”, e.g. text mining) can and should be utilized in
tools to support automatic analysis

– UCOT: Prototype/proof-of-concept for semiautomatic discovery of domain
concept model from use cases (details: Kärkkäinen et al. 2008)

• In the paper, Decision Support Systems are used as an example domain

– We present a decision support system specification in the form of business
use cases and a stereotyped conceptual model based on the specification

– The conceptual model is generated semiautomatically using UCOT

Related Work

• OOA/OOD

– (Abbott, 1983) Abbot’s heuristic

– (Cockburn, 2000) use case writing conventions & patterns

– (Liu et al, 2004) UCDA, class model generation from use cases

– (Pérez-González et al, 2005) GOOAL, OOA laboratory

– ProcMiner (Nurminen et al, 2007) use case management

– UCOT (Kärkkäinen et al, 2008) semiautomatic conceptual model generation

• Decision Support Systems

– (Turban et al, 2004) reference model for decision support systems

– (Arnott, 2006) cognitive biases and decision support systems

– (Jokinen et al, to appear) Generic User Requirements for decision support
systems

From Generic Requirements to Use Cases

GUR-1.1.1a Generate basis for critical evaluation of system state

GUR-1.1.1 Notify the user about a need to make a decision and act

GUR-1.1.2 Generate a proposal for a decision

GUR-1.1.3 Present the conceptualization of system state,
consequences and description of decision alternatives

GUR-1.1.4 Present measurement information relevant for decision
to be made

GUR-1.1.5 Present the relevant state estimation and prediction
models, their estimation and prediction results and
uncertainties in them

Source: Operational decision making in process industry - Multidisciplinary approach. VTT Research Notes 2442.

Requirements

GUC-1 Fully structured decision task, the resulting
optimization solvable, decision maker not
authorized to change the structuring

GUC-2 Fully structured decision task, the resulting
optimization not solvable, decision maker not
authorized to change the structuring but
allowed to experiment with parameterization

GUC-3 Ad hoc decision making by a single decision
maker

Use Cases

• Generic User Requirements for DSSs (Jokinen et al.) were used as a starting point
for a new, generic decision support systems specification

• Use cases were rewritten iteratively and generalized to be independent from a
particular computational method. Arnott’s cognitive biases for decision making
were accounted for in the use cases

• Initial system architecture was designed related to Turban’s DSS reference model

• User roles and information systems noted in use cases were clarified and explicated

• Main concepts from the use cases were manually classified to stereotypes

Use Cases Overview

• Generic requirements and revised use cases were encoded in ProcML and
transferred to ProcMiner process management system for further processing

• Four use cases were identified:

1. Perform Organizational Configuration and Decision Making Processes

2. Model the Decision Template

3. Make Decision

4. Maintain DSS

• Use Cases 2-4 are
modeled as extensions
to use case 1

DSS Model

• Actors:
– System Expert

– Decision Configurator

– Method Expert

– Decision Maker

– DSS Configuration Team

• Information systems (vs. Turban’s reference model):

– Method Library (Knowledge Management)

– Decision History Database

– Decision Template Database (Model
Management)

– Organizational Data Sources (Data Management)

Conceptual Stereotypes in Use Cases

• Stereotypes provide both documentation about a concept and its context of use.

• Attaching a stereotype to each concept creates a classification of them,
supporting the transfer from domain analysis into system development.

• There is no need to prolong the
use case by repeating the user action
and system response in connection
with the same concepts:

– For a shared information transfer
(Actor creates X, System stores X),
the step should be described from
user’s perspective (Actor creates X,
tag X as persistent data).

• The table contains definitions of
the stereotypes in DSS Specification.

– DecisionModelElement is specific to
DSS domain; other stereotypes
are domain-independent.

