

JYVÄSKYLÄN YLIOPISTO

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Undergraduate Representation Theory 2010 author Karen Smith

Exercise Set 9

space-time coordinates

Tuesday Mar. 16 MaD 302 at LECTURE TIME 14-16

Problem 1: The Orthogonal Groups. First recall (or assume) the **Implicit Function Theorem:** $^{1}Let\ f: X \to Y$ be a smooth map of smooth manifolds, and fix a point $y \in Y$. If $d_x f$ is a surjective linear map for all $x \in f^{-1}(y)$, then the subset $X_y = \{x \in X \mid f(x) = y\}$ is a smooth submanifold of X.

- (1) Show that a real $n \times n$ matrix A is in SO(n) if and only if it has determinant one and $AA^t = \mathbb{I}_n$ where \mathbb{I}_n is the $n \times n$ identity matrix.
- (2) Find a smooth map $\mathbb{R}^{n^2} \to \mathbb{R}^{\frac{1}{2}n(n+1)}$ such that SO(n) is the pre-image of some point. (Hint: AA^t is symmetric.)
- (3) Show that SO(n) is a smooth manifold.
- (4) Show that SO(n) is a Lie group.

Problem 2. Lorentz Group

(1) Show that SO(3,1) can be identified with the subgroup of $GL_4(\mathbb{R})$ consisting of matrices A such that

$$A^{t} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

- (2) Use the implicit function theorem to show that SO(3,1) has a manifold structure.
- (3) Show that SO(3,1) is a Lie group. What is its dimension?

Problem 3.

- (1) Let V_d be the real vector space of homogeneous polynomials in two variables of degree d. Compute the dimension of this space.
- (2) Show that $SL_2(\mathbb{R})$ acts naturally on V_d by "linear change of coordinates," so that V_d is a representation of $SL_2(\mathbb{R})$.
- (3) Is this a smooth representation?
- (4) Is it irreducible?

KÄÄNNÄ

In calculus classes, this is usually stated with X an open set in \mathbb{R}^N and $Y = \mathbb{R}^d$, in which case the condition that $d_x f$ is surjective becomes the condition that the rank of the linear map $d_x f$ is N-d (which can be stated as the non-vanishing of some (N-d)-sized subdeterminant of the Jacobian matrix $\frac{\partial f_i}{\partial x_j}$ at x). The conclusion of the theorem is stated in elementary classes as the existence of an invertible differential function from open sets of \mathbb{R}^d to neighborhoods of each point in X_y , which of course, is the definition of a manifold structure on X_y . The proof in general setting is exactly the same as the proof given in calculus classes, since to check a topological space is a manifold is a local issue in a neighborhood of each point, so it reduces to the case of open sets in Euclidean space.

Problem 4. Some subgroups of $SL_2(\mathbb{R})$

- (1) Using the inclusion $SO(2) \subset SL_2(\mathbb{R})$, show that every representation of $SL_2(\mathbb{R})$ induces a representation of SO(2).
- (2) Is V_d irreducible as a representation of SO(2)? Is it smooth?
- (3) Show that $\mathbb{R}^* \times \mathbb{R}^*$ can also be interpreted as a subgroup of $SL_2(\mathbb{R})$, so that the V_d are also smooth representations of $\mathbb{R}^* \times \mathbb{R}^*$.
- (4) Is V_d irreducible as a representation of $\mathbb{R}^* \times \mathbb{R}^*$?

Problem 5.

- (1) Show that the action of $SL_2(\mathbb{R})$ on the vector space of all 2×2 matrices by left multiplication induces a four dimensional smooth representation of $SL_2(\mathbb{R})$.
- (2) Decompose this representation into a sum of two 2-dimensional irreducible representations, each isomorphic to V_1 from Exercise 2. (Hint: row ops!)