UNIFORMIZATION OF PLANAR DOMAINS BY EXHAUSTION

KAI RAJALA

Abstract

We study the method of finding conformal maps onto circle domains by approximating with finitely connected subdomains. Every domain $D \subset \widehat{\mathbb{C}}$ admits exhaustions, i.e., increasing sequences of finitely connected subdomains D_{j} whose union is D. By Koebe's theorem, each D_{j} admits a conformal map $f_{D_{j}}$ from D_{j} onto a circle domain $f_{D_{j}}\left(D_{j}\right)$. Assuming $f_{D_{j}} \rightarrow f$, our goal is to find out if $f(D)$ is also a circle domain.

We present a countably connected D with an exhaustion $\left(D_{j}\right)$ so that $\left(f_{D_{j}}\right)$ has a limit whose image is not a circle domain, and a domain Ω with an exhaustion $\left(\Omega_{j}\right)$ so that $\left(f_{\Omega_{j}}\right)$ has a limit whose image has uncountably many non-point complementary components.

On the other hand, we prove that every exhaustion $\left(D_{j}\right)$ of a countably connected D admits a refinement so that the image of the corresponding limit map is a circle domain. Our result extends the HeSchramm theorem on the uniformization of countably connected domains and provides a new proof.

1. Introduction

1.1. Background. The long-standing Koebe conjecture [15] predicts that every domain $D \subset \hat{\mathbb{C}}$ admits a conformal map onto a circle domain, i.e., a domain whose set of complementary components consists of closed disks and points. See [10] for an overview. Koebe himself proved this to be the case for finitely connected domains, cf. [7, Theorem 5.1]. Koebe's theorem has been extended to cover finitely connected targets with varying boundary shapes, the most general results being those by Brandt [5] and Harrington [9]. See [20] for further information.

A major breakthrough was made by He and Schramm [10], who showed that the Koebe conjecture holds for countably connected domains. Soon after Schramm [19] introduced the transboundary extremal length (or transboundary modulus), and applied it to give a simplified proof to the HeSchramm theorem as well as a generalization to uncountably connected "cofat" domains. See also [11], [12], [13]. Recently, results related to the Koebe conjecture have been established in [2], [14], [16], [18], [21], and [22].

The proofs by He-Schramm and Schramm apply approximation of a given domain from outside by a decreasing sequence of finitely connected domains together with Koebe's theorem to construct a sequence of conformal maps whose limit has circle domain image. In this paper, we study a modification of this method where a given domain is approximated from inside by exhaustions, i.e., increasing sequences of finitely connected subdomains.

[^0]Our approach is motivated by the fact that exhaustions offer more flexibility than approximations from outside. They can potentially be applied to gain a better understanding of the Koebe conjecture and related problems. The challenge is in finding exhaustions with the desired properties among all the exhaustions of a given domain.

Theorems 1.1 and 1.2 below show that an arbitrary exhaustion does not work in general; the image of the limit map is not always a circle domain. However, our main result, Theorem 1.3, shows that any exhaustion of a countably connected domain admits a refinement so that the image of the corresponding limit map is a circle domain. We now describe our results in detail.
1.2. Main results. An exhaustion Φ of a domain $D \subset \hat{\mathbb{C}}$ is a sequence of domains $D_{j} \subset D$, each bounded by finitely many disjoint Jordan curves in D, such that

$$
D_{j} \subset D_{j+1} \text { for all } j=1,2, \ldots \text { and } D=\cup_{j} D_{j}
$$

We fix disjoint points $a_{0}, a_{1}, a_{2} \in D_{1}$. Then by Koebe's theorem there are unique conformal maps $f_{j}: D_{j} \rightarrow \tilde{D}_{j}$ onto circle domains $\tilde{D}_{j} \subset \hat{\mathbb{C}}$ so that $f_{j}\left(a_{k}\right)=a_{k}$ for $k=0,1,2$. Sequence $\left(f_{j}\right)$ has a subsequence converging locally uniformly to a conformal $f: D \rightarrow f(D)$. We denote
$\mathcal{F}_{\Phi}=\left\{f: D \rightarrow f(D): f\right.$ is the limit of a subsequence of $\left.\left(f_{j}\right)\right\}$.
If \mathcal{F}_{Φ} contains only one map f, i.e., if $\left(f_{j}\right)$ converges, we denote $f=f_{\Phi}$. The use of this notation always contains the implicit assumption that $f_{j} \rightarrow f_{\Phi}$.

THEOREM 1.1. There is a countably connected domain $D \subset \hat{\mathbb{C}}$ with exhaustion Φ such that $f_{\Phi}(D)$ is not a circle domain.

