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Abstract. Gehring [3] and Ziemer [17] proved that the p-modulus
of the family of paths connecting two continua is dual to the p∗-
modulus of the corresponding family of separating hypersurfaces.
In this paper we show that a similar result holds in complete
Ahlfors-regular metric spaces that support a weak 1-Poincaré in-
equality. As an application we obtain a new characterization for
quasiconformal mappings between such spaces.

1. Introduction

The modulus of a path family is a widely used tool in geometric
function theory and its generalizations to Rn and furthermore to metric
spaces, see [5],[10] and [12].

Given 1 6 p <∞ and a family Γ of paths in a metric measure space
(X, d, µ), the p-modulus of Γ is defined to be

modpΓ := inf
ρ

ˆ
X

ρp dµ,

where the infimum is taken over all admissible functions of Γ, i.e., Borel
measurable functions ρ : X → [0,∞] that satisfyˆ

γ

ρ ds > 1

for all locally rectifiable γ ∈ Γ. If no admissible functions exist, the
modulus is defined to be ∞. The definition of modulus can be gen-
eralized considerably, as was done by Fuglede in his 1957 paper [2].
For example, instead of paths we can consider surfaces by defining the
modulus with exactly the same formula but requiring the admissible
functions to satisfy ˆ

S

ρ dσS > 1
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for all surfaces S in the family. Here σS denotes some Borel-measure as-
sociated to S. In our applications σS will be comparable to a Hausdorff
measure restricted to S.

Our main result is concerned with Ahlfors Q-regular complete metric
spaces that support a weak 1-Poincaré inequality. We also assume Q >
1. See Section 2 for all relevant definitions. Fix such a metric measure
space (X, d, µ). Given a domain G ⊂⊂ X and disjoint nondegenerate
continua E,F ⊂ G we denote by Γ(E,F ;G) the family of rectifiable
paths in G that join E and F . Similarly, we denote by Γ∗(E,F ;G)
the family of compact sets S ⊂ G that have finite (Q− 1)-dimensional
Hausdorff measure and separate E and F in G. By separation we mean
that E and F belong to disjoint components of G− S. We equip each
surface S with the restriction of the (Q − 1)-dimensional Hausdorff
measure on S ∩G. For 1 < p <∞, denote p∗ = p

p−1 .

The main purpose of this paper is to prove the following connection
between the path modulus and the modulus of separating surfaces.

THEOREM 1.1. Let 1 < p <∞. There is a constant C that depends

only on the data of X such that

(1)
1

C
6 modpΓ(E,F ;G)

1
p ·modp∗Γ

∗(E,F ;G)
1
p∗ 6 C,

for any choice of E,F and G. Here it is understood that 0 · ∞ = 1.

Gehring [3] and Ziemer [17] proved that (1) holds in Rn with C = 1.
As an application of Theorem 1.1 we find a new characterisation

for quasiconformal maps between regular spaces. Let Y be another
complete Ahlfors Q-regular space that supports a weak 1-Poincaré in-
equality. Recall that a homeomorphism f : X → Y is (geometrically)
K-quasiconformal if there exists a constant K > 1 such that for every
family Γ of paths in X

(2)
1

K
modQ(fΓ) 6 modQΓ 6 KmodQ(fΓ).

Here fΓ = {f ◦ γ | γ ∈ Γ}.

Corollary 1.2. Let X and Y be as above. A homeomorphism f : X →
Y is K-quasiconformal if and only if there is a constant C, such that

1

C
modQ∗Γ

∗(E,F ;G) 6 modQ∗Γ
∗(fE, fF ; fG) 6 CmodQ∗Γ

∗(E,F ;G)

for all E,F and G as above. The constants C and K depend only on

each other and the data of X and Y .

See Section 3 for the proof. We remark that the “only if” part follows
also from the recent work of Jones, Lahti and Shanmugalingam [6].

This paper is organized as follows: In Section 2 we introduce the main
tools for later use. In Section 3 we state our main results, Theorems
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3.1 and 3.2, which are more general versions of the lower and upper
bounds in (1). We also show how these results imply Corollary 1.2.
Theorem 3.1 is proved in Section 4 along the lines of [3] and [17],
applying coarea estimates. The proof of Theorem 3.2, which seems to
be new even in the euclidean setting, is given in Section 5. Section 6
contains an example showing the necessity of the 1-Poincaré inequality
in Theorem 1.1.

