
EXHAUSTIONS OF CIRCLE DOMAINS

DIMITRIOS NTALAMPEKOS AND KAI RAJALA

Abstract. Koebe’s conjecture asserts that every domain in the Rie-
mann sphere is conformally equivalent to a circle domain. We prove
that every domain Ω satisfying Koebe’s conjecture admits an exhaus-
tion, i.e., a sequence of interior approximations by finitely connected
domains, so that the associated conformal maps onto finitely connected
circle domains converge to a conformal map f from Ω onto a circle do-
main. Thus, if Koebe’s conjecture is true, it can be proved by utilizing
interior approximations of a domain. The main ingredient in the proof
is the construction of quasiround exhaustions of a given circle domain Ω.
In the case of such exhaustions, if ∂Ω has area zero then f is a Möbius
transformation.

1. Introduction

A domain in the Riemann sphere Ĉ is a circle domain if each connected
component of its boundary is a point or a circle. A long-standing problem
in complex analysis is Koebe’s conjecture [Koe08], predicting that every

domain in Ĉ can be conformally mapped to a circle domain. Koebe himself
established the conjecture for finitely connected domains, but it took over 70
years until the conjecture was established for countably connected domains
by He–Schramm [HS93]; an alternative argument was provided by Schramm
[Sch95]. The general case remains open. See also [Bon16, HS95, HK90,
HvdM09,SV20] for other results related to Koebe’s conjecture.

The proofs of the special cases of the conjecture follow the scheme of
approximating the domain by finitely connected domains, uniformizing con-
formally these domains by circle domains using Koebe’s theorem, and then
passing to a limit. However, the limiting map will not always be a confor-
mal map onto a circle domain, and a careful choice of the approximations
is required. Thus, one of the difficulties in establishing the general case
of Koebe’s conjecture is that a universal approximation scheme that works
for all domains is still to be found. Another subtle difficulty is that the
uniformizing conformal map, if it exists, is not necessarily unique in the
uncountably connected case. Therefore, one can say that there is no stan-
dard procedure that yields the desired conformal map in a unique way. For
uniqueness results related to Koebe’s conjecture see [HS94,NY20,Nta23b,
You16].

The existence proofs by He–Schramm and Schramm apply approximation
of a given domain from outside by a decreasing sequence of finitely connected
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domains together with Koebe’s theorem to construct a sequence of confor-
mal maps whose limit has circle domain image. Recently the second-named
author [Raj] studied the uniformization problem by approximating a given
domain from inside by exhaustions, i.e., increasing sequences of finitely con-
nected subdomains, and gave an alternative proof of Koebe’s conjecture in
the countably connected case.

An exhaustion of a domain Ω ⊂ Ĉ is a sequence of domains Ωj ⊂ Ω,
j ∈ N, each bounded by finitely many disjoint Jordan curves in Ω, such that

Ωj ⊂ Ωj+1 for all j ∈ N and Ω =
⋃
j∈N

Ωj .

Given an exhaustion (Ωj)j∈N, we fix distinct points a1, a2, a3 ∈ Ω1. By
Koebe’s theorem every Ωj admits a unique conformal map fj : Ωj → Dj

onto a finitely connected circle domain Dj so that fj(ak) = ak for k = 1, 2, 3.

We say that a domain Ω ⊂ Ĉ satisfies Koebe’s conjecture if there exists
a conformal map f from Ω onto a circle domain.

THEOREM 1.1. Let Ω ⊂ Ĉ be a domain that satisfies Koebe’s conjecture.

Then there are an exhaustion (Ωj)j∈N of Ω and a circle domain D ⊂ Ĉ so

that (fj)j∈N converges locally uniformly in Ω to a conformal homeomorphism

f : Ω → D.

Thus, if Koebe’s conjecture is true, then it can be proved by using ex-
haustions. The method of using exhaustions also appears in uniformizing a
domain by horizontal slit domains. Namely, if Ω is any domain in C and
(Ωj)j∈N is any exhaustion of Ω, then the conformal maps fj from Ωj onto
finitely connected slit domains, normalized appropriately, converge, after
passing to a subsequence, to a conformal map from Ω onto a slit domain
[Cou50, Theorem 2.1, p. 54].

In sharp contrast to that result, the conclusion of Theorem 1.1 is not true
for any exhaustion, as was shown by the second-named author [Raj, Theo-
rems 1.1 and 1.2]. Hence a careful choice of (Ωj)j∈N is required. Theorem
1.1 is an immediate consequence of the next theorem.

THEOREM 1.2. For every circle domain Ω ⊂ Ĉ there are an exhaustion

(Ωj)j∈N of Ω and a circle domain D ⊂ Ĉ so that (fj)j∈N converges locally

uniformly in Ω to a conformal homeomorphism f : Ω → D. In addition, if

∂Ω has area zero, then D = Ω and f is the identity map.

We list the main steps for the proof of Theorem 1.2.

(1) Every circle domain Ω admits a quasiround exhaustion (Ωj)j∈N.
That is, there exists K ⩾ 1 so that for each j ∈ N, each com-
plementary component p of Ωj is K-quasiround in the sense that
there are a ∈ p and r > 0 such that

D(a, r) ⊂ p ⊂ D(a,Kr).
We prove the existence of quasiround exhaustions with K = 43 in
Section 2. In Section 7 we show that one cannot take K arbitrarily
close to 1.
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(2) If (Ωj)j∈N is a quasiround exhaustion of a circle domain Ω and
fj : Ωj → Dj , j ∈ N, is a conformal map provided by Koebe’s the-
orem that fixes three distinct points of Ω1, then, after passing to a
subsequence, (fj)j∈N converges locally uniformly in Ω to a conformal
map f from Ω onto a circle domain D. This statement is proved in
Section 3 by applying estimates involving the transboundary modulus
of curve families introduced by Schramm in [Sch95].

(3) If ∂Ω has area zero, then the map g = f−1 satisfies a type of trans-
boundary upper gradient inequality, as stated in Section 5.

(4) Any conformal map between circle domains that satisfies the trans-
boundary upper gradient inequality of Section 5 is the restriction
of a Möbius transformation of Ĉ; see Theorem 6.1. In the last two
steps we apply methods that have recently been developed by the
first-named author in [Nta23,Nta23b,Nta].

Acknowledgment. The statement of Theorem 1.2 was a problem posed
to us by Dennis Sullivan, whom we thank for various conversations on the
topic.

2. Construction of quasiround exhaustions

Given a domain G ⊂ Ĉ, we denote by C(G) the collection of connected

components of Ĉ \ G. Moreover, C(G) = CN (G) ∪ CP (G), where elements
of CN (G) have positive diameter and elements of CP (G) are singletons. If
(Gj)j∈N is an exhaustion of G, p̄ ∈ C(G), and j ⩾ 1, we denote by pj(p̄) the
element of C(Gj) containing p̄.

We denote Ĝ = Ĉ/ ∼, where

x ∼ y if either x = y ∈ G or x, y ∈ p for some p ∈ C(G).

The corresponding quotient map is πG : Ĉ → Ĝ. Identifying each x ∈ G
and p ∈ C(G) with πG(x) and πG(p), respectively, we have

Ĝ = G ∪ C(G).

A homeomorphism f : G → G′ has a homeomorphic extension f̂ : Ĝ → Ĝ′;
see [NY20, Section 3] for a detailed discussion. By Moore’s theorem [Moo25],

the quotient Ĝ is homeomorphic to Ĉ.
All distances below refer to the Euclidean metric of C. In what follows,

if D = D(z, r) is a disk and τ > 0 then τD = D(z, τr). Moreover, S(z, r) is
the boundary circle of D(z, r).

For K ⩾ 1 we say that a set A ⊂ C is K-quasiround, if there are zA ∈ C
and rA > 0 such that

D(zA, rA) ⊂ A ⊂ D(zA,KrA).

Moreover, we say that a domain G ⊂ Ĉ is K-quasiround if every p ∈ CN (G)

is K-quasiround, and that a sequence of domains Gj ⊂ Ĉ, j ∈ N, is K-
quasiround if every Gj is K-quasiround.