We denote the set of complementary components of domain G by $\mathcal{C}(G)$. We say that $p \in \mathcal{C}(G)$ is non-trivial if $\operatorname{diam}(p)>0$.
THEOREM 1.2. There is a domain $D \subset \hat{\mathbb{C}}$ with exhaustion Φ such that $\mathcal{C}\left(f_{\Phi}(D)\right)$ contains uncountably many non-trivial elements.

Theorems 1.1 and 1.2 are in sharp contrast to [7, Theorem 2.1] on slit domains, i.e., domains whose sets of complementary components consist of vertical segments and points; if Φ is an exhaustion of D and if the targets \tilde{D}_{j} above are slit domains so that $f_{j} \rightarrow f$, then $f(D)$ is always a slit domain.

In view of Theorems 1.1 and 1.2 , in order to produce a limit map onto a circle domain it is necessary to modify, or refine, a given exhaustion. Let $\Phi=\left(D_{j}\right)$ and $\Phi^{\prime}=\left(D_{j}^{\prime}\right)$ be exhaustions of D. We say that Φ is a refinement of Φ^{\prime}, if every $p \in \mathcal{C}\left(D_{j}\right)$ is an element of $\mathcal{C}\left(D_{j(p)}^{\prime}\right)$ for some $j(p) \geqslant j$. Our main result reads as follows.

THEOREM 1.3. Every exhaustion of a countably connected domain $D \subset$ $\hat{\mathbb{C}}$ has a refinement Φ such that $f_{\Phi}(D)$ is a circle domain.

Since every domain admits an exhaustion, Theorem 1.3 gives a new proof to the He-Schramm theorem. Our main tools are transfinite induction, which was also used by He-Schramm and Schramm, and Schramm's transboundary modulus.

2. Proof of Theorem 1.3

Let $G \subset \hat{\mathbb{C}}$ be a domain and $\hat{G}=\hat{\mathbb{C}} / \sim$, where

$$
x \sim y \text { if either } x=y \in G \text { or } x, y \in p \text { for some } p \in \mathcal{C}(G)
$$

The corresponding quotient map is $\pi_{G}: \hat{\mathbb{C}} \rightarrow \hat{G}$. Identifying each $x \in G$ and $p \in \mathcal{C}(G)$ with $\pi_{G}(x)$ and $\pi_{G}(p)$, respectively, we have

$$
\hat{G}=G \cup \mathcal{C}(G)
$$

A homeomorphism $f: G \rightarrow G^{\prime}$ has a homeomorphic extension $\hat{f}: \hat{G} \rightarrow \hat{G}^{\prime}$.
Let $\Phi^{\prime}=\left(D_{j}^{\prime}\right)$ be an exhaustion of a countably connected domain D. We consider the following property: If $q_{1} \in \mathcal{C}\left(D_{j_{1}}^{\prime}\right)$ and $q_{2} \in \mathcal{C}\left(D_{j_{2}}^{\prime}\right), j_{1} \geqslant j_{2}$, and if $q_{1} \cap q_{2} \neq \emptyset$, then

$$
\begin{equation*}
\text { either } q_{1}=q_{2} \text { or } q_{1} \text { lies in the interior of } q_{2} \tag{1}
\end{equation*}
$$

It is not difficult to see that any exhaustion $\Phi^{\prime \prime}$ of D has a refinement Φ^{\prime} satisfying (1). Since any refinement of Φ^{\prime} is also a refinement of $\Phi^{\prime \prime}$, we conclude that it suffices to prove Theorem 1.3 for exhaustions satisfying (1).

We prove Theorem 1.3 using transfinite induction (cf. [6]) and the following result. In this paper, we allow closed disks to have zero diameter. For instance, in the following proposition a disk $q \in \mathcal{C}(D)$ may be a point component.

Proposition 2.1. Let $D \subset \hat{\mathbb{C}}$ be a countably connected domain. Fix an exhaustion $\Phi^{\prime}=\left(D_{j}^{\prime}\right)$ of D satisfying $(1), p \in \mathcal{C}(D)$, and an open neighborhood U of p in $\hat{\mathbb{C}}$ such that $\bar{U} \in \mathcal{C}\left(D_{n}^{\prime}\right)$ for some index n. Moreover, suppose every $f \in \mathcal{F}_{\Phi^{\prime}}$ satisfies

$$
\begin{equation*}
\hat{f}(q) \text { is a disk for all } q \in \mathcal{C}(D) \backslash\{p\}, q \subset U \tag{2}
\end{equation*}
$$

