The IASTED International Conference on Software Engineering (SE 2009)
February 17, 2009, Innsbruck, Austria

Applying Semiautomatic Generation @Eﬁ“"‘

of Conceptual Models to Decision
Support Systems Domain

Miika Nurminen, Panu Suominen,
Sami Ayramo, Tommi Karkkainen
University of Jyvaskyla
Department of Mathematical Information Technology (MIT)

Research Group on Computational Sciences, Software
Engineering and Education (COSSE)

T@@ﬂl@o Faculty of Information Technology *Te'ke’ ’5

el S

Outline

Basic Concepts & Related Work

DSS Specification (Use Cases)

Generating a Conceptual Model for DSSs (UCOT)
Conclusion

Basic Concepts

In requirements analysis domain understanding and shared ontology
between stakeholders is needed

— A domain/analysis model understood and accepted to abstract the shared
view is required

— Use cases provide a process-like view of the requirements with both
contextual and structural information for problem solving

Object orientation in analysis may require unnecessary qualifications
from relevant stakeholders (deciders)

NLP (and other CS "stuff”, e.g. text mining) can and should be utilized in
tools to support automatic analysis

— UCOT: Prototype/proof-of-concept for semiautomatic discovery of domain
concept model from use cases (details: Karkkainen et a/ 2008)

In the paper, Decision Support Systems are used as an example domain

— We present a decision support system specification in the form of business
use cases and a stereotyped conceptual model based on the specification

— The conceptual model is generated semiautomatically using UCOT

Related Work

e OOA/OQOD

— (Abbott, 7983) Abbot’s heuristic

— (Cockburn, 2000) use case writing conventions & patterns

— (Liu et al, 2004) UCDA, class model generation from use cases

— (Pérez-Gonzalez et al, 2005) GOOAL, O0A laboratory

— ProcMiner (Nurminen et a/, 2007) use case management

— UCOT (Karkkainen et a/, 2008) semiautomatic conceptual model generation

e Decision Support Systems

— (Turban et al, 2004) reference model for decision support systems
— (Arnott, 2006) cognitive biases and decision support systems

— (Jokinen et g/, to appear) Generic User Requirements for decision support
systems

From Generic Requirements to Use Cases

Source: Operational decision making in process industry - Multidisciplinary approach. VTT Research Notes 2442.

Requirements Use Cases
GUR-1.1.1a Generate basis for critical evaluation of system state
GUR-1.1.1 Notify the user about a need to make a decision and“act UC-1 Fully structured decision task, the resulting

optimization solvable, decision maker not

GUR-1.1.2 Generate a proposal for a decision - .
Prop authorized to change the structuring

GUR-1.1.3 Present the conceptualization of system state,

consequences and description of decision alternatives GUC-2 Fully structured decision task, the resulting
GUR-1.1.4 Present measurement information relevant for decision optimization not solvable, decision maker not
to be made authorized to change the structuring but
GUR-1.1.5 Present the relevant state estimation and prediction \ allowed to eXperiment with parameterization
L“n"cde?';.rf?.i'g if,smﬂqtion and prediction results and GUC-3 AS hoc decision making by a single decision
maker

e (Generic User Reguirements for DSSs (Jokinen et al) were used as a starting point
for a new, generic decision support systems specification

e Use cases were rewritten iteratively and generalized to be independent from a

particular computational method. Arnott’s cognitive biases for decision making
were accounted for in the use cases

e Initial system architecture was designed related to Turban’s DSS reference model
e User roles and information systems noted in use cases were clarified and explicated
e Main concepts from the use cases were manually classified to stereotypes

Use Cases Overview

 Generic requirements and revised use cases were encoded in ProcML and
transferred to ProcMiner process management system for further processing

e Four use cases were identified:

1. Perform Organizational Configuration and Decision Making Processes
2. Model the Decision Template orapesd dacision and e motivation documemtad. NOTE! Domg nothing

is a decision." type="main" state="normal" primary="false">
Fully structured decision task, the resulting optimization solvable,

3 . M a ke DeCiSion | Nm fu.r ‘ﬂ"a M‘“‘.) decision maker not authorized to change the structuring