THEOREM 2.1. Every circle domain Ω ⊂ Ĉ with ∞ ∈ Ω has a 43-

quasiround exhaustion (Ωj)j∈N.
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The rest of this section is devoted to the proof of Theorem 2.1. The
collection CN (Ω) is empty or consists of finitely or countably many disks

Dk = D(zk, rk), where r1 ⩾ r2 ⩾ r3 · · · .

We will construct the required quasiround exhaustion of Ω inductively.
Let Ω0 be the complement of a large closed disk that contains Ĉ \ Ω in its
interior. Assume that j ⩾ 1 and that we have defined a domain Ωj−1 ⊂
Ωj−1 ⊂ Ω that is bounded by finitely many disjoint Jordan curves in Ω so

that Ĉ \ Ωj−1 is bounded. Theorem 2.1 follows if we find a 43-quasiround
domain Ωj that is bounded by finitely many disjoint Jordan curves in Ω and
satisfies

(2.1) Ωj−1 ⊂ Ωj ⊂ Ω and Ĉ \ Ωj ⊂ N1/j(Ĉ \ Ω),

where N1/j(A) is the open 1/j-neighborhood of A. We define

(2.2) δ =
min

{
1
j ,dist(∂Ω, ∂Ωj−1)

}
100

> 0

and

CL(Ω) = {D1, . . . , Dα} ⊂ CN (Ω),

where α is the largest index for which rα ⩾ δ/4.
Next, we denote

U = Ĉ \
(
Ωj−1 ∪

( α⋃
β=1

(1 + 2δ/rβ)Dβ

))
.

Observe that the radius of the disk (1+2δ/rβ)Dβ equals rβ+2δ and that each

such disk is disjoint from Ωj−1. By the 5r-covering lemma [Hei01, Theorem
1.2], since U is bounded, there exists a finite collection B′ of pairwise disjoint
disks of radius δ centered at U , so that

U ⊂
⋃

B∈B′

5B.

We let U ′ = CL(Ω) ∪ B′ and for B ∈ U ′ we define

VB = {z ∈ Ĉ \ Ωj−1 : dist(z,B) < dist(z,B′) for every B′ ∈ U ′, B′ ̸= B}.

See Figure 1 for an illustration.

Lemma 2.2 (Properties of U ′). The following statements are true.

(1) The closed disks B, B ∈ U ′, are pairwise disjoint.

(2) The sets VB, B ∈ U ′, are open and pairwise disjoint.

(3) For every B ∈ U ′,

{z /∈ Ωj−1 ∪ VB : dist(z,B) ⩽ dist(z,B′) for all B′ ∈ U ′} = ∂VB \ Ωj−1.

(4) For every B ∈ U ′, if VB ∩Ωj−1 = ∅, then VB is star-like with respect

to the center of B.

(5) For every B ∈ U ′, if VB ∩ Ωj−1 = ∅, then VB is a Jordan region.

(6) Ĉ \ Ωj−1 ⊂
⋃

B∈U ′ VB.



EXHAUSTIONS OF CIRCLE DOMAINS 5

VB

B ∈ CL(Ω)

VB′

Figure 1. A region VB corresponding to some B ∈ CL(Ω)
and a region V ′

B corresponding to some B′ ∈ B′. The disks

are components of Ĉ \ Ω; B′ is not visible in the figure.

(7) For each B = D(zB, rB) ∈ U ′ we have

VB ⊂ D(zB, rB + 4δ) ⊂ D(zB, 17rB).

Moreover, if VB ∩ Ωj−1 = ∅, then D(zB, rB) ⊂ VB.

Proof. The disks of B′ are pairwise disjoint and the disks of CL(Ω) are pair-

wise disjoint. Also, since each B ∈ B′ is centered at U and has radius δ, its

distance from all disks of CL(Ω) is at least δ. This shows that the collection

U ′ is disjointed, as required in (1). Part (2) follows immediately from the

definition of VB.

Let B = D(zB, rB) ∈ U ′. For θ ∈ [0, 2π) and t ⩾ 0, let wt = zB + teiθ

and rt = dist(wt, B). Suppose that wt /∈ Ωj−1 ∪ VB, and dist(wt, B) ⩽

dist(wt, B
′) for all B′ ∈ U ′. Since wt /∈ VB, there exists B′′ ∈ U ′ with

B′′ ̸= B such that

rt = dist(wt, B) = dist(wt, B
′′).

Since B and B′′ are disjoint, we must have rt > 0, so t > rB. The disk

D(wt, rt) is externally tangent to both B and B′′, and it is disjoint from all

B′ ∈ U ′. For s ∈ (rB, t) the disk D(ws, rs) is a strict subset of D(wt, rt)

and is tangent only to B and not to any B′ ∈ U ′ \ {B}. Hence, we have

dist(ws, B) < dist(ws, B
′) for all B′ ∈ U ′ \{B}. Also, if s is sufficiently close

to t, then ws ∈ Ĉ \ Ωj−1. This implies that ws ∈ VB for all s < t near t.

Thus, wt ∈ ∂VB. Conversely, if wt ∈ ∂VB \ Ωj−1, then by the definition of

VB we must have dist(z,B) ⩽ dist(z,B′) for all B′ ∈ U ′. This proves (3).

The proof also shows that if wt ∈ ∂VB \ Ωj−1, then

dist(ws, B) < dist(ws, B
′) for s ∈ [0, t) and B′ ∈ U \ {B}.(2.3)

Suppose that VB∩Ωj−1 = ∅. If wt ∈ ∂VB, then by (2.3), we have ws ∈ VB

for all s < t near t. If there exists s ∈ [0, t) with ws /∈ VB, then by (2.3) we

must have ws ∈ Ωj−1. Hence, there exists s′ ∈ [s, t) with ws′ ∈ VB ∩ Ωj−1.
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This is a contradiction. Therefore, the segment {ws : 0 ⩽ s < t} is contained

in VB and VB is star-like with respect to zB as claimed in (4).

For (6), let z ∈ Ĉ \ Ωj−1 and consider B ∈ U ′ that minimizes dist(z,B′)

over all B′ ∈ U ′. Then dist(z,B) ⩽ dist(z,B′) for all B′ ∈ U ′. By (3),

z ∈ VB.

Next, for (7), observe that if z ∈ Ĉ \Ωj−1, then either z ∈ (1 + 2δ/rβ)Dβ

for some β ∈ {1, . . . , α}, in which case dist(z,Dβ) < 2δ, or z ∈ U so z ∈
5B = D(zB, 5δ) for some B ∈ B′. In any case,

if z ∈ Ĉ \ Ωj−1, then dist(z,B) < 4δ for some B ∈ U ′.

Now, let B ∈ U ′ and z ∈ VB. Since z ∈ Ĉ \ Ωj−1, by the above we

have dist(z,B′) < 4δ for some B′ ∈ U ′. The definition of VB implies that

dist(z,B) ⩽ dist(z,B′) < 4δ. This implies the first inclusion claimed in

(7). Moreover, since the radius of every B ∈ U ′ is at least δ/4, the second

inclusion holds as well.

Suppose that VB ∩ Ωj−1 = ∅, as the last part of (7). If B ̸⊂ VB, since

zB ∈ VB by (4), we have B∩∂VB ̸= ∅. If z ∈ B∩∂VB, we have z ∈ Ĉ\Ωj−1

and dist(z,B) = 0 < dist(z,B′) for all B′ ∈ U ′ \ {B}. This implies that

z ∈ VB, a contradiction. Therefore B ⊂ VB, as desired.

For (5), observe that VB is an open set that is simply connected by part

(4). Since VB is bounded by part (7), ∂VB is a continuum. Since VB is star-

like and bounded, C \ VB is connected. Hence C \ ∂VB has two connected

components. If z ∈ ∂VB ⊂ Ĉ \ Ωj−1, by the definition of VB there exists

B′ ∈ U ′ \ {B}, such that

dist(z,B) = dist(z,B′) ⩽ dist(z,B′′)

for all B′′ ∈ U ′. By part (3), we have z ∈ ∂VB′ . By (4) there exists a

line segment connecting zB to z and whose interior is contained in VB. By

(2.3), there exists a line segment connecting z to a point of VB′ and whose

interior is contained in VB′ ⊂ C \ VB. This shows that each point of the

continuum ∂VB is accessible from both complementary components of ∂VB.