Then Φ^{\prime} has a refinement $\Phi_{p}=\left(D_{j}(p)\right)$ such that

$$
\begin{equation*}
D_{j}(p) \backslash U=D_{j}^{\prime} \backslash U \quad \text { for all } j \in \mathbb{N} \quad \text { and } \tag{3}
\end{equation*}
$$

(4) if Φ is any refinement of Φ_{p}, then $\hat{g}(p)$ is a disk for all $g \in \mathcal{F}_{\Phi}$.
2.1. Transfinite induction. Suppose $D \subsetneq \hat{\mathbb{C}}$ is a countably connected domain. We lose no generality by assuming that the number of complementary components of D is infinite. We denote $E_{0}=\hat{D} \backslash D$. For any compact nonempty $E \subset E_{0}$, let

$$
E^{*}=\{p \in E: p \text { is not isolated in } E\}
$$

By the Baire category theorem, $E^{*} \subsetneq E$. We can now use transfinite induction to define a well ordered set of subsets E_{α} of E_{0} as follows: Given an ordinal $\alpha>0$, we define

$$
E_{\alpha}= \begin{cases}\left(E_{\beta}\right)^{*}, & \text { if } \alpha=\beta+1 \text { is a successor ordinal, } \\ \cap_{\beta<\alpha} E_{\beta}, & \text { if } \alpha \text { is a limit ordinal. }\end{cases}
$$

It follows that each E_{α} is compact and $E_{\alpha} \subsetneq E_{\beta}$ if $\alpha>\beta$ and $E_{\beta} \neq \emptyset$. There is an α_{L} so that $E_{\alpha_{L}}$ is finite and non-empty, thus $E_{\alpha_{L}+1}=\emptyset$.

We now show how Theorem 1.3 follows from Proposition 2.1.

Proposition 2.2. Let $\Phi(0)=\left(D_{j}(0)\right)$ be an exhaustion of D satisfying (1). For every ordinal $0 \leqslant \alpha \leqslant \alpha_{L}+1$ there is an exhaustion $\Phi(\alpha)=\left(D_{j}(\alpha)\right)$ of D so that
(i) if $0 \leqslant \beta \leqslant \alpha$, then $\Phi(\alpha)$ is a refinement of $\Phi(\beta)$, and
(ii) if Φ is any refinement of $\Phi(\alpha)$, then

$$
\begin{equation*}
\hat{f}(q) \text { is a disk for all } f \in \mathcal{F}_{\Phi} \text { and } q \in E_{0} \backslash E_{\alpha} \tag{5}
\end{equation*}
$$

Suppose $\Phi\left(\alpha_{L}+1\right)=\left(D_{j}\right)$ satisfies (5), and let $\left(f_{j_{k}}\right)$ be a subsequence of the corresponding $\left(f_{j}\right)$ converging to some f. Choosing $\Phi=\left(D_{j_{k}}\right)$ and $f=f_{\Phi}$ shows that Theorem 1.3 follows from Proposition 2.2.

Proof of Proposition 2.2 assuming Proposition 2.1. First, we enumerate the elements $p=p(k) \in \mathcal{C}(D)$, and denote $p(k) \prec p(\ell)$ if $k<\ell$. This should not be confused with the ordering of the sets E_{α}. Each p belongs to $E_{\alpha} \backslash E_{\alpha+1}$ for exactly one $0 \leqslant \alpha \leqslant \alpha_{L}$. Fix such an α. Then each $p \in E_{\alpha} \backslash E_{\alpha+1}$ admits an open neighborhood $U_{p} \subset \hat{\mathbb{C}}$ so that $\bar{U}_{p} \in \mathcal{C}\left(D_{j}(0)\right)$ for some j,
(6) $\pi_{D}\left(\bar{U}_{p}\right) \cap E_{\alpha+1}=\emptyset, \quad$ and
(7) $\bar{U}_{p} \cap \bar{U}_{q}=\emptyset \quad$ if $q \in E_{\alpha} \backslash\left(E_{\alpha+1} \cup\{p\}\right)$ or if $q \in E_{0} \backslash E_{\alpha}$ satisfies $q \prec p$.

We apply transfinite induction. The claims of the proposition clearly hold for $\alpha=0$ with the given exhaustion $\Phi(0)$. We assume that the claims hold for all $\beta<\alpha$ and verify them for α.