Acknowledgement. We are grateful to Panu Lahti and Nageswari
Shanmugalingam for pointing out an error in an earlier version of the
manuscript.

2. Preliminaries

2.1. Doubling measures. A Borel-regular measure µ is called dou-
bling with doubling constant Cµ > 1 if

(3) 0 < µ(2B) 6 Cµµ(B) <∞
for all balls B ⊂ X. Iterating (3) shows that there are constants C ′µ
and s > 0 that depend only on Cµ such that for any x, y ∈ X and
0 < r 6 R < diam (X) with x ∈ B(y,R),

(4)
µ(B(y,R))

µ(B(x, r))
6 C ′µ

(
R

r

)s
.

In fact, we can choose s > log2Cµ.
The space X is said to be Ahlfors Q-regular, or just Q-regular, if

there are constants a and A > 0 such that

(5) arQ 6 µ(B(x, r)) 6 ArQ

for every x ∈ X and 0 < r < diam (X). It follows immediately from
the definitions that Q-regular spaces are doubling.

2.2. Moduli. Let M be a set of Borel-regular measures on X and let
1 6 p <∞. We define the p-modulus of M to be

modpM = inf

ˆ
X

ρp dµ,

where the infimum is taken over all Borel measurable functions ρ :
X → [0,∞] with

(6)

ˆ
X

ρ dν > 1

for all ν ∈M . Such functions are called admissible functions of M . If
there are no admissible functions we define the modulus to be infinite.
If ρ is an admissible function for M−N where N has zero p-modulus,
we say that ρ is p-weakly admissible for M . As a direct consequence of
the definitions we see that the p-modulus does not change if the infimum
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is taken over all p-weakly admissible functions. If some property holds
for all ν ∈M −N we say that it holds for p-almost every ν in M .

We can also use paths instead of measures; if Γ is a family of locally
rectifiable paths in X we define the path p-modulus of Γ as before with

modpΓ = inf

ˆ
X

ρp dµ,

but require that ˆ
γ

ρ ds > 1

for every locally rectifiable γ ∈ Γ. See [16] or [1] for the definition and
properties of path integrals over locally rectifiable paths. Most of the
path families considered in this paper will be of the form

Γ(E,F ;G) := {paths that join E and F in G},
where E,F ⊂ G are disjoint continua and G is a domain in X. The
modulus of Γ(E,F ;G) does not change if we consider only injective
paths, see [14, Proposition 15.1]. For injective pathsˆ

γ

ρ ds =

ˆ
|γ|
ρ dH1,

as can be seen from the area formula [1, 2.10.13]. This implies that
the modulus of any subfamily of A of Γ(E,F ;G) is the same as the
modulus of the family

{H1 |γ| | γ ∈ A},
so in this sense the two definitions of the modulus are equal.

We will need the following basic lemma in multiple occasions. It is a
combination of the lemmas of Fuglede and Mazur, see [5, p. 19, 131].

Lemma 2.1. Let M be a set of Borel measures on X and 1 < p <∞.

Suppose modpM < ∞. Then there is a sequence (ρi)
∞
i=1 of admissi-

ble functions of M that converges in Lp(X) to a p-weakly admissible

function ρ of M such that for p-almost every ν ∈M

(7)

ˆ
X

ρi dν →
ˆ
X

ρ dν <∞

and

(8) modpM =

ˆ
X

ρp dµ.

Remark 2.2. Lemma 2.1 holds for the path modulus of a path family

Γ with the obvious modification of replacing (7) withˆ
γ

ρi ds→
ˆ
γ

ρ ds <∞

for all γ ∈ Γ.
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2.3. Upper gradients. A Borel function ρ : X → [0,∞] is an upper
gradient of a function u : X → R, if

(9) |u(γ(1))− u(γ(0))| 6
ˆ
γ

ρ ds

for all rectifiable paths γ : [0, 1]→ X. If |u(γ(0))| or |u(γ(1))| equal∞,
we agree that the left side of (9) equals∞. If (9) fails only for a family
of paths of zero p-modulus, we say that ρ is a p-weak upper gradient.
The following lemma will be useful in the sequel, and will be used
without further mention. It allows the use of weak upper gradients in
place of upper gradients in all the relevant results used in this paper.
This is Proposition 6.2.2 of [5].