The inverse of the Jordan curve theorem [Kur68, Theorem 61.II.12, p. 518]

implies that ∂VB is a Jordan curve. □

Next, we let

U = {B ∈ U ′ : VB ∩N10δ(Ωj−1) = ∅}.

Lemma 2.3 (Properties of U). We have CL(Ω) ⊂ U and

N10δ(Ĉ \ Ω) ⊂
⋃
B∈U

VB.

Proof. For each B ∈ CL(Ω) we have VB ⊂ N4δ(B) by Lemma 2.2 (7). Since

B ⊂ Ĉ \Ω, we see that VB ⊂ N4δ(Ĉ \Ω). By the definition of δ in (2.2), we
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have

(2.4) dist(N10δ(Ωj−1), N10δ(Ĉ \ Ω)) ⩾ 80δ.

This shows that VB is disjoint from N10δ(Ωj−1), so B ∈ U and CL(Ω) ⊂ U .
Next, the sets VB, B ∈ U ′, cover Ĉ \ Ωj−1 by Lemma 2.2 (6). By (2.4),

N10δ(Ĉ \Ω) is also covered by VB, B ∈ U ′. By the first inclusion in Lemma

2.2 (7), if B ∈ B′, then VB has diameter at most 10δ, so it cannot intersect

both sets in (2.4). Therefore, each point of N10δ(Ĉ \Ω) is contained in a set

VB such that B ∈ B′ and VB ∩ N10δ(Ωj−1) = ∅ or B ∈ CL(Ω) ⊂ U . This

completes the proof. □

We will need the following general topological lemma, which is a conse-
quence of Moore’s theorem.

Lemma 2.4 (Perturbation lemma). Let ε > 0, m ∈ N, and A1, . . . , Am ⊂ C
be pairwise disjoint and non-separating continua with diamAi < ε for each

i ∈ {1, . . . ,m}. Then for each closed nowhere dense set E ⊂ C there exists

a homeomorphism ϕ : C → C such that

ϕ(E) ∩
( m⋃

i=1

Ai

)
= ∅ and sup

z∈C
|ϕ(z)− z| < ε.

Moreover, if F ⊂ C \
⋃m

i=1Ai is a compact set with E ∩F = ∅, then we may

also have ϕ(E) ∩ F = ∅.

Proof. By Moore’s theorem [Dav86, Theorem 25.1], the decomposition of Ĉ
induced by the sets Ai, i ∈ {1, . . . ,m}, and singleton points z ∈ Ĉ\

⋃m
i=1Ai is

strongly shrinkable. In particular, this implies that there exists a set of points

{p1, . . . , pm} ⊂ Ĉ and a continuous and surjective map π : Ĉ → Ĉ such that π

is the identity map outside a disk D(0, R) that contains
⋃m

i=1Ai, π is injective

outside
⋃m

i=1Ai, and π
−1(pi) = Ai, i ∈ {1, . . . ,m}. Moreover, there exists

a sequence of homeomorphisms πk : Ĉ → Ĉ, k ∈ N, that converge uniformly

to π, and πk is also the identity map outside D(0, R) for each k ∈ N; see
[Dav86, Section 5] for properties of strongly shrinkable decompositions.

By a compactness argument, there exists η > 0 such that if A ⊂ C
is a compact set and diamA ⩽ η, then diamπ−1(A) < ε. By uniform

convergence, there exists k1 ∈ N such that if A is compact and diamA ⩽ η,

then we also have diamπ−1
k (A) < ε for all k ⩾ k1.

Let F ⊂ C \
⋃m

i=1Ai be a compact set that is disjoint from E. Then

π(E) ∩ π(F ) = ∅, since π is injective in Ĉ \
⋃m

i=1Ai. The set π(E) is

nowhere dense. For i ∈ {1, . . . ,m}, let

Si = {z ∈ D(0, η) : pi ∈ π(E)− z} = D(0, η) ∩ (π(E)− pi).

The set
⋃m

i=1 Si is nowhere dense. Hence, there exists z0 ∈ D(0, η), arbitrar-
ily close to 0, such that the set π(E) − z0 is disjoint from {p1, . . . , pm}. If
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z0 is sufficiently close to 0, then we may have that π(E)− z0 is also disjoint

from the compact set π(F ). By uniform convergence, there exists k2 ∈ N
such that for k ⩾ k2 the set πk(E) − z0 is disjoint from

⋃m
i=1 πk(Ai) and

from πk(F ).

Fix k ⩾ max{k1, k2} and let ψ(z) = z−z0 on Ĉ. We define ϕ = π−1
k ◦ψ◦πk,

which is a homeomorphism of Ĉ fixing ∞. By construction, ϕ(E) is disjoint

from
⋃m

i=1Ai and from F . For z ∈ C and w = πk(z), we have |ψ(w)−w| =
|z0| ⩽ η, so

|ϕ(z)− z| ⩽ diamπ−1
k ({ψ(w), w}) < ε.

This completes the proof. □

By Lemma 2.3 we have CL(Ω) ⊂ U and hence

U = CL(Ω) ∪ B, for some B ⊂ B′.

Let J0 =
⋃

B∈U ∂VB. By Lemma 2.2 (5), J0 is the union of finitely many
Jordan curves. Moreover, by the last part of Lemma 2.2 (7),

J0 ∩B = ∅ for all B ∈ U .
However, the set J0 might intersect Ĉ \ Ω. We wish to use Lemma 2.4 to
deform slightly J0 into a set J1 ⊂ Ω that consists of Jordan curves bounding
quasiround regions. This is made precise in the following lemma.

Lemma 2.5. There exists a collection qB, B ∈ U , of closed Jordan regions

with the following properties.

(1) For each B ∈ U we have ∂qB ⊂ Ω.

(2) For each B ∈ U we have qB ⊂ Ĉ \ Ωj−1.

(3) The sets int qB, B ∈ U , are pairwise disjoint.

(4) Ĉ \ Ω ⊂
⋃

B∈U qB.

(5) For each B = D(zB, rB) ∈ U we have

D(zB, rB/2) ⊂ qB ⊂ D(zB, rB + 5δ) ⊂ D(zB, 21rB).

(6) For each B ∈ U , if qB \ Ω ̸= ∅, then qB ⊂ N1/j(Ĉ \ Ω).

Proof. For B ∈ CL(Ω), by Lemma 2.2 (7) we have B ⊂ VB. Since B ⊂
Ĉ \ Ω, we may find a closed Jordan region B̃ ⊂ VB such that ∂B̃ ⊂ Ω

and B ⊂ B̃. Recall that all components of Ĉ \ Ω that are not in CL(Ω)
have diameter less than δ/2. Hence, all complementary components of the

domain Ω∪ (
⋃

B∈CL(Ω) B̃) have diameter less than δ/2. It follows that there

exist pairwise disjoint closed Jordan regions

A1, . . . , Am ⊂ Ĉ \
(
∂Ωj−1 ∪

( ⋃
B∈CL(Ω)

B̃
))

of diameter less than δ/2 such that ∂Ai ⊂ Ω for each i ∈ {1, . . . ,m}, and

Ĉ \ Ω ⊂
( ⋃

B∈CL(Ω)

B̃
)
∪
( m⋃

i=1

Ai

)
.
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VB VB′

B̃

Ai

qB qB′

B̃

Ai

Figure 2. Top: The region B̃ (blue) corresponding to B ∈
CL(Ω) and some of the regions Ai (red). Bottom: The regions

qB and qB′ .

See Figure 2 for an illustration of the regions B̃ and Ai.

Let ε = δ/2, E =
⋃

B∈U ∂VB, and F =
⋃

B∈CL(Ω) B̃. By the choice of

B̃, we have E ∩ F = ∅. Moreover, F ⊂ C \
⋃m

i=1Ai. By Lemma 2.4, we

obtain a homeomorphism ϕ : C → C such that ϕ is (δ/2)-close to the identity

map, and ϕ(E) is disjoint from
⋃m

i=1Ai and
⋃

B∈CL(Ω) B̃. For B ∈ U define

qB = ϕ(VB); see Figure 2. We will show that the collection qB, B ∈ B, has
the desired properties.