Let $\alpha=\beta+1$ be a successor ordinal. By the induction assumption, (6) and (7), Condition (2) in Proposition 2.1 is satisfied with $\Phi^{\prime}=\Phi(\beta)$, $p \in E_{0} \backslash E_{\beta}$, and $U=U_{p}$. The proposition combined with our choice of U_{p} then gives a refinement $\Phi(\alpha)=\left(D_{j}(\alpha)\right)$ of $\Phi(\beta)=\left(D_{j}(\beta)\right)$ so that

$$
\begin{equation*}
D_{j}(\alpha) \backslash \bigcup_{p \in E_{\beta} \backslash E_{\alpha}} U_{p}=D_{j}(\beta) \backslash \bigcup_{p \in E_{\beta} \backslash E_{\alpha}} U_{p} \tag{8}
\end{equation*}
$$

and so that (5) holds for all $p \in E_{\beta} \backslash E_{\alpha}$. Notice again that if Φ^{\prime} is a refinement of Φ and if $\Phi^{\prime \prime}$ is a refinement of Φ^{\prime}, then $\Phi^{\prime \prime}$ is a refinement of Φ. The claims follow.

Now let $\alpha=\cap_{\beta<\alpha} \beta$ be a limit ordinal. We define $\Phi(\alpha)=\left(D_{j}(\alpha)\right)$ as follows: first, let

$$
\begin{equation*}
D_{j}(\alpha) \backslash\left(\bigcup_{p \in E_{0} \backslash E_{\alpha}} U_{p}\right)=D_{j}(0) \backslash\left(\bigcup_{p \in E_{0} \backslash E_{\alpha}} U_{p}\right) . \tag{9}
\end{equation*}
$$

Fix $p \in E_{0} \backslash E_{\alpha}$. Each $q \in E_{0}$ belongs to some $E_{\beta(q)} \backslash E_{\beta(q)+1}$. With this notation, we have $\beta(p)<\alpha$.

By (7) there are only finitely many $q \in E_{\beta(p)} \backslash E_{\alpha}$ such that

$$
\begin{equation*}
\bar{U}_{p} \cap \bar{U}_{q} \neq \emptyset . \tag{10}
\end{equation*}
$$

Moreover, since each such \bar{U}_{q} belongs to $\mathcal{C}\left(D_{j}(0)\right)$, (6) and (7) show that

$$
\begin{equation*}
U_{p} \subset U_{q} \subset U_{q^{\prime}} \tag{11}
\end{equation*}
$$

if both \bar{U}_{q} and $\bar{U}_{q^{\prime}}$ satisfy (10) and $\beta(q) \leqslant \beta\left(q^{\prime}\right)$.
Among the elements q for which (10) holds, let $q(p)$ be the one with the maximal $\beta(q)$. Then $\beta(p) \leqslant \beta(q(p))<\alpha$. We set

$$
\begin{equation*}
D_{j}(\alpha) \cap U_{p}=D_{j}(\beta(q(p))) \cap U_{p}, \quad p \in E_{0} \backslash E_{\alpha} . \tag{12}
\end{equation*}
$$

Then (9) and (12) define $\Phi(\alpha)=\left(D_{j}(\alpha)\right)$. Furthermore, (8), (11), and the induction assumption show that $\Phi(\alpha)$ is a refinement of every $\Phi(\beta), \beta \leqslant \alpha$, and that (5) holds. The proof is complete, modulo Proposition 2.1.
2.2. Transboundary modulus. We will apply the following generalization of conformal modulus, first introduced by Schramm [19]. In addition to its importance in classical uniformization problems, this method has played a central role in recent developments on the uniformization of fractal metric spaces, cf. [1], [3], [4], [8], [17].

Let $G \subset \hat{\mathbb{C}}$ be a domain. The transboundary modulus $\bmod (\Gamma)$ of a family Γ of paths in \hat{G} is

$$
\bmod (\Gamma)=\inf _{\rho \in X(\Gamma)} \int_{G} \rho^{2} d A+\sum_{p \in \mathcal{C}(G)} \rho(p)^{2},
$$

where $X(\Gamma)$ consists of all Borel functions $\rho: \hat{G} \rightarrow[0, \infty]$ for which

$$
1 \leqslant \int_{\gamma} \rho d s+\sum_{p \in \mathcal{C}(G) \cap|\gamma|} \rho(p) \quad \text { for all } \gamma \in \Gamma .
$$

Here $\int_{\gamma} \rho d s$ is the path integral of the restriction of γ to G. More precisely, this restriction is a countable union of disjoint paths γ_{j}, each of which maps onto a component of $|\gamma| \backslash \mathcal{C}(G)$, and we define

$$
\int_{\gamma} \rho d s=\sum_{j} \int_{\gamma_{j}} \rho d s .
$$

As noticed in [19], the transboundary modulus is a conformal invariant.
Lemma 2.3. Suppose $f: G \rightarrow G^{\prime}$ is conformal. Then for every path family Γ and $\hat{f}(\Gamma)=\{\hat{f} \circ \gamma: \gamma \in \Gamma\}$ we have

$$
\bmod (\hat{f}(\Gamma))=\bmod (\Gamma) .
$$

The proof is a straightforward modification of the proof of the corresponding result for conformal modulus.