Lemma 2.3. If u : X → R has a p-weak upper gradient ρ ∈ Lp(X) in

X, then there is a decreasing sequence (ρk)
∞
k=1 of upper gradients of u

that converges to ρ in Lp(X).

2.4. Maximal functions. Suppose µ is doubling and R > 0. The
restricted Hardy-Littlewood maximal function MRu of an integrable
function u : X → R is defined as

MRu(x) = sup
0<r6R

−
ˆ
B(x,r)

|u| dµ,

where

−
ˆ
B

v dµ :=
1

µ(B)

ˆ
B

v dµ.

The Hardy-Littlewood maximal function Mu can then be defined as

Mu = sup
R>0
MRu.

In doubling spaces Mu is Borel measurable whenever u is, and the
assignment u 7→ Mu defines a bounded operator Lp(X) → Lp(X)
for any 1 < p < ∞, with bound depending only p and the doubling
constant of X, see [5, Chapter 3.5] for details.

2.5. Codimension 1 spherical Hausdorff measure. Given a Borel-
regular measure µ, the codimension 1 spherical Hausdorff δ-content of
a set A ⊂ X is defined as

Hδ(A) := inf
∑
i

µ(Bi)

ri
,

where the infimum is taken over countable covers {Bi} of A, and Bi =
B(xi, ri) for some xi ∈ X and ri 6 δ. The codimension 1 spherical
Hausdorff measure of A is then defined to be

H(A) := sup
δ>0
Hδ(A).
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By the Carathéodory construction H is also a Borel-regular measure.
If X is Q-regular, Q > 1, and µ the Q-dimensional Hausdorff measure,
then H is comparable to the (Q− 1)-dimensional Hausdorff measure.

2.6. Poincaré inequalities. The space X is said to support a weak
p-Poincaré inequality with constants CP and λP if all balls in X have
positive and finite measure, and

−
ˆ
B

|u− uB| dµ 6 CPdiam (B)

(
−
ˆ
λPB

ρp dµ

) 1
p

for all functions u ∈ L1
loc(X) and all upper gradients ρ of u.

In the sequel we will encounter function-upper gradient pairs (v, ρv)
that are defined only on some open and connected set G ⊂ X. For
such pairs the Poincaré inequality can be applied on any ball B with
λPB ⊂ G, or B ⊂⊂ G if λP = 1. To see this, let c > 1 be such that
cB ⊂ G and replace v with v′ = vχcB and ρv with ρ′ = ρvχB+∞χX−B.
Then ρ′ is an upper gradient of v′ and v′ is locally integrable on X.

2.7. Whitney-type coverings. We will need the following modifica-
tion of Lemma 4.1.15 in [5] in multiple occasions. Here we assume
that (X, d, µ) is a doubling metric measure space, Ω ⊂ X is open and
bounded and X − Ω is nonempty.

Lemma 2.4. Given any subset A ⊂ Ω and natural number n > 2,

there exists a countable collection B = {B(xi, ri)} of balls in Ω, such

that

(i) xi ∈ A and ri = 1
2n
d(xi, X − Ω) for all i

(ii) If Bi, Bj ∈ B intersect, then

1

2
6
ri
rj
6 2

(iii) For all x ∈ Ω

χA(x) 6
∑
B∈B

χ2B(x) 6 C,

where C depends only on the doubling constant of µ.

Proof. Let A ⊂ Ω and 2 6 n ∈ N. Denote d(x) = d(x,X−Ω). For any

k ∈ Z let

Ak = {x ∈ A | 2k−1 < d(x) 6 2k}

and

Fk = {B(x, d(x)/10n) | x ∈ Ak}.
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Apply the 5r-covering theorem on Fk to find a countable pairwise dis-

joint collection Gk ⊂ Fk such that⋃
B∈Fk

B ⊂
⋃
B∈Gk

5B.