<desc:=At any stage the user may retrieve stored sessions about the

same decision task in the order of similarity (judged firstly by same

4 . M a i nta i n DSS -l h d . . n p pr(_}posed decision, and serz:(}r_1dl\.|r by similarity of data). Other actors:

shift foreman or process engineer.</desc>
- <abstraction level="0">

o Use Cases 2-4 are v S et

Actor receives a decision proposal and a link to

modeled as extensions (Create new mndﬂ) (Lnur.l okd mudaD aocument refrqurid 2r o o continues-

<document ref="gur1.1.3" />

</step=
to use case 1 / V
4 Actor views the data used in generating the decision and
(Tﬂ I'I'Iﬂﬂ)4 Edlt mnl) accepts it and continues.

<document ref="gurl.1.4" /=
</step=
- =<step id="s3">
m“ dﬂﬁﬁﬂﬂ Actor views the robustness of the decision and continues.
SRy W T e <document ref="gur1.1.8" /=

<document ref="gur1.1.9" /=

</step=

Craate scanarios _ Cstep id=sa’s
- Dmlnn mm Actor asks for the state estimated and the consequences of

proposed decisions and continues

T“ Mﬂ <document ref="gur1.1.5" /=

</step=>

- «zstep id="s5">
(Imm Ehm.tm)\ \ Actor aslfs for the s.tructured objective(s) and their level of

satisfaction potential trade-offs.
<document ref="gur1l.1.6" />
<document ref="gurl.1.7a" /=

F <document ref="gur1.1.7b" /=
(Select altermative) Edit model <Istep> f

</seq>
</abstractionz

DSS Model

A

Dacision Cu‘rﬁgurahnn les

7?7@(”7?

Method Expert
Dacigion Configurator

e Actors:

— System Expert

— Decision Configurator

— Method Expert

— Decision Maker

— DSS Configuration Team

Systern Expert

Other
systems
A
- - o Y
.~ Perform Organizational Comfiguration E
“———__and Decision Making | _?r » Data |_ .| Model
management | ~| management
mtgnds:—l . o / X / 1
» e / \ Knowledge
| “'*tﬁ'ds \
| \]’ management |/
«axtendss T/ '\
; : Decision Makar — —/ _ ¥ ,_
| . T p User Y
| Make Decizion — interface
: 1
v
Model the Decigion Template User

Components of a DSS (Turban 1998 p. 79).
e Information systems (vs. Turban’s reference model):
— Method Library (Knowledge Management)
— Decision History Database

— Decision Template Database (Model
Management)

— Organizational Data Sources (Data Management)

Conceptual Stereotypes in Use Cases

Stereotypes provide both documentation about a concept and its context of use.

e Attaching a stereotype to each concept creates a classification of them,
supporting the transfer from domain analysis into system development.

There is no need to prolong the

Description

use case by repeating the user action 2febpe

and system response in connection
with the same concepts:

— For a shared information transfer
(Actor creates X, System stores X),
the step should be described from
user’s perspective (Actor creates X,
tag X as persistent data).

The table contains definitions of

the stereotypes in DSS Specification.

— DecisionModelElement is specific to
DSS domain; other stereotypes
are domain-independent.

Action
Data
Database
Document

ExternalAction
ExternalData
ExternalRole
Metadata
Process

Role
Selection

System
UserElement

Functionality needed by SuD

Persistent information used internally by SuD

Database to be managed by SuD

Document to be produced by SuD) or a report that SuD
must generate to a user

An external action that SuD must take into account
Relevant data stored by other systems available for SuD
Human or device that SuD must communicate with

Data about data

An ordering of work activities across time and place with
a beginning and an end with inputs and outputs [14]
Stakeholder representatives who share the same roles and
responsibilities with respect to the project [12]

A particular choice related to a particular UserElement
SuD or other information system related to use case