We will prove Proposition 2.1 by applying the following estimate. Given a domain $G \subset \hat{\mathbb{C}}$ and disjoint sets $A, B \subset \widehat{\mathbb{C}}$, we denote

$$
\begin{aligned}
\Gamma(A, B ; G) & =\left\{\text { paths in } \hat{G} \text { joining } \pi_{G}(A) \text { and } \pi_{G}(B)\right\}, \\
\bmod (A, B ; G) & =\bmod (\Gamma(A, B ; G)) .
\end{aligned}
$$

Proposition 2.4. Let $D \subset \hat{\mathbb{C}}$ be a countably connected domain. Fix an exhaustion $\Phi^{\prime}=\left(D_{j}^{\prime}\right)$ of D satisfying $(1), p \in \mathcal{C}(D)$, and an open neighborhood U of p in $\hat{\mathbb{C}}$ such that $\bar{U} \in \mathcal{C}\left(D_{n}^{\prime}\right)$ for some index n. Moreover, suppose every $q \in \mathcal{C}(D) \backslash\{p\}, q \subset U$, is a disk. Then Φ^{\prime} has a refinement $\Phi_{p}=\left(D_{j}(p)\right)$ satisfying

$$
D_{j}(p) \backslash U=D_{j}^{\prime} \backslash U \quad \text { for all } j \in \mathbb{N}
$$

so that if $\Phi=\left(D_{j}\right)$ is any refinement of Φ_{p}, then

$$
\begin{equation*}
\lim _{r \rightarrow 0} \limsup _{j \rightarrow \infty} \bmod \left(S(z, r) \backslash p_{j}, \partial U ; D_{j}\right)=0 \tag{13}
\end{equation*}
$$

for every $z \in p$, where p_{j} is the element of $\mathcal{C}\left(D_{j}\right)$ containing p.
Here and in what follows, if $z \in \mathbb{C}$ and $r>0$ then $B(z, r)$ is the open euclidean disk with center z and radius r, circle $S(z, r)$ is the boundary of $B(z, r)$, and $\bar{B}(z, r)=B(z, r) \cup S(z, r)$. Also, in (13) $S(\infty, r)=S(0,1 / r)$.

We postpone the proof of Proposition 2.4 until Section 2.4. We next show that Proposition 2.1 follows from Proposition 2.4.
2.3. From Proposition 2.4 to Proposition 2.1. Fix $\Phi^{\prime}=\left(D_{j}^{\prime}\right), p$, and U as in Proposition 2.1. Replacing D with $f(D)$ and Φ^{\prime} with $\left(f\left(D_{j}^{\prime}\right)\right)$ for some $f \in \mathcal{F}_{\Phi^{\prime}}$ if necessary, we may assume that the assumptions of Proposition 2.4 are valid. It then suffices to show that (13) implies (4) in Proposition 2.1: if Φ is any refinement of Φ_{p}, then $\hat{g}(p)$ is a disk for all $g \in \mathcal{F}_{\Phi}$.

Fix a refinement $\Phi=\left(D_{j}\right)$ of Φ_{p}. As before, let $f_{j}: D_{j} \rightarrow \tilde{D}_{j}$ be the associated conformal maps onto circle domains \tilde{D}_{j}. Fix $g \in \mathcal{F}_{\Phi}$. By passing to a subsequence if necessary, we may assume that $f_{j} \rightarrow g$.

Taking another subsequence if necessary, we may assume that $\left(\hat{f}_{j}\left(p_{j}\right)\right)$ Hausdorff converges to a closed disk B, where p_{j} is the element of $\mathcal{C}\left(D_{j}\right)$ containing p (recall that B may have zero radius).

Since $f_{j} \rightarrow g$, we have $B \subset \hat{g}(p)$. We will prove that in fact $B=\hat{g}(p)$. This implies (4).

Applying suitable Möbius transformations if necessary, we may assume that $U, f_{j}(\partial U)$ and $\hat{f}_{j}\left(p_{j}\right)$ are all subsets of $\bar{B}(0,1)$. It is then understood that all distances in the rest of the proof are euclidean (instead of spherical).