Denote by B the collection of all balls 5B with B ∈ Gk for some k ∈ Z.

Then B is countable and (i) is satisfied. A simple application of the

triangle inequality proves (ii). The lower bound of (iii) follows from

the definition of B. Let x ∈ Ω. By (i) and (ii) there is a k ∈ Z such

that balls B ∈ B whose scaled versions 2B contain x must come from

either Gk or Gk−1. Now let 10B1, . . . , 10BN be balls arising from Gk
that contain x with radii r1, . . . , rN respectively, so that r1 > ri for all

i = 1, . . . , N . By the definition of Gk the balls Bi are disjoint, so by

the doubling property and (ii)

µ(11B1) >
N∑
i=1

µ(Bi) > CNµ(11B1),

where C depends only on the doubling constant of µ. The same argu-

ment can be applied to Gk−1 and (iii) follows. �

3. Main results

Assume for the rest of the text that (X, d, µ) is a complete metric
measure space that supports a weak 1-Poincaré inequality with con-
stants CP and λP . Assume also that µ is Borel-regular and doubling
so that it satisfies (4) with some Cµ and s > 1. Note that the doubling
condition implies that X is proper and therefore also separable. By
[13, Part I, II.3.11] µ is in fact a Radon-measure.

Fix a domain G ⊂⊂ X and two disjoint nondegenerate continua
E,F ⊂ G. Denote G′ = G − (E ∪ F ). Denote by Γ the set of all
injective rectifiable paths γ : [0, 1] → G with γ(0) ∈ E and γ(1) ∈ F .
For any 1 6 p <∞ denote

(10) modpΓ := modp{H1 |γ| | γ ∈ Γ}.

Similarly, denote by Γ∗ the set of all compact subsets S ⊂ G that
separate E and F in G and have finite H-measure in G. Abbreviate

(11) modqΓ
∗ = modq{H S ∩G | S ∈ Γ∗}.

The requirement H(S ∩G) <∞ is redundant since the modulus of the
family of sets with infinite H-measure is zero. Nevertheless we prefer
to work with sets of finite H-measure.

We denote C = C(X) if some constant C > 0 depends only on the
data of X, i.e., the constants s, Cµ, CP and λP . The same symbol C
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will be used for various different constants. Denote p∗ = p
p−1 for each

1 < p <∞. The main results of this paper are the following:

THEOREM 3.1. Let 1 < p <∞. If modpΓ 6= 0, then

C 6 (modpΓ)
1
p (modp∗Γ

∗)
1
p∗ ,

where the constant C depends only on the data of X. If modpΓ = 0,

then modp∗Γ
∗ =∞.

THEOREM 3.2. Let 1 < p <∞. If modp∗Γ
∗ <∞, then

(12) (modpΓ)
1
p (modp∗Γ

∗)
1
p∗ 6 C,

where the constant C depends only on the data of X. If modp∗Γ
∗ =∞,

then modpΓ = 0.

Note that the conclusions in Theorems 3.1 and 3.2 are biLipschitz in-
variant. Also recall that a complete metric space supporting a Poincaré
inequality is C-quasiconvex for some C = C(X). Thus we may, and
will, assume that X is a geodesic metric space. Note that in geodesic
spaces we can choose λP = 1. For these facts see Theorem 8.3.2 and
Remark 9.1.19 in [5].

Theorem 1.1 follows by combining Theorems 3.1 and 3.2, and recall-
ing that H is comparable to the (Q−1)-dimensional Hausdorff measure
in Ahlfors Q-regular spaces. Theorems 3.1 and 3.2 will be proved in
Sections 4 and 5, respectively. We now show how they imply Corollary
1.2.