Detailed Example

• As an example of applying the use cases to a specific computational method, prototype-
based (e.g. k-spatmed) data clustering is demonstrated as a decision support technique

• The specific problem addressed is controlling industrial manufacturing process

• Different product line states are represented as clusters, decisions are reflected as
probabilistic transitions between the clusters

Data clustering as a decision support technique

UCOT - NLP for Model Generation

• UCOT (from Use Cases to Original enTities) is a reseach prototype which is
designed to automatically analyze use cases and create a conceptual model
based on the analysis. (details: Kärkkäinen et al. 2008)

• Stanford grammatical parser (extracting both parts of speech and sentence
elements) and Abbott's heuristic are used to process the use cases.

• User can modify the conceptual model by combining entities, refining entities
and relations, as well as adding roles for the entities.

– An entity may also have a role (i.e. a stereotype) that can be used to group entities
to application domains, architectural components, or predefined, recurring object
types (database, document, role, process etc) to ease the transformation from
domain analysis to system design.

• Only the simple rules related to Abbot’s heuristic (nouns to entities, and verbs
to relations between entities) were implemented to preserve the input language
independence

UCOT User Interface

Results (automatically generated)

• An unmodified, automatically generated
entity model is not useful as such because of
the limitations in heuristic and parsing

• The relations are greatly dependent on
phrasing conventions in use cases

• E.g. sentences should start with a subject:
”actor asks”, ”actor views”, but some of the
the sentences lack the subject, complicating
the parsing: ”Apply the guided tour”, ”Ask the
user”…

• Sometimes the entities are not separated
correctly: e.g. ”Dss based on configuration
change requests” interpreted as one entity.

• Manual modifications clarify the model, but it
is crucial to use consistent writing
conventions up front.

Results (fixed)

• ”Word order” was modified manually to simplify relations (”Decision Maker stores
Documentation to Decision History Database” -> ”Decision Maker stores Documentation”,
”Documentation is stored to Decision History Database”)

• Synonymous concepts were unified and entities consisting of entire clauses were splitted

• The modified model is not ”final” (e.g. elaborated entity standardization, additional
stereotypes and relations), but as such helps to see central concepts of the application
domain and considerations for system architecture

Evaluation

• Conceptual Model highlights the essential concepts in the application domain
(e.g. entities with high connectivity)

– Roles: DSS Configuration Team, Decision Configurator. Method Expert

– Inf. systems: Decision Template Database, Decision History Database

– DSS, Documentation, Decision Task, Decision Support Technique, DecisionModel

• Conceptual Model provides base for further development phases without
commiting to a specific method (OOA/D, DSL/Domain engineering etc)

• Because of the limitations in the parsing, manual corrections must be made
to the model, especially to relations

• Maintenance becomes an issue if the use cases are modified after editing the
entity model – use cases and conceptual models are not synchronized
automatically

• Diagram representations do not scale to large models, partial views (e.g.
multifaceted search functionality) should be added

• 2-way linking between use cases, requirements, and entities is needed

– Modifications to one model should be automatically reflected in other models

Conclusion & Further Research

• The use cases presented in the paper provide a generic model and common terminology for
decision support systems specification indepently of the computational method (e.g.
statistical decision theory, data clustering) used

• Stereotypes and semiautomatically generated entity model clarify requirements analysis and
domain understanding

• The quality of the original requirements and use cases (writing conventions, consistency)
affect substantially to usefulness of the generated model

• Overall, with realistic-size models automatic conceptual model generation proved not to be
as useful as originally hoped
– UCOT user interface does not scale well to large models

– Compare the effort needed to fix automatically generated model vs. creating the model manually

• Effective usage of the model needs better software support (linkage, traceability,
maintenance) – automatically generated or not

– Current requirements management software packages (e.g. Borland Requisite pro) provide some
of the needed functionality, but in general, do not link the requirements artefacts to conceptual
models

– UML tools have a way to express conceptual models (Class Diagram), but the model cannot be
naturally used with requirements-level modeling elements – linking classes to elements in Use Case
diagram is not enough!