Note that (1) and (3) are immediate by the properties of ϕ and the fact

that the regions VB, B ∈ U , are pairwise disjoint. For B ∈ U , by the

definition of U , we have VB ∩ N10δ(Ωj−1) = ∅. Since qB ⊂ Nδ/2(VB), we

conclude that qB∩Ωj−1 = ∅, as required in (2). For (4), let p be a component

of Ĉ\Ω. By Lemma 2.3, N10δ(p) ⊂
⋃

B∈U VB. Using a homotopy argument,

based on the fact that ϕ is (δ/2)-close to the identity map, one can show

that each point of p is surrounded by ϕ(∂N10δ(p)), so p ⊂
⋃

B∈U qB.

Let B = D(zB, rB) ∈ U . Suppose first that B ∈ B′. Since ϕ is (δ/2)-

close to the idenity map and rB = δ, we conclude (by considering a linear

homotopy from ϕ to the identity) that

1

2
B ⊂ ϕ(B).
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Combining this with Lemma 2.2 (7) we obtain

D(zB,
1

2
rB) ⊂ ϕ(B) ⊂ ϕ(VB) ⊂ qB ⊂ Nδ/2(VB) ⊂ D(zB, rB + 5δ).

If B = D(zB, rB) ∈ CL(Ω), then rB ⩾ δ/4 and B ⊂ VB. As we proved in

part (1), ∂qB is disjoint from B, so we either have B ⊂ int qB or B is not

surrounded by ∂qB. In the latter case, let γ(t, z) = t(ϕ(z)− z)+ z, t ∈ [0, 1],

and note that a point z ∈ ∂VB must satisfy γ(t, z) = zB for some t ∈ (0, 1).

Then, the quantity |γ(1, z)− γ(0, z)| = |ϕ(z)− z| is the length of a segment

passing through zB with endpoints outside B. Hence, |ϕ(z) − z| ⩾ δ/2, a

contradiction. Therefore B ⊂ int qB. Combining this with Lemma 2.2 (7),

we obtain

D(zB, rB) ⊂ qB ⊂ Nδ/2(VB) ⊂ D(zB, rB + 5δ) ⊂ D(zB, 21rB),

given that δ ⩽ 4rB. This completes the proof of part (5).

Finally, we show part (6). Suppose B ∈ U and qB \ Ω ̸= ∅. By (5), we

have qB ⊂ N6δ(Ĉ \Ω) when B ∈ CL(Ω) and qB ⊂ N13δ(Ĉ \Ω) when B ∈ B.
The choice of δ in (2.2) implies that qB ⊂ N1/j(Ĉ \ Ω). □

We are ready to construct the domain Ωj . Let V = {B ∈ U : qB \Ω ̸= ∅}.
By Lemma 2.5 (4), the set Ĉ \ Ω is covered by the collection {qB : B ∈ V}.
Also by (2) and (6), each qB is contained in Ĉ \ Ωj−1 and in N1/j(Ĉ \ Ω).
We conclude that

Ĉ \ Ω ⊂
⋃
B∈V

qB ⊂ Ĉ \ Ωj−1 and
⋃
B∈V

qB ⊂ N1/j(Ĉ \ Ω).(2.5)

Note also that each qB is 42-quasiround by (5) and ∂qB ⊂ Ω by (1). Thus, if
qB, B ∈ V, were the complementary components of a domain Ωj , then (2.1)
would be satisfied and the proof would be completed. Although the sets qB
have disjoint interiors by (3), their boundaries might intersect, so they are
not necessarily the complementary components of a domain.

We hence modify each qB slightly to amend this. Namely, we consider a
closed Jordan region pB ⊂ int qB such that pB is 43-quasiround, ∂pB ⊂ Ω,
and (2.5) is true with pB in place of qB. Then Ωj is the domain for which

C(Ωj) = {pB : B ∈ V}.

The proof of Theorem 2.1 is completed.

3. Quasiround exhaustions and limit maps

Let Ω ⊂ Ĉ be a circle domain with ∞ ∈ Ω, and (Ωj)j∈N an exhaustion of
Ω. Moreover, let fj : Ωj → Dj , j ∈ N, be the normalized conformal maps
in Theorem 1.2; that is, each fj fixes three prescribed points a1, a2, a3 ∈ Ω1

and each Dj is a finitely connected circle domain. Recalling that (fj)j∈N
has a converging subsequence and that a subsequence of an exhaustion of
Ω is also an exhaustion of Ω, the first claim in Theorem 1.2 follows from
Theorem 2.1 and the following result.
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THEOREM 3.1. Suppose that (Ωj)j∈N is quasiround and that (fj)j∈N con-

verges locally uniformly in Ω to a conformal homeomorphism f : Ω → D for

some domain D ⊂ Ĉ. Then (f̂(pj(p̄)))j∈N converges to f̂(p̄) in the Hausdorff

sense for every p̄ ∈ C(Ω). In particular, D is a circle domain.

Recall that pj(p̄) denotes the unique element of C(Ωj) that contains p̄. The
proof is based on transboundary modulus estimates on quasiround domains;
see e.g. [Sch95,Bon11,Raj] for similar estimates.

We recall the definition of transboundary modulus, as introduced by
Schramm [Sch95]. Let G ⊂ Ĉ be a domain. Let ρ : Ĝ → [0,∞] be a

Borel function and γ : [a, b] → Ĝ be a curve. Then γ−1(πG(G)) has count-
ably many components Oj ⊂ [a, b], j ∈ J . For j ∈ J define γj = γ|Oj and

αj = π−1
G ◦ γj . We define∫

γ
ρ ds =

∑
j∈J

∫
αj

ρ ◦ πG ds,

where the integral is understood to be infinite if one of the curves αj is not

locally rectifiable. Let Γ be a family of curves in Ω̂. We say that a Borel
function ρ : Ĝ→ [0,∞] is admissible for Γ if∫

γ
ρ ds+

∑
p∈C(G)
|γ|∩p ̸=∅

ρ(p) ⩾ 1

for each γ ∈ Γ. Here |γ| denotes the image of γ. The transboundary modulus
of Γ with respect to the domain G is defined to be

modG Γ = inf
ρ


∫
G
(ρ ◦ πG)2 dA+

∑
p∈C(G)

ρ(p)2

 ,

where the infimum is taken over all admissible functions ρ. It was ob-
served by Schramm that transboundary modulus is invariant under con-
formal maps. Specifically, if f : G → G′ is a conformal map between do-
mains G,G′ ⊂ Ĉ, then for every curve family Γ in Ĝ we have modG Γ =
modG′ f̂(Γ).

The rest of this section is devoted to the proof of Theorem 3.1. Fix
p̄ ∈ C(Ω) and let J ⊂ Ω1 be a Jordan curve that separates p1(p̄) and ∞.

Denote the bounded component of Ĉ \ J by U . Recall that fj extends to

a homeomorphism f̂j : Ω̂j → D̂j . Consider a compact set q(p̄) ⊂ C that

is the Hausdorff limit of a subsequence of (f̂j(pj(p̄)))j∈N. Then q(p̄) is a

disk or a point, and q(p̄) ⊂ f̂(p̄), as a consequence of Carathéodory’s kernel
convergence theorem; see [Nta23, Lemma 2.14]. Theorem 1.2 follows if we

can show that q(p̄) = f̂(p̄).
Towards contradiction, suppose that f(p̄)\q(p̄) ̸= ∅. Then there are δ > 0

and a sequence of points (zm)m∈N so that zm ∈ ∂pm(p̄) and

(3.1) lim inf
j→∞

dist(fj(zm), f̂j(pj(p̄))) ⩾ 2δ for every m = 1, 2, . . . .
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f̂j(pj(p̄))

fj(∂pm(p̄)) fj(J)

fj(zm)

It

δ

Figure 3. Illustration of (3.2) and of the proof of Lemma 3.2.

See Figure 3 for an illustration. Passing to a subsequence if necessary, we
may assume that zm → z0 ∈ ∂p̄ and that Wm ⊂ U for every m ⩾ 1, where

Wm = D(z0, |zm − z0|).

Fix j(m) > m so that zm ∈ Ωj and

(3.2) dist(fj(zm), f̂j(pj(p̄))) > δ for every j ⩾ j(m),

and let Γ(j,m) be the family of curves in Ω̂j joining J and πΩj (Wm) without
intersecting pj(p̄).

Lemma 3.2. There exists N > 0 such that

(3.3) modDj f̂j(Γ(j,m)) ⩾ N > 0 for every j ⩾ j(m) and m ⩾ 1.