Proof of Corollary 1.2. The “only if” part follows directly from Theo-

rem 1.1. To prove the “if” part, notice first that Theorem 1.1 shows

that (2) holds for all path families Γ(E,F ;G) joining continua E and

F inside G. Injecting this estimate into the proof of Theorem 4.7 in

[4] shows that f is locally quasisymmetric, with constants depending

only on the given data. On the other hand, Theorem 10.9 of [15] shows

that locally quasisymmetric maps satisfy (2) for all path families. The

required linear local connectedness and Loewner properties of X and

Y are guaranteed by [8, Theorem 3.3] and [4, Theorem 5.7]. The “if”

part follows. �

4. Proof of Theorem 3.1

Let X,G,E, F,Γ and Γ∗ be as in Section 3. Fix 1 < p < ∞. Note
that the constant function 1/dist(E,F ) restricted on G is admissible
for Γ. Therefore modpΓ is finite.
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We need the following result of Kallunki and Shanmugalingam [7]:
The locally Lipschitz p-capacity of Γ is defined to be

capLpΓ = inf
ρ

ˆ
G

ρp dµ,

where the infimum is taken over every non-negative Borel-measurable
function ρ that is an upper gradient to some locally Lipschitz function
u : G→ [0, 1] with u|E = 0 and u|F = 1.

Theorem 1.1 in [7] reads as follows: if 1 < p <∞, then

(13) modpΓ = capLpΓ

for any choice of E,F and G.
The proof of Theorem 3.1 is based on the following coarea estimate.

Proposition 4.1. Let u : G → R be locally Lipschitz and let ρ be a

p-integrable upper gradient of u in G. Let g : G → [0,∞] be a p∗-

integrable Borel function. Then

(14)

ˆ ∗
R

ˆ
u−1(t)

g dHdt 6 C

ˆ
G

gρ dµ

for some C = C(X).

Before proving Proposition 4.1, we show how it together with (13)
yields Theorem 3.1.

Proof of Theorem 3.1. First assume that modpΓ > 0. If modp∗Γ
∗ =∞,

there is nothing to prove. Otherwise let g ∈ Lp∗(G) be admissible for

Γ∗. Let u : G → [0, 1] be locally Lipschitz with u|E = 0 and u|F = 1.

Let ρ be an upper gradient of u. We may assume that ρ is p-integrable.

Note that for every t ∈ (0, 1) the set u−1(t) separates E and F , and

is closed in G. Moreover, by (14) H(u−1(t)) < ∞ for almost every t.

Proposition 4.1 and Hölder’s inequality give

1 6
ˆ ∗
(0,1)

ˆ
u−1(t)

g dHdt 6 C

ˆ
G

gρ dµ 6 C

(ˆ
G

gp
∗
dµ

) 1
p∗
(ˆ

G

ρp dµ

) 1
p

.

Now take infima over admissible functions g and ρ and apply (13) to

get the lower bound. The same argument leads to a contradiction if

modp∗Γ
∗ is finite and modpΓ = 0. �

We start the proof of Proposition 4.1 with a classical estimate for
Lipschitz functions. See [11, Theorem 7.7] for a euclidean version.

Lemma 4.2. Let u : G→ R be L-Lipschitz and let A be a µ-measurable

subset of G. Then

(15)

ˆ ∗
R
H(u−1(t) ∩ A) dt 6 C(X)Lµ(A).
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Proof. Since µ is a Radon-measure, we may assume that A is open. Let

δ > 0. Apply the 5r-covering theorem to find a countable collection of

disjoint balls {Bi} with Bi = B(xi, ri) ⊂ A, 5ri 6 δ and

A ⊂
⋃
i

5Bi.

Define a Borel function g : R→ [0,∞] with

g =
∑
i

µ(5Bi)

5ri
χu(5Bi).

Now for every t ∈ R we have Hδ(u
−1(t)∩A) 6 g(t), so by the doubling

property of µ,ˆ ∗
R
Hδ(u

−1(t) ∩ A) dt 6
ˆ
R
g(t) dt

6
∑
i

µ(5Bi)

5ri
|u(5Bi)|

6 C(X)L
∑
i

µ(Bi)

6 C(X)Lµ(A).

Applying the monotone convergence theorem for upper integrals fin-

ishes the proof. �

The Poincaré inequality comes into play with the following lemma.

Lemma 4.3. Let U ⊂ G be open and connected and suppose v : U → R
is locally integrable and ρv : X → [0,∞] is an upper gradient of v in U

that vanishes outside G. Let N ⊂ U be the set of Lebesgue points of v.