An element representing the interaction interface be-
tween a user role and SuD

DecisionModel-General entity related to the decision making model

Element

Detailed Example

Use Case 2: Model the Decision Template

Id Description Concepts: Stereotype
I DSS Configuration Team derives a generic Decision Task from the past decision support cases. DSS Configuration Team: Role Decision Task: UserElement
2 Decision Configurator checks the availability of relevant internal/external task-specific data. Decision Configurator: Role
3 Method Expert attaches the Decision Support Technique suitable for the Decision Task to the Deci- Method Expert: Role Decision Support Technique:
sion Model and notifies about necessary but missing connections from DSS to Organizational Data DecisionModelElement Decision Model: UserElement
Sources. Method Expert might decide to load an existing model to be the base of the model. Organizational Data Source: Database DSS: System
4 System Expert creates the necessary but missing connections to Organizational Data Sources. System Expert: Role
5 Decision Configurator specifies Trigger Condition for recognizing the need for Decision Task. Trigger Condition: Action
6 Method Expert defines the suggestive Decision Model Parameters for model building and inputs Decision Model Parameter: DecisionModelElement
the parameters into the Method Library. Method Library: System
7 Decision Configurator describes Decision Objectives and Decision Alternatives. Decision Objective: DecisionModelElement
Decision Alternative: DecisionModelElement
8 Decision Configurator attaches a structural Decision Making Process (i.e. phases or stages) yield- Decision Making Process: Process Decision Proposal:

9

ing to a Decision Proposal for each Decision Task and stores it in the Decision Template Database. UserElement Decision Template Database: Database
System Expert runs test cases and reports the results to the Method Expert.

10 Decision Configurator documents the elements of the Decision Model and its relation to Decision Concept Documentation: Document

Support Technique in Concept Documentation and stores the Decision Model, its Concept Docu-
mentation, its testing and version history in the Decision Template Database.

Steps 5-8 can occur many times in any order.

As an example of applying the use cases to a specific computational method, prototype-
based (e.g. k-spatmedg data clustering is demonstrated as a decision support technique

The specific problem addressed is controlling industrial manufacturing process

Different E_roduct line states are represented as clusters, decisions are reflected as
probabilistic transitions between the clusters

Data clustering as a decision support technique

iiﬁﬂcluster info g 1
File Help
o I 8 L
B ciuster1 (81,83%, 2387) |
B cluster2 (4,11%, 120) || 1.00- |
: -
M ciusters (10,28%,300) | | [o | & 2
[Clusters (3,87%, 113)
0.90 -
0,85 -
0,80
0.75
0.70 +
0.65 -
0,60
0.55 4
B0 ¢

oo - - - : - - -
0.00 0.05 00 1% 0.20 0,25 0.30 0.35 040 045 0.50 0.55 0.60 0.65 0.70 075 0.80 0.85 0.20 0,95 1.00 1.0

Edge threshold ,IZI—| Update graph || Add time interval | | 'Cnmpareclustersi [

Start time | 26.10.2008 2:00 Endtime | 26.10.2008 3:00 E

UCOT - NLP for Model Generation

e UCOT (from Use Cases to Original enTities) is a reseach prototype which is
designed to automatically analyze use cases and create a conceptual model
based on the analysis. (details: Karkkdinen et a/. 2008)

e Stanford grammatical parser (extracting both parts of speech and sentence
elements) and Abbott's heuristic are used to process the use cases.

e User can modify the conceCFt_uaI model by combining entities, refining entities
and relations, as well as adding roles for the entities.

— An entity may also have a role (i.e. a stereotype) that can be used to group entities
to application domains, architectural components, or predefined, recurring object
pes (database, document, role, process etc) to ease the transformation from

omain analysis to system design.

e Only the simple rules related to Abbot’s heuristic (nouns to entities, and verbs
to relations between entities) were implemented to preserve the input language

independence
Influence Inheritance Attribute subject object
Entity A Parent Owner %7
User logs into system

method Z|_\ nT
1

Entity B Child Attribute

UCOT User Interface

File Program Help

@ Entities
¢ O Program
¢ @ processes
@ Use case
o @ shows
o= Q stores
¢ B User
? O
@ Conceptual model
= @ selects

Uger Program

elects * edits processes Lows ftor eg

)
Use cage Conceptual m odel

Files

¢ [article_usecasetd
9 @ Mainfiow
O Selectuse case
© Process use case

Mlain flow

1. Lzer selects the use case. (Seleciuse case)

2. Program processes the use case, (Frocess use case)
3. Program shows the conceptual model

4. Lser edits conceptual model.

8. Program stores the conceptual model.

«

Wowhed [T ms

Results (automatically generated)

An unmodified, automatically generated

entity model is not useful as such because of
the limitations in heuristic and parsing

The relations are greatly dependent on
phrasing conventions in use cases

E.g. sentences should start with a subject:

"actor asks’, "actor views”, but some of the
the sentences lack the subject, complicating

the parsing: “Apply the guided tour”, "Ask the
user’...