Proof. The claim is almost the same as [Raj, Lemma 2.5]. We therefore

only give a rough outline here. By (3.2) there is a line ℓ in C, orthogonal to
w ∈ S(0, 1), so that for every 0 < t < δ there is a parametrized line segment

It with image in ℓ+tw so that γt = πDj ◦It connects fj(J) and f̂j(πΩj (Wm))

and belongs to f̂j(Γ(j,m)); see Figure 3. Here ℓ+ tw = {z + tw : z ∈ ℓ}.
Then, integrating an arbitrary admissible function ρ of f̂j(Γ(j,m)) over

each γt and using a variation of the standard length-area method together

with the assumption that Dj is a circle domain gives (3.3). Here the lower

bound N depends on δ and the choice of J , but not on j or m. □

In view of Lemma 3.2 and the conformal invariance of transboundary
modulus, a contradiction to (3.1) follows if we can show that

(3.4) lim
m→∞

lim
j→∞

modΩj Γ(j,m) = 0.
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To prove (3.4), we may assume that z0 = 0 and dist(0, J) = 1. We fix a
sequence

Ak = D(0, Rk) \ D(0, Rk/2), k = 1, 2, . . . ,

of annuli, where radii Rk are chosen as follows: R1 = 1, and if Rk−1 is
defined then Rk is the largest number so that Rk ⩽ Rk−1/4 and so that no
p ∈ C(Ω) other than p̄ intersects both S(0, Rk−1/2) and D(0, 2Rk).

Lemma 3.3. There exists M > 0 such that

(3.5) lim sup
j→∞

modΩj Λ(j, k) ⩽M for every k = 1, 2, . . . ,

where Λ(j, k) is the family of curves joining

πΩj (S(0, Rk)) and πΩj (S(0, Rk/2)) in Ω̂j \ {πΩj (pj(p̄))}.

Proof. Fix k ⩾ 1 and notice that if B is a family of pairwise disjoint disks

of radius larger than Rk/10 that intersect D(0, Rk), then #B ⩽ 400. Thus,

at most 400 elements p ∈ C(Ω ∪ p̄) can have radius larger than Rk/10 and

intersect Ak. We conclude that there exists j0 = j0(k) so that if j ⩾ j0

then there are at most 400 elements p ∈ C(Ωj ∪pj(p̄)) with diameter greater

than Rk/4 intersecting Ak. We denote the collection of such elements by

PL = PL(j). Also, let PS = PS(j) be the elements of C(Ωj ∪ pj(p̄)) \PL that

intersect Ak. We define

ρ(p) =


1, p ∈ PL,

2R−1
k diam p, p ∈ PS ,

2R−1
k , p ∈ Ωj ∩ Ak.

Then ρ is admissible for Λ(j, k), and∫
Ωj

ρ2 dA+
∑
p∈PL

ρ(p)2 ⩽ 4π + 400.

To estimate the sum of values ρ(p)2 over PS , we recall that Ωj is K-

quasiround for some K ⩾ 1 by assumption. In particular,

(diam p)2 ⩽
4K2Area(p)

π
for every p ∈ PS ,

so

(3.6)
∑
p∈PS

ρ(p)2 ⩽
∑
p∈PS

16K2Area(p)

πR2
k

⩽
16K2Area(D(0, 2Rk))

πR2
k

⩽ 64K2.

Combining the estimates and letting j → ∞ gives (3.5). □

We remark that (3.6) is the only estimate in the proof of Theorem 3.1
which depends on the quasiroundness assumption.

We are now ready to prove (3.4). By Lemma 3.3, given ℓ ∈ N there is
j′(ℓ) so that if 1 ⩽ k ⩽ ℓ and j ⩾ j′(ℓ), then modΩj Λ(j, k) ⩽ 2M and
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no p ∈ C(Ωj) other than pj(p̄) intersects both Ak and Ak+1. Let ρj,k be
admissible for Λ(j, k) and∫

Ωj

ρ2j,k dA+
∑

p∈C(Ωj)

ρj,k(p)
2 ⩽ 3M.

Now, since diamWm → 0 as m → ∞, there is m(ℓ) so that if m ⩾ m(ℓ)

then ρ = ℓ−1
∑ℓ

k=1 ρj,k is admissible for Γ(j,m) for all j ⩾ max{j′(ℓ), j(m)}.
Therefore,

modΩj Γ(j,m) ⩽
∫
Ωj

ρ2 dA+
∑

p∈C(Ωj)

ρ(p)2 ⩽ 3Mℓ−1

for all j ⩾ max{j′(ℓ), j(m)}. Now, (3.4) follows by letting j → ∞, then
m→ ∞, and then ℓ→ ∞. The proof of Theorem 3.1 is complete.

4. Definition of quasiconformality

We will show that the limiting map f of Theorem 1.2 is conformal using
a variant of a recent characterization of quasiconformality due to the first-
named author [Nta].

Let A ⊂ C be a bounded open set. The eccentricity E(A) of A is the
infimum of all numbers H ⩾ 1 for which there exists an open ball B such
that B ⊂ A ⊂ HB. Let g : U → V be a homeomorphism between open sets
U, V ⊂ C. The eccentric distortion of g at a point x ∈ U , denoted by Eg(x),
is the infimum of all values H ⩾ 1 such that there exists a sequence of open
sets An ⊂ U , n ∈ N, containing x with diamAn → 0 as n → ∞ and with
the property that E(An) ⩽ H and E(g(An)) ⩽ H for each n ∈ N.

THEOREM 4.1. Let g : U → V be an orientation-preserving homeomor-

phism between open sets U, V ⊂ C. Let G ⊂ U be a set with the property

that

H1(g(|γ| ∩G)) = 0

for a.e. horizontal and a.e. vertical line segment γ in U . Suppose that there

exists H ⩾ 1 such that Eg(x) ⩽ H for each point x ∈ U \ G. Then g

is quasiconformal in U , quantitatively. Moreover, if G is measurable and

H = 1, then g is conformal in U .

Recall that |γ| denotes the image of the path γ. Also, see [Hei01, §8.3]
for the definition of Hausdorff 1-measure H1 and Hausdorff 1-content H1

∞.
We recall the definition of 2-modulus. Let Γ be a family of curves in C. A
Borel function ρ : C → [0,∞] is admissible for Γ if∫

γ
ρ ds ⩾ 1

for all rectifiable curves γ ∈ Γ. The 2-modulus of Γ is defined to be

modΓ = inf
ρ

∫
ρ2 dA,

where the infimum is taken over all admissible functions. The proof of
Theorem 4.1 is a slight modification of the proof of [Nta, Theorem 3.3].
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Proof. By the assumption regarding Eg and [Nta, Theorem 3.1], there exists

a curve family Γ0 with modΓ0 = 0 and a Borel function ρg : U → [0,∞] with

ρg ∈ L2
loc(U) such that for all curves γ /∈ Γ0 with trace in U we have

H1
∞(g(|γ| \G)) ⩽

∫
γ
ρg ds(4.1)

and for each Borel function ρ : V → [0,∞] we have∫
U
(ρ ◦ g) · ρ2g dA ⩽ c(H)

∫
V
ρ dA.(4.2)

We will show that for each open rectangle Q with Q ⊂ Q ⊂ U with sides

parallel to the coordinate axes we have

modΓ(Q) ⩽ c(H)mod g(Γ(Q)),(4.3)

where Γ(Q) denotes the family of curves joining the horizontal (resp. ver-

tical) sides of Q. By a result of Gehring–Väisälä [GV61, Theorem 2], this

implies that g is quasiconformal, quantitatively. Let Q ⊂ Q ⊂ U be a rec-

tangle with sides parallel to the coordinate axes and ρ : V → [0,∞] be a

Borel function that is admissible for g(Γ(Q)).

Without loss of generality, suppose that Γ(Q) is the family of curves

joining the left to the right side of Q. For a.e. horizontal line segment

γ ∈ Γ(Q), γ : [a, b] → Q, and for [s, t] ⊂ [a, b] we have

|g(γ(t))− g(γ(s))| ⩽ H1
∞(g(γ([s, t]))) = H1

∞(g(γ([s, t]) \G))

⩽
∫
γ|[s,t]

ρg ds <∞,

where use used the assumption on the set G, (4.1), and Fubini’s theorem.