Then

|v(x)− v(y)| 6 C(X)|x− y|(M10|x−y|ρv(x) +M10|x−y|ρv(y))

whenever x, y ∈ B ∩N for some ball B that satisfies 5B ⊂ U .

Proof. The case U = X is classical and proved in, for example, [5,

Theorem 8.1.7]. We follow the same proof for the case of general U .

Let B = B(x0, r) satisfy 5B ⊂ U . Let x ∈ B be a Lebesgue point of v.

The first part of the proof of [5, Theorem 8.1.7] shows that

(16) |v(x)− vB| 6 CrM4rρv(x)

for some constant C = C(X). Let y be another Lebesgue point of v in

B. If r 6 5
2
|x − y|, then applying (16) twice gives the desired result.

Otherwise apply (16) with B(x, 2|x− y|) instead. �
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Proof of Proposition 4.1. By standard real analysis arguments it suf-

fices to show that

(17)

ˆ ∗
[0,1]

H(u−1(t) ∩ A) dt 6 C(X)

ˆ
A

ρ dµ.

Let us first show thatˆ ∗
[0,1]

H(u−1(t) ∩ A ∩B) dt 6 C(X)

ˆ
A∩B
M10diamBρ dµ

for any Borel set A ⊂ G and any ball B ⊂ 5B ⊂ G. Continuity of u

and Lemma 4.3 give

(18) |u(x)− u(y)| 6 C(X)|x− y|(M10diamBρ(x) +M10diamBρ(y))

for any x, y ∈ B.

Let Bk = {x ∈ B | 2k <M10diamBρ(x) 6 2k+1}. Abuse the notation

and define the sets B−∞ and B∞ as the sets of points x ∈ B where,

respectively,M10diamBρ(x) = 0 orM10diamBρ(x) =∞. Recall that we

assume u to be locally Lipschitz. Since B is compactly contained in G,

u|B is Lipschitz. Now Lemma 4.2 applied to any Lipschitz extension of

u|B implies that ˆ ∗
[0,1]

H(u−1(t) ∩ A ∩B∞) dt = 0,

since the integrability of Mρ implies that µ(B∞) = 0. On the other

hand, if B−∞ 6= ∅ then ρ = 0 almost everywhere in 5B. Since we may

assume that X is geodesic, it moreover follows that u is constant in B.

We conclude that H(u−1(t) ∩ A ∩B−∞) is nonzero for at most one t.

It follows from (18) that u|Bk
is C(X)2k-Lipschitz. Let uk : X → R

be any Lipschitz extension of u|Bk
with the same Lipschitz constant.

Now the previous observations together with the monotone convergence

theorem, Lemma 4.2 and the definition of Bk giveˆ ∗
[0,1]

H(u−1(t) ∩ A ∩B) dt =
∑
k

ˆ ∗
[0,1]

H(u−1k (t) ∩ A ∩Bk) dt

6 C(X)
∑
k

2kµ(A ∩Bk)

6 C(X)

ˆ
A∩B
M10diamBρ dµ.

Applying a Whitney-type covering, see Lemma 2.4, we getˆ ∗
[0,1]

H(u−1(t) ∩ A) dt 6 C(X)

ˆ
A

M10Rρ dµ,
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where R is the supremum of the diameters of the balls used in the

cover. We can make R arbitrarily small, as is implied by Lemma 2.4.

The Lebesgue differentiation theorem and dominated convergence then

yield (17). �

5. Proof of Theorem 3.2

Consider the sets

(19) Γ∗j = {S ∈ Γ∗ | dist(S,E ∪ F ) > j−1}.
By applying the proof of Proposition 5.2.11 in [5] and the general Fu-
glede’s lemma, see [2, Theorem 3], it can be shown that

(20) lim
j→∞

modp∗Γ
∗
j = modp∗Γ

∗.

The following result is the key tool in connecting the two moduli.

Lemma 5.1. (Relative isoperimetric inequality)

Let S ∈ Γ∗ and let U be the component of G−S that contains E. There

are constants C = C(X) and λ = λ(X) > 1 such that

min

{
µ(B − U)

µ(B)
,
µ(B ∩ U)

µ(B)

}
6 C

r

µ(λB)
H(∂U ∩ λB)

for all balls B ⊂⊂ G.