Towards contradiction, suppose that $B \subsetneq \hat{g}(p)$. Then

$$
\operatorname{dist}\left(w_{0}, B\right) \geqslant 2 \delta \quad \text { for some } w_{0} \in \partial \hat{g}(p) \text { and } \delta>0
$$

It follows that there are sequences $\left(j_{k}\right)$ and $\left(z_{k}\right)$ such that $j_{k}>k$ and $z_{k} \in \partial p_{k} \subset D_{j_{k}}$ for all $k \in \mathbb{N}$, and

$$
\operatorname{dist}\left(f_{j}\left(z_{k}\right), \hat{f}_{j}\left(p_{j}\right)\right) \geqslant \delta \quad \text { for all } j \geqslant j_{k}
$$

By passing to another subsequence if necessary, we may assume that

$$
z_{k} \rightarrow z \in p
$$

Fix $k \in \mathbb{N}$ and $j \geqslant j_{k}$. We construct a suitable path family $\Gamma(j, k)$ and estimate its modulus to arrive at a contradiction. Let $w \in \mathbb{C}$ be the point in $\hat{f}_{j}\left(p_{j}\right)$ closest to $f_{j}\left(z_{k}\right)$, and denote

$$
I=\left(w, f_{j}\left(z_{k}\right)\right), \quad \ell=\text { the line containing segment } I
$$

Let V_{j} be the bounded component of $\mathbb{C} \backslash f_{j}(\partial U)$, and denote the $f_{j}\left(z_{k}\right)$ - and w-components of $\bar{V}_{j} \cap(\ell \backslash I)$ by P^{\prime} and Q^{\prime}, respectively. Moreover, let

$$
P=\hat{f}_{j}^{-1}\left(\pi_{f_{j}\left(D_{j}\right)}\left(P^{\prime}\right)\right), Q=\hat{f}_{j}^{-1}\left(\pi_{f_{j}\left(D_{j}\right)}\left(Q^{\prime}\right)\right) \subset \hat{D}_{j} .
$$

There are unique points $a, b \in \partial U$ so that $\pi_{D_{j}}(a) \in P$ and $\pi_{D_{j}}(b) \in Q$. Let J_{1}, J_{2} be the connected components of $\partial U \backslash\{a, b\}$, and let

$$
\Gamma(j, k)=\left\{\text { paths joining } \pi_{D_{j}}\left(J_{1}\right) \text { and } \pi_{D_{j}}\left(J_{2}\right) \text { in } \pi_{D_{j}}(U) \backslash(P \cup Q)\right\} .
$$

Then every $\gamma \in \Gamma(j, k)$ passes through $\pi_{j}\left(B\left(z,\left|z-z_{k}\right|\right)\right)$, so if we denote $r_{k}=\left|z-z_{k}\right|$ and choose k large enough so that $S\left(z, r_{k}\right) \subset U$, we have

$$
\Gamma(j, k) \subset \Gamma\left(S\left(z, r_{k}\right) \backslash p_{j}, \partial U ; D_{j}\right)
$$

(observe that $\pi_{D_{j}}\left(p_{j}\right) \in Q$). Thus,

$$
\bmod (\Gamma(j, k)) \leqslant \bmod \left(S\left(z, r_{k}\right) \backslash p_{j}, \partial U ; D_{j}\right)
$$

so by (13),

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \limsup _{j \rightarrow \infty} \bmod (\Gamma(j, k))=0 . \tag{14}
\end{equation*}
$$

Lemma 2.5. We have

$$
\begin{equation*}
\bmod \left(\hat{f}_{j} \Gamma(j, k)\right) \geqslant M>0 \quad \text { for all } k \in \mathbb{N} \text { and } j \geqslant j_{k}, \tag{15}
\end{equation*}
$$

where $\hat{f}_{j} \Gamma(j, k)=\left\{\hat{f}_{j} \circ \gamma: \gamma \in \Gamma(j, k)\right\}$ and M does not depend on j or k.
Combining (14) with Lemmas 2.3 and 2.5 leads to a contradiction, so once Lemma 2.5 has been proved we know that Proposition 2.1 follows from Proposition 2.4.

Proof of Lemma 2.5. We consider the subfamily Γ of $\hat{f}_{j} \Gamma(j, k)$ consisting of projections of segments orthogonal to ℓ. More precisely, denote by T the length of $I, T=\left|w-f_{j}\left(z_{k}\right)\right|$, and let $\eta(s)=\left(1-\frac{s}{T}\right) w+\frac{s}{T} f_{j}\left(z_{k}\right), 0<s<T$, be an arc-length parametrization of I. Notice that $T \geqslant \delta$.