This implies that (e.g., see [Väi71, Theorem 5.3])∫
γ
(ρ ◦ g) · ρg ds ⩾

∫
γ
ρ ds ⩾ 1.

Therefore, (ρ ◦ g) · ρg is admissible for a family containing a.e. horizontal

line segment of Γ(Q), which can be seen to have the same modulus as Γ(Q)

with a straightforward argument. Hence by (4.2),

modΓ(Q) ⩽
∫
U
(ρ ◦ g)2 · ρ2g dA ⩽ c(H)

∫
V
ρ2 dA.

This implies the desired (4.3) and proves the first part of the theorem.

If the set G is measurable then g(G) is also measurable by quasiconfor-

mality. We set f = g−1 = u+ iv, which is quasiconformal, and we have∫
g(G)

|∇v| dA =

∫
H1(v−1(t) ∩ g(G)) dt

by the coarea formula for Sobolev functions [MSZ03]. By assumption, for

a.e. t ∈ R we have H1(v−1(t) ∩ g(G)) = 0. Hence |∇v|χg(G) = 0 a.e. By

quasiconformality, we cannot have |∇v| = 0 on a set of positive measure,
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since this would imply that Jf = 0 on a set of positive measure. Hence,

Area(g(G)) = 0. Again, by quasiconformality, Area(G) = 0. Therefore, if

H = 1, then Eg(x) = 1 for a.e. x ∈ U . This now implies that f is conformal,

as shown in [Nta23b, Lemma 2.5]. □

5. Regularity of limiting map

As in the first conclusion of Theorem 1.2, let Ω ⊂ Ĉ be a circle domain
and let (Ωj)j∈N be a quasiround exhaustion of Ω such that (fj)j∈N converges
locally uniformly to a conformal homeomorphism f from Ω onto a circle
domain D ⊂ Ĉ. In addition suppose that ∂Ω has 2-measure zero. Let
g = f−1 and gj = f−1

j , j ∈ N. We consider the derivative |Dg| : D → (0,∞)

in the Riemannian metric of Ĉ. If z, g(z) ∈ C, then

|Dg|(z) = 1 + |z|2

1 + |g(z)|2
|g′(z)|.

Throughout the section, we use the spherical metric σ and measure Σ on
Ĉ, even if this is not explicitly stated. In particular, line integrals and 2-
modulus are computed with respect to the spherical metric. Our main goal
in this section is to show the next statement, under the above assumptions.

Proposition 5.1. There exists a family of curves Γ0 in Ĉ with modΓ0 = 0

such that for all curves γ : [a, b] → Ĉ outside Γ0 with γ(a), γ(b) ∈ D we have

σ(g(γ(a)), g(γ(b))) ⩽
∫
γ
|Dg|χD ds+

∑
q∈C(D)
q∩|γ|̸=∅

diam ĝ(q).

We will need several preparatory statements. In the next statements,
closed disks can be degenerate, i.e., they can have radius equal to zero.

Lemma 5.2 ([Nta23, Lemma 4.14]). For each n ∈ N, let qi,n, i ∈ I ∩
{1, . . . , n}, where I ⊂ N, be a collection of pairwise disjoint closed disks in

Ĉ. Suppose that there exists a collection of pairwise disjoint closed disks qi,

i ∈ N, with the property that

lim
n→∞

qi,n = qi

for each i ∈ I, in the Hausdorff sense. Then for each non-negative sequence

(λi)i∈I ∈ ℓ2(N) there exists a family of curves Γ0 in Ĉ with modΓ0 = 0 such

that for all curves γ /∈ Γ0 we have

lim sup
n→∞

∑
i:qi,n∩|γ|̸=∅

λi ⩽
∑

i:qi∩|γ|̸=∅

λi.

Lemma 5.3. For each n ∈ N, let qi,n, i ∈ In, be a collection of pairwise

disjoint closed disks on Ĉ and (λi,n)i∈In be a non-negative sequence with

lim
n→∞

∑
i∈In

λ2i,n = 0
(
resp.

∑
i∈In

λ2i,n <∞ for each n ∈ N
)
.
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Then there exists a family of curves Γ0 in Ĉ with modΓ0 = 0 such that for

all curves γ /∈ Γ0 we have

lim
n→∞

∑
i:qi,n∩|γ|̸=∅

λi,n = 0
(
resp.

∑
i:qi,n∩|γ|̸=∅

λi,n <∞ for each n ∈ N
)
.

Proof. Note that the conclusion is true for constant curves, as

lim
n→∞

sup
i∈In

λi,n = 0
(
resp. sup

i∈In
λi,n <∞.

)
(5.1)

Let Jn ⊂ In be the set of indices i ∈ In such that diam qi,n > 0. For n ∈ N
define

ϕn =
∑
i∈Jn

λi,n
diam qi,n

χ2qi,n ,

where 2qi,n denotes the disk with the same center as qi,n and twice the

radius (in the spherical metric). By a variation of Bojarski’s lemma ([Boj88],

[Nta23, Lemma 2.7]), we have

∥ϕn∥2L2(Ĉ) ⩽ C
∑
i∈Jn

λ2i,n.

By assumption, we have ϕn → 0 in L2(Ĉ) (resp. ϕn ∈ L2(Ĉ)). Hence,

by Fuglede’s lemma [HKST15, p. 131], there exists a curve family Γ1 with

modΓ1 = 0 such that

lim
n→∞

∫
γ
ϕn ds = 0

(
resp.

∫
γ
ϕn ds <∞

)
(5.2)

for γ /∈ Γ1. Let γ /∈ Γ1 be a non-constant curve. Observe that there exists

N ∈ N, depending on γ, such that the set

Kn = {i ∈ Jn : diam(2qi,n) ⩾ diam(|γ|) > 0}

has at most N elements; to see this, compare the area of
⋃

i∈Kn
qi,n with the

area of Ĉ. Thus, for i ∈ Jn \Kn with qi,n ∩ |γ| ≠ ∅ we have

λi,n ⩽
∫
γ

λi,n
diam qi,n

χ2qi,n ds.

It follows that ∑
i∈Jn\Kn

qi,n∩|γ|̸=∅

λi,n ⩽
∫
γ
ϕn ds.

Also, ∑
i∈Kn

qi,n∩|γ|̸=∅

λi,n ⩽ N sup
i∈In

λi,n.

By (5.1) and (5.2), we conclude that

lim
n→∞

∑
i∈Jn

qi,n∩|γ|̸=∅

λi,n = 0
(
resp.

∑
i:qi,n∩|γ|̸=∅

λi,n <∞
)

whenever γ /∈ Γ1 and γ is non-constant.
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Finally, note that the family Γ2 of non-constant curves passing through

the countably many points qi,n, i ∈ In\Jn, has 2-modulus zero [Väi71, §7.9].
This implies the statement for Γ0 = Γ1 ∪ Γ2. □

In the next lemma, gj = f−1
j : Dj → Ωj , j = 1, 2, . . ., are the maps

defined in the beginning of this section.

Lemma 5.4. If we pass to a subsequence of (gj)j∈N, there exists a family

of curves Γ0 in Ĉ with modΓ0 = 0 such that for all curves γ /∈ Γ0 we have

lim sup
j→∞

∑
q∈C(Dj)
q∩|γ|̸=∅

diam ĝj(q) ⩽
∑

q∈C(D)
q∩|γ|̸=∅

diam ĝ(q).

Proof. We enumerate the components of CN (Ω) as pi, i ∈ I, where I ⊂ N,
and let qi ∈ C(D) be such that ĝ(qi) = pi. Let n ∈ N and consider a

large enough j(n) ⩾ n so that for i ∈ I ∩ {1, . . . , n} there are components

pi,j(n) ∈ C(Ωj(n)) that are pairwise disjoint and

pi ⊂ pi,j(n) ⊂ (1 + 1/n)pi.

Consider qi,n ∈ C(Dj(n)) such that ĝj(n)(qi,n) = pi,j(n).