Proof. Given a ball B ⊂⊂ G there is a larger ball B′ ⊂ G with B ⊂ B′

and H(∂B′) < ∞ (apply Lemma 4.2 below to the distance function).

Applying Theorem 6.2 of [9] shows that B′ ∩ U is a so called set of

finite perimeter. The relative isoperimetric inequality for sets of finite

perimeter follows from the 1-Poincaré inequality by [9, Theorem 1.1].

�

Note that Lemma 5.1 requires the weak 1-Poincaré inequality. See
Section 6 for examples of spaces that support a weak (1 + ε)-Poincaré
inequality for a given ε > 0, but no relative isoperimetric inequality.

Fix γ ∈ Γ. The idea behind the proof of Theorem 3.2 is to construct
admissible functions φnj of Γ∗j that are supported close to |γ|, and then
apply Lemma 5.2 below.

Let n > 2 be a natural number and let Bn be the collection of
balls obtained by applying Lemma 2.4 with Ω = G′ and A = |γ| ∩
G′. Moreover, given k ∈ Z let Gnk = Gk be the collections of balls
constructed in the proof of 2.4.

Now let S ∈ Γ∗. Let U be the component of G− S that contains E.
Let

Tn = sup

{
t ∈ (0, 1)

∣∣∣∣ µ(U ∩B)

µ(B)
>

1

2
for all B ∈ Bn such that γ(t) ∈ B

}
.
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Note that there exists an ε > 0, so that Nε(E) ⊂ U and Nε(F ) ⊂ G−U .
Combining this observation with Lemma 2.4 (i) and continuity of γ
shows that Tn is well defined and that Tn ∈ (0, 1). It follows that there
exist balls Bi = B(xi, ri) ∈ Bn for i = 1, 2 such that B1 ∩B2 6= ∅ and

µ(B1 ∩ U)

µ(B1)
6

1

2
6
µ(B2 ∩ U)

µ(B2)
.

Now let x ∈ B1 ∩ B2 and let i ∈ {1, 2} be the index for which ri =
max{r1, r2}. Let B = B(x, 2ri). It follows from Lemma 2.4 (ii) and
Lemma 5.1, that

C(X) 6 min

{
µ(B − U)

µ(B)
,
µ(B ∩ U)

µ(B)

}
6 C ′

ri
µ(λB)

H(∂U ∩ λB)

for some C ′ = C ′(X) and λ = λ(X). Therefore

H(S ∩ λ′Bi) > H(∂U ∩ λ′Bi) >
1

C(X)
r−1i µ(Bi),

where λ′ = 1 + 2λ. We conclude that the function

φn = C
∑
B∈Bn

rBµ(B)−1χλ′B,

where rB is the radius of B, is admissible for Γ∗, but it may not be
p∗-integrable. This is why we consider the families Γ∗j instead.

Note that if 5B ∈ Bn satisfies B ∈ Gn−k for sufficiently large k de-
pending on j and n, then given any S ∈ Γ∗j

µ(U ∩B)

µ(B)
∈ {0, 1}.

Here U is again the component of G − S that contains E. Together
with the construction of φn this implies that there is a k(j, n) ∈ Z such
that

φnj = C
∑

k>k(j,n)

∑
B: 1

5
B∈Gnk

rBµ(B)−1χλ′B

is admissible for Γ∗j . It is p∗-integrable, since each Gnk contains only
finitely many balls and G is bounded.

Now let j be large enough, so that modp∗Γ
∗
j is nonzero. The existence

of such a j follows by combining Theorem 3.1 with (20). Apply Lemma
2.1 to find a p∗-weakly admissible function ρj of Γ∗j with the property

modp∗Γ
∗
j =

ˆ
G

ρp
∗

j dµ.