Fix $0<s<T$, and denote by ℓ_{s} the line orthogonal to ℓ passing through $\eta(s)$. Then there is a component I_{s} of $\ell_{s} \cap \bar{V}_{j}$ with endpoints $m_{1} \in f_{j}\left(J_{1}\right)$ and $m_{2} \in f_{j}\left(J_{2}\right)$ (recall that V_{j} is the bounded component of $\mathbb{C} \backslash f_{j}(\partial U)$). Choose a parametrization γ_{s} of $\pi_{D_{j}}\left(I_{s}\right)$, and let

$$
\Gamma=\left\{\gamma_{s}: 0<s<T\right\} .
$$

Then $\Gamma \subset \hat{f}_{j} \Gamma(j, k)$, so it suffices to prove (15) with $\hat{f}_{j} \Gamma(j, k)$ replaced by Γ.
Fix $\rho \in X(\Gamma)$, and denote by \mathcal{D}_{j} the family of disks $\tau \in \hat{f}_{j}\left(\mathcal{C}\left(D_{j}\right)\right)$ satisfying $\tau \subset \pi_{D_{j}}\left(V_{j}\right)$. Then

$$
1 \leqslant \int_{I_{s}} \rho d s+\sum_{q \in \mathcal{D}_{j} \cap\left|\gamma_{s}\right|} \rho(q) \quad \text { for all } 0<s<T .
$$

Integrating from 0 to T and applying Fubini's theorem and Hölder's inequality yields

$$
\begin{aligned}
\delta & \leqslant T \leqslant \int_{f_{j}\left(U \cap D_{j}\right)} \rho d A+\sum_{\tau \in \mathcal{D}_{j}} \operatorname{diam}(\tau) \rho(\tau) \\
& \leqslant\left|V_{j}\right|^{1 / 2}\left(\int_{f_{j}\left(U \cap D_{j}\right)} \rho^{2} d A\right)^{1 / 2}+\left(\sum_{\tau \in \mathcal{D}_{j}} \operatorname{diam}(\tau)^{2}\right)^{1 / 2}\left(\sum_{\tau \in \mathcal{D}_{j}} \rho(\tau)^{2}\right)^{1 / 2} \\
& \leqslant\left(\frac{4}{\pi}\left|V_{j}\right|\right)^{1 / 2}\left(\left(\int_{f_{j}\left(U \cap D_{j}\right)} \rho^{2} d A\right)^{1 / 2}+\left(\sum_{\tau \in \mathcal{D}_{j}} \rho(\tau)^{2}\right)^{1 / 2}\right)
\end{aligned}
$$

where the last inequality follows since the disks τ are disjoint subsets of V_{j}.
Recall that by our normalization $V_{j} \subset B(0,1)$ and therefore $\left|V_{j}\right| \leqslant \pi$ for all j. Combining with the estimate above and inequality

$$
\left(a^{1 / 2}+b^{1 / 2}\right)^{2} \leqslant 3(a+b), \quad a, b>0
$$

leads to

$$
\begin{equation*}
\frac{\delta^{2}}{12} \leqslant \int_{f_{j}\left(U \cap D_{j}\right)} \rho^{2} d A+\sum_{\tau \in \mathcal{D}_{j}} \rho(\tau)^{2} \tag{16}
\end{equation*}
$$

Since (16) holds for all $\rho \in X(\Gamma)$, we have $\bmod (\Gamma) \geqslant \delta^{2} / 12$.
2.4. Proof of Proposition 2.4. We use the following notation: if $G, V \subset \hat{\mathbb{C}}$ are domains, then

$$
\mathcal{C}(G, V)=\{q \in \mathcal{C}(G): q \subset V\}
$$

Lemma 2.6. Suppose D, Φ^{\prime}, p and U are as in Proposition 2.4. Then Φ^{\prime} has a refinement $\Phi_{p}=\left(D_{j}(p)\right)$ so that $D_{j}(p) \backslash U=D_{j}^{\prime} \backslash U$ and

$$
\mathcal{C}\left(D_{j}(p), U\right)=\hat{\mathcal{C}}_{e, j} \cup \hat{\mathcal{C}}_{d, j} \cup\left\{\hat{p}_{j}\right\}
$$

for all $j \in \mathbb{N}$, where $\hat{p}_{j} \supset p$ and $\hat{p}_{j} \notin \hat{\mathcal{C}}_{e, j} \cup \hat{\mathcal{C}}_{d, j}$,