For each i ∈ I, by Theorem 3.1, qi,n converges to qi as n→ ∞. By Lemma

5.2, we have

lim sup
n→∞

∑
i:qi,n∩|γ|̸=∅

diam ĝ(qi) ⩽
∑

i:qi∩|γ|̸=∅

diam ĝ(qi) ⩽
∑

q∈C(D)
q∩|γ|̸=∅

diam ĝ(q)

for all curves γ outside a family Γ0 of 2-modulus zero. Also,

diam ĝj(n)(qi,n) = diam pi,j(n) ⩽ (1 + 1/n) diam ĝ(qi)

so we obtain

lim sup
n→∞

∑
i:qi,n∩|γ|̸=∅

diam ĝj(n)(qi,n) ⩽
∑

q∈C(D)
q∩|γ|̸=∅

diam ĝ(q).

It remains to treat the sum of λn(q) = diam ĝj(n)(q) over q ∈ In =

C(Dj(n)) \ {qi,n : i ∈ I ∩{1, . . . , n}} with q∩ |γ| ≠ ∅, and show that the limit

is zero for all curves γ outside another exceptional family of 2-modulus zero.

This is an immediate consequence of Lemma 5.3, upon verifying that

lim
n→∞

∑
q∈In

λn(q)
2 = 0.

Since ∂Ω has area zero, for each ε > 0 there exists δ > 0 such that

Σ(Nδ(∂Ω)) < ε.

We claim that there exists N ∈ N such that for n > N and q ∈ In we have

ĝj(n)(q) ⊂ Nδ(∂Ω). Assuming this, since (Ωj)j∈N is a quasiround exhaustion
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of Ω, we have∑
q∈In

λn(q)
2 ⩽ C

∑
q∈In

Σ(ĝj(n)(q)) ⩽ CΣ(Nδ(∂Ω)) < Cε

for n > N . This completes the proof.

Now we prove the claim. Since (Ωj)j∈N is an exhaustion of Ω, there exists

N0 ∈ N such that ĝj(n)(q) ⊂ Nδ(Ĉ \ Ω) for q ∈ C(Dj(n)) and n > N0. In

particular,

ĝj(n)(q) ∩ Ω ⊂ Nδ(∂Ω) for q ∈ C(Dj(n)) and n > N0.

Also, since Ω is a circle domain, there exists N > N0 such that if i ∈ I

and i > N , then diam pi < δ. If q ∈ In, then ĝj(n)(q) does not intersect

p1, . . . , pn. Hence, if n > N and q ∈ In, then each point z ∈ ĝj(n)(q) \Ω lies

in some pi(z) with i(z) > n > N . By our choice of N we have diam pi(z) < δ,

and therefore pi(z) ⊂ Nδ(∂pi(z)) ⊂ Nδ(∂Ω). This completes the proof of the

claim. □

Proof of Proposition 5.1. Recall that gj = f−1
j : Dj → Ωj , j ∈ N. Since gj

is a conformal map between finitely connected domains, we have

σ(gj(γ(a)), gj(γ(b))) ⩽
∫
γ
|Dgj |χDj ds+

∑
q∈C(Dj)
q∩|γ|̸=∅

diam ĝj(q)(5.3)

for every rectifiable curve γ : [a, b] → Ĉ with γ(a), γ(b) ∈ Dj .

Since gj → g locally uniformly in D, we have |Dgj | → |Dg| locally uni-

formly in D. In fact, |Dgj |χDj also converges strongly in L2(Ĉ) to |Dg|χD.

To see this, let ε > 0 and K ⊂ Ω be a compact set with Σ(Ω \ K) < ε.

Then by kernel convergence, fj(K) is contained in a compact set K ′ that is

contained in Dj for all large j. We have that |Dgj |χK′ → |Dg|χK′ strongly

in L2(Ĉ) and∫
|Dgj |2χDj\K′ dΣ ⩽ Σ(Ωj \K) ⩽ Σ(Ω \K) < ε

for large j. The integral of |Dg|2χD\K′ is also less than ε. This implies the

claim regarding strong convergence.

By Fuglede’s lemma [HKST15, p. 131], there exists a curve family Γ1 of

2-modulus zero such that for γ /∈ Γ1 we have∫
γ
|Dgj |χDj ds→

∫
γ
|Dg|χD ds.

By Lemma 5.4, if we pass to a subsequence, there exists a curve family Γ2

of 2-modulus zero such that for γ /∈ Γ2 we have

lim sup
j→∞

∑
q∈C(Dj)
q∩|γ|̸=∅

diam ĝj(q) ⩽
∑

q∈C(D)
q∩|γ|̸=∅

diam ĝ(q).
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For γ /∈ Γ0 = Γ1 ∪Γ2 we combine the above with (5.3) to obtain the desired

conclusion. □

6. Conformal extension to the sphere

In this ultimate section we complete the proof of Theorem 1.2 by proving
the following more general result.

THEOREM 6.1. Let g : D → Ω be a conformal homeomorphism between

circle domains D,Ω ⊂ Ĉ that satisfies the conclusion of Proposition 5.1.

Then g is the restriction of a Möbius transformation of Ĉ.

The proof follows closely the proof of [Nta23b, Theorem 1.2]. Let g : D →
Ω be a map as in Theorem 6.1. We establish some preliminary statements.

Lemma 6.2. The map g has an extension to a homeomorphism from D

onto Ω.

Proof. The conclusion of Proposition 5.1 is exactly the same as the conclu-

sion of [Nta23b, Theorem 3.1]. This conclusion is the main assumption for

the considerations in [Nta23b, Section 4], which imply that g is a packing-

conformal map in the sense of [Nta23]. As shown in [Nta23b, Section 4]

this implies that g has a homeomorphic extension to the closures; see also

Theorems 6.1 and 7.1 in [Nta23]. □

Lemma 6.3. For each (anti-)Möbius transformation T : Ĉ → Ĉ and for

a.e. horizontal and a.e. vertical line segment γ in C we have

H1((g ◦ T−1)(|γ| ∩ T (∂D))) = 0.

Proof. By Lemma 6.2, g has a homeomorphic extension to the closure of D.

This implies that

diam ĝ(q) = 0 for q ∈ C(D) \ CN (D).(6.1)

Let Γ0 be the curve family with modΓ0 = 0 given by Proposition 5.1.

Then modT (Γ0) = 0. Therefore, for a.e. horizontal (resp. vertical) line

segment γ : [a, b] → C (with an injective parametrization), the inequality in

Proposition 5.1 is true for γ̃ = T−1◦γ and for all of its subcurves. Moreover,

by the very last inequality of Lemma 5.3, and upon enlarging the exceptional

curve family Γ0 if necessary, we may assume that the right-hand side of the

inequality of Proposition 5.1 is finite for such γ̃. Finally, if we enlarge again

Γ0, we may have H1(|γ̃| ∩ ∂q) = 0 for each q ∈ C(D). In particular, the

circular arc |γ̃| intersects each circle ∂q in at most two points.

Let A ⊂ CN (D) be a finite set and B ⊂ D be a compact set. The set

[a, b] \ γ̃−1(B ∪
⋃
{q : q ∈ A}) is a countable union of disjoint intervals Oj ,
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j ∈ J . Let γj = γ̃|Oj , j ∈ J , and observe that

|γ̃| ∩ ∂D ⊂
( ⋃

j∈J
|γj | ∩ ∂D

)
∪
( ⋃

q∈A
∂q ∩ |γ̃|

)
,

where the latter union is a finite set. Therefore,

H1
∞(g(|γ̃| ∩ ∂D)) ⩽

∑
j∈J

diam g(|γj | ∩ ∂D).

Note that the curves γj , j ∈ J , are pairwise disjoint subarcs of a circle in Ĉ
and each disk q ∈ CN (D) can intersect at most one of them. Applying the

inequality of Proposition 5.1 to each γj , j ∈ J , and using (6.1), we obtain

H1
∞(g(|γ̃| ∩ ∂D)) ⩽

∑
j∈J

(∫
γj

|Dg|χD ds+
∑

q∈CN (D)
q∩|γj |̸=∅

diam ĝ(q)

)

⩽
∫
γ̃
|Dg|χD\B ds+

∑
q∈CN (D)\A
q∩|γ̃|̸=∅

diam ĝ(q).

As the set A increases to CN (D) and the set B increases to D, the right-hand

side converges to zero by dominated convergence. Hence

0 = H1
∞(g(|γ̃| ∩ ∂D)) = H1(g(|γ̃| ∩ ∂D)) = H1((g ◦ T−1)(|γ| ∩ T (∂D))).