Lemma 5.2. Let φ be another p∗-integrable, p∗-weakly admissible func-

tion of Γ∗j . Then

modp∗Γ
∗
j 6
ˆ
G

φρp
∗−1
j dµ.
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Proof. For any t ∈ [0, 1] let ωt = tφ+ (1− t)ρj. Now for any t

modp∗Γ
∗
j 6
ˆ
G

ωp
∗

t dµ

with equality at t = 0. It follows that

0 6
d

dt

∣∣∣∣
t=0

ˆ
G

ωp
∗

t dµ = p∗
ˆ
G

(φ− ρj)ρp
∗−1
j dµ,

which finishes the proof. �

Applying Lemma 5.2, the doubling property of µ, the definition of
the Hardy-Littlewood maximal operator and (iii) gives

modp∗Γ
∗
j 6
ˆ
G

φnj ρ
p∗−1
j dµ

6 C(X)
∑
B∈Bn

rB−
ˆ
λ′B

ρp
∗−1
j dµ

6 C(X)
∑
B∈Bn

rB inf
x∈B
MC(X,G)/n(ρp

∗−1
j )(x)

6 C(X)

ˆ
|γ|
MC(X,G)/n(ρp

∗−1
j ) dH1.

Letting n → ∞ and applying Fuglede’s lemma [5, p. 131] we see that

C(modp∗Γ
∗
j)
−1ρp

∗−1
j is admissible for Γ. Therefore

(modpΓ)
1
p 6 C(modp∗Γ

∗
j)
−1
(ˆ

G

ρp
∗

j dµ

) 1
p

= C(modp∗Γ
∗
j)
− 1

p∗ .

Applying (20) finishes the proof.

6. Counter-examples

The relative isoperimetric inequality is an instrumental part of the
proof of Theorem 3.2. By [9] it is equivalent to the weak 1-Poincaré
inequality. Let ε ∈ (0, 1). We now construct a space X that satisfies
the hypotheses of Theorem 1.1 apart from the 1-Poincaré inequality.
Instead, X will support a (1 + ε)-Poincaré inequality.

Let K ⊂ [1/4, 3/4] be a self-similar Cantor set with Hausdorff-
dimension 1−ε and the following property: for all x ∈ K and 0 < r < 1

H1−ε
∞ (K ∩B(x, r)) > Cr1−ε

for some C > 0 that does not depend on r. Let Q = [0, 1]3 ⊂ R3

and let A = [1/4, 3/4] × K × {0} ⊂ Q. Then for any x ∈ A and
0 < r 6 diam(Q)

(21) H2−ε
∞ (A ∩B(x, r)) > Cr2−ε

for some (other) C > 0 that does not depend on r. Let Q1 and Q2 be
two copies of the space Q. Finally, let X = Q1 tAQ2, two cubes glued
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together along A. Equip X with the geodesic metric d that restricts to
the metrics of the cubes in either cube, and for x ∈ Q1 and y ∈ Q2 set

d(x, y) = inf
a∈A

(|x− a|+ |a− y|).

EquipX with the measure µ that restricts to the 3-dimensional Lebesgue
measure on both cubes. It follows immediately from the definitions that
(X, d, µ) is a complete geodesic Ahlfors 3-regular metric space. The va-
lidity of a weak (1 + ε)-Poincaré inequality follows from (21) and [4,
Theorem 6.15].

Now let E ⊂ Q1 − A and F ⊂ Q2 − A be nondegenerate continua
and let G = X. Let Γ and Γ∗ be as in Theorem 1.1. The modulus
mod3Γ is non-zero and finite, since X is Loewner, see [4]. On the other
hand mod3∗Γ

∗ =∞, since Γ∗ does not admit any admissible functions.
To see this, note that A separates E and F in G, but has vanishing
2-measure. We conclude that X does not satisfy the upper bound of
Theorem 1.1. Note that this implies that X does not support a weak
1-Poincaré inequality. This can also be deduced from the main result
of [9].
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E-mail: A.L.: atte.s.lohvansuu@jyu.fi
K.R.: kai.i.rajala@jyu.fi


	1. Introduction
	2. Preliminaries
	2.1. Doubling measures
	2.2. Moduli
	2.3. Upper gradients
	2.4. Maximal functions
	2.5. Codimension 1 spherical Hausdorff measure
	2.6. Poincaré inequalities
	2.7. Whitney-type coverings

	3. Main results
	4. Proof of Theorem 3.1
	5. Proof of Theorem 3.2
	6. Counter-examples
	References