$$
\begin{equation*}
\sum_{\hat{q}(j) \in \hat{\mathcal{C}}_{d, j}} \operatorname{diam}(\hat{q}(j)) \leqslant 2^{-j-1} \tag{17}
\end{equation*}
$$

and for every $\hat{q}(j) \in \hat{\mathcal{C}}_{e, j}$ there is $q=\bar{B}(x, t) \in \mathcal{C}(D, U), t>0$, such that

$$
\begin{equation*}
\bar{B}(x, t) \subset \hat{q}(j) \subset B(x, t+s), \quad s=\min \left\{\frac{t}{100}, \frac{\operatorname{dist}(\hat{q}(j), p)}{100}\right\} \tag{18}
\end{equation*}
$$

Proof. We have $\mathcal{C}(D, U)=\mathcal{C}_{e} \cup \mathcal{C}_{d} \cup\{p\}, p \notin \mathcal{C}_{e} \cup \mathcal{C}_{d}$, where \mathcal{C}_{e} is a family of disks with positive radius and \mathcal{C}_{d} a family of point components. We enumerate the elements of \mathcal{C}_{d} :

$$
\mathcal{C}_{d}=\left\{q_{1}, q_{2}, \ldots\right\}
$$

We define $\Phi_{p}=\left(D_{j}(p)\right)$ as follows: First, let $D_{j}(p) \backslash U=D_{j}^{\prime} \backslash U, j \in \mathbb{N}$. To describe the sets $D_{j}(p) \cap U$, assume that $j=1$ or $j \geqslant 2$, and $D_{k}(p)$ has been defined for all $k \leqslant j-1$.

We denote by \hat{p}_{j} the element of $\mathcal{C}\left(D_{j}^{\prime}, U\right)$ containing p. We lose no generality by assuming that $\hat{p}_{1} \subset U$. Then $\mathcal{C}\left(D_{j}, U \backslash \hat{p}_{j}\right)$ is non-empty for all $j \geqslant 1$.

Each $q \in \mathcal{C}(D, U)$ is contained in some $\hat{q}(j)$ such that
(i) $\hat{p}(j)=\hat{p}_{j}$,
(ii) $\hat{q}(j) \in \mathcal{C}\left(D_{j^{\prime}}^{\prime}, U \backslash \hat{p}_{j}\right)$ for some $j^{\prime} \geqslant j$,
(iii) if $j \geqslant 2$ then $\hat{q}(j) \subset \hat{q}(j-1)$ for some $\hat{q}(j-1) \in \mathcal{C}\left(D_{j-1}(p), U\right)$,
(iv) if $q=q_{m} \in \mathcal{C}_{d}$, then

$$
\operatorname{diam}\left(\hat{q}_{m}(j)\right) \leqslant 2^{-j-m-1}
$$

(v) if $q=\bar{B}(x, t) \in \mathcal{C}_{e}$, then $\hat{q}(j)$ satisfies (18).

Denote $\mathcal{Q}_{j}=\{\hat{q}(j): q \in \mathcal{C}(D, U)\}$. If $\hat{q}(j), \hat{q}^{\prime}(j) \in \mathcal{Q}_{j}$, then either $\hat{q}(j) \cap \hat{q}^{\prime}(j)=\emptyset$ or one is contained in the other. Thus we can define $D_{j}(p) \cap U$ as the domain for which $\mathcal{C}\left(D_{j}(p), U\right)$ is the set of maximal elements in \mathcal{Q}_{j}.
Properties (i)-(iii) guarantee that $\left\{D_{j}(p)\right\}$ is a refinement of $\left\{D_{j}^{\prime}\right\}$. Moreover, every $\hat{q}(j)$ satisfies (iv) or (v). We define

$$
\begin{aligned}
& \hat{\mathcal{C}}_{d, j}=\left\{\hat{q}(j) \in \mathcal{C}\left(D_{j}(p), U\right) \backslash\left\{\hat{p}_{j}\right\}: \hat{q}(j) \text { satisfies (iv) }\right\}, \\
& \hat{\mathcal{C}}_{e, j}=\left\{\hat{q}(j) \in \mathcal{C}\left(D_{j}(p), U\right) \backslash\left\{\hat{p}_{j}\right\}: \hat{q}(j) \text { satisfies (v) } .\right.
\end{aligned}
$$

We complete the proof of Proposition 2.4 by showing that any refinement $\Phi=\left(D_{j}\right)$ of the Φ_{p} in Lemma 2.6 satisfies the remaining estimate (13), i.e.,

$$
\lim _{r \rightarrow 0} \limsup _{j \rightarrow \infty