Sometimes the entities are not separated

correctly: e.qg. “Dss based on configuration —_—
change requests”interpreted as one entity.

Manual modifications clarify the model, but it

is crucial to use consistent writing
conventions up front.

<<role=>=
notifies
maintains

Dss configuration team

Results (fixed)

\

Decision configurator

Decision making process

Change requester
<<role>=
Dss
<=gystem>=>=
receives triggers shows yields-to
sends Decision Need Decision proposal documentsmodifies
is maintained based is shown to|generates
Decision maker
supports <<role>=
propeses \ﬂ.\spect 1
Configuration change request Decision alternative ||
documerty’ makes ™ is related to
Decision task
is resolved by
Decision
1 ﬁ stored to
Decision history database

<<database=>

scribes

is attached to pbstracts

<=role=>=
atrach‘cs/modclsfpccﬁcj

Decision template ﬂjrigger condition

Method expert
<<role=>=

nts (imnrnts}/m
—

Mnon'ﬁes

inputs

Decision support technique

System expert

<<role=>=

<<database=>

Test cases

Method library | | Organizational data sources
<<gystem=>

Decision objective

=1

s maintained by

——

are documented in | Parameters | | Task-specific data

Documentation

is stored to
w dto /

1

Decision template database
<=database>>

1

"Word order” was modified manually to simplify relations ("Decision Maker stores

Documentation to Decision History Database” -> “Decision Maker stores Documentation”,
"Documentation is stored to Decision History Database”)

Synonymous concepts were unified and entities consisting of entire clauses were splitted

The modified model is not “final” (e.g. elaborated entity standardization, additional

stereotypes and relations), but as such helps to see central concepts of the application
domain and considerations for system architecture

Evaluation

Conceptual Model highlights the essential concepts in the application domain
(e.g. entities with high connectivity)

— Roles: DSS Configuration Team, Decision Configurator. Method Expert
— Inf. systems: Decision Template Database, Decision History Database
— DSS, Documentation, Decision Task, Decision Support Technigue, DecisionMode/

Conceptual Model provides base for further development phases without
commiting to a specific method (OOA/D, DSL/Domain engineering etc)

Because of the limitations in the parsing, manual corrections must be made
to the model, especially to relations

Maintenance becomes an issue if the use cases are modified after editing the

entity model — use cases and conceptual models are not synchronized
automatically

Diagram representations do not scale to large models, partial views (e.q.
multifaceted search functionality) should be added

2-way linking between use cases, requirements, and entities is needed
— Modifications to one model should be automatically reflected in other models

Conclusion & Further Research

The use cases presented in the paper provide a generic model and common terminology for

decision support systems specification indepently of the computational method (e.g.
statistical decision theory, data clustering) used

Stereotypes and semiautomatically generated entity model clarify requirements analysis and
domain understanding

The quality of the original requirements and use cases (writing conventions, consistency)
affect substantially to usefulness of the generated model

Overall, with realistic-size models automatic conceptual model generation proved not to be
as useful as originally hoped

— UCOT user interface does not scale well to large models
— Compare the effort needed to fix automatically generated model vs. creating the model manually

Effective usage of the model needs better software support (linkage, traceability,
mamtenance?— automatically generated or not

— Current requirements management software packages (e.g. Borland Requisite pro) provide some

of tCI'I1eI needed functionality, but in general, do not link the requirements artefacts to conceptual
models

— UML tools have a way to express conceptual models (Class Diagram), but the model cannot be

naturally used with reqluirements-level modeling elements — linking classes to elements in Use Case
diagram is not enough!