This completes the proof. □

Proof of Theorem 6.1. Without loss of generality we assume that ∞ ∈ D

and g(∞) = ∞. With the aid of Lemma 6.2, we extend g to a homeomor-

phism of Ĉ through reflections across the boundary circles of D. A detailed

proof can be found in [NY20, Section 7.1]. Here we highlight the important

features of the extension procedure.

We denote by Si, i ∈ I, the collection of circles in ∂D, by Bi ⊂ Ĉ \ D
the open ball bounded by Si, and by Ri the reflection across the circle Si,

i ∈ I. Here, we regard I as a subset of N. Consider the free discrete

group generated by the family of reflections {Ri : i ∈ I}. This is called the

Schottky group of D and is denoted by Γ(D). Each T ∈ Γ(D) that is not the

identity can be expressed uniquely as T = Ri1 ◦ · · · ◦ Rik , where ij ̸= ij+1

for j ∈ {1, . . . , k − 1}. We also note that Γ(D) contains countably many

elements.

By Lemma 6.2, g extends to a homeomorphism between D and Ω. Hence,

there exists a natural bijection between Γ(D) and Γ(Ω), induced by g.

Namely, if R∗
i is the reflection across the circle S∗

i = g(Si), then for T =

Ri1 ◦ · · · ◦Rik we define T ∗ = R∗
i1
◦ · · · ◦R∗

ik
. By [NY20, Lemma 7.5], there

exists a unique extension of g to a homeomorphism g̃ of Ĉ with the property
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that T ∗ = g̃ ◦T ◦ g̃−1 for each T ∈ Γ(D). We will verify that g̃ is conformal.

For simplicity, we use the notation g instead of g̃.

For each point x ∈ Ĉ we have the following trichotomy; see Lemma 7.2

and Corollary 7.4 in [NY20].

(I) (Interior type) x ∈ T (D) for some T ∈ Γ(D).

(II) (Boundary type) x ∈ T (∂D) for some T ∈ Γ(D).

(III) (Buried type) There exists a sequence of indices (ij)j∈N with ij ̸=
ij+1 and disks D0 = Bi1 , Dk = Ri1 ◦ · · · ◦ Rik(Bik+1

) such that

Dk+1 ⊂ Dk for each k ⩾ 0 and {x} =
⋂∞

k=0Dk.

At each point x of interior type (I) the map g is conformal, so it maps

infinitesimal balls centered at x to infinitesimal balls centered at g(x). In

particular, Eg(x) = 1; recall the definition from Section 4. If x is of buried

type (III), then there exists a sequence of ballsDk, k ∈ N, shrinking to x such

that g(Dk), k ∈ N, are balls shrinking to g(x). It follows that Eg(x) = 1.

Finally, we treat points of boundary type (II). By Lemma 6.3, for each

T ∈ Γ(D) and for a.e. horizontal and a.e. vertical line segment γ in C, we
have

H1((g ◦ T−1)(|γ| ∩ T (∂D))) = 0.

Since (T−1)∗ ◦ g = g ◦ T−1, and (T−1)∗ is bi-Lipschitz, we obtain

H1(g(|γ| ∩ T (∂D))) = H1(((T−1)∗ ◦ g)(|γ| ∩ T (∂D))) = 0.

Therefore, for a.e. horizontal and a.e. vertical line segment γ in C we have

H1(g(|γ| ∩G)) = 0

where G is the countable union
⋃

T∈Γ(D) T (∂D). Observe that the Euclidean

metric is comparable to the spherical metric on G so the above statement is

true with respect to either metric. By Theorem 4.1, since G is measurable,

we conclude that g is conformal in Ĉ. □

7. No infinitesimally round exhaustions

It would be useful to have an improvement of Theorem 2.1 in which quasi-
round exhaustions of a circle domain Ω ⊂ Ĉ are replaced with infinitesimally
round exhaustions (Ωj)j∈N for which each Ωj is Kj-quasiround and Kj → 1
as j → ∞. However, such an improvement does not hold in general. We
construct circle domains which do not admit infinitesimally round exhaus-
tions.

Consider the closed disk centered at (0, 2) with radius 1 and the closed
disk centered at (0, 2/3) with radius 1/3. The two disks are tangent to
each other and we call them central. We also consider two lateral disks of
radius 2/9 that are tangent to both central disks as shown in Figure 4. We
consider scaled copies of all those disks so that we obtain a packing as in the
figure, with central disks of radii . . . , 9, 3, 1, 1/3, 1/9, . . . and lateral disks
of radii . . . , 6, 2, 2/3, 2/9, 2/27, . . . . The choice of the radii guarantees that
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(0, 2) 1

1− k−1

1/3

2/3

2/9

(0, 0)

Figure 4. Construction of the domain Gk.

all disks are contained in the region |x| < y. We rotate this packing by
multiples of π/2 so that we obtain four disjoint packings, each contained in
a complementary region of the lines y = |x|.

We denote by Dm, m ∈ Z, the family of all the closed disks chosen above.
Moreover, let

Gk = C \
(
{(0, 0)} ∪

⋃
m∈Z

(1− k−1)Dm

)
, k = 1, 2, . . . ,

G∞ = C \
(
{(0, 0)} ∪

⋃
m∈Z

Dm

)
.

Recall that if D = D(a, r) then δD = D(a, δr). See the dotted disks in
Figure 4 for the construction of the domains Gk and the larger disks for
the construction of G∞ The complementary components of Gk in C are
by definition the point (0, 0) and the disks (1 − k−1)Dm, so Gk is a circle
domain.

We claim that there exists k0 ∈ N so that if k ⩾ k0 then the circle do-
main Gk does not have infinitesimally round exhaustions. Suppose towards
contradiction that there is a subsequence (Gkℓ)ℓ∈N =: (Uℓ)ℓ∈N of (Gk)k∈N
so that each Uℓ has an infinitesimally round exhaustion. It follows that for
each ℓ ∈ N there are a closed disk D(aℓ, Rℓ) and a Jordan curve J̃ℓ ⊂ Uℓ

separating (0, 0) from ∞ that bounds a Jordan region Wℓ so that

(7.1) 0 < Rℓ < ℓ−1 and D(aℓ, Rℓ) ⊂Wℓ ⊂ D(aℓ, (1 + ℓ−1)Rℓ).

We scale each J̃ℓ by 3sℓ , sℓ ∈ N, so that the diameter of the scaled curve
Jℓ satisfies 1/3 < diam Jℓ ⩽ 1 and Jℓ separates (0, 0) from ∞. Notice that
Jℓ ⊂ Uℓ by the scaling invariance of Uℓ.

After possibly taking a subsequence, the curves Jℓ converge in the Haus-
dorff sense. By (7.1), the limit is a circle that we denote by S∞ and sat-
isfies 1/3 ⩽ diamS∞ ⩽ 1. Since each Jℓ surrounds the origin, we have
(0, 0) ∈ D∞, where D∞ is the closed disk bounded by S∞. Moreover, since
each Jℓ is a subset of Uℓ, we have S∞ ⊂ G∞.

It follows that there exists b0 ∈ S∞ that lies in one of the coordinate axes
but is not the origin. Since S∞ ⊂ G∞, b0 is a point where two central disks
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meet. We denote these disks by D1 and D2 and assume that D1 is the one
with larger diameter. Since D∞ contains the origin and the distance of D1

to the origin is equal to its diameter, we conclude that

diamD∞ ⩾ dist((0, 0), D1) = diamD1 > diamD2.

Consider the lateral disks D3, D4 that are tangent to D1 and D2. Since
S∞ ⊂ G∞, there exist distinct points b1, b2 ∈ S∞ so that b1 lies in D3 and
in one of D1 or D2, and b2 lies in D4 and in one of D1 or D2.

We now arrive at a contradiction by considering all possible cases. First,
if b0, b1, b2 all lie on the boundary of D1, then S∞ = ∂D1. This is a con-
tradiction since D∞ contains the origin. Next, if b1 (resp., b2) lies on the
boundary of D2, then since diam S∞ > D2, the shorter subarc of S∞ con-
necting b0 an b1 (resp., b0 and b2) passes through the interior of D2. This is
a contradiction because S∞ is a subset of G∞. The proof is complete.
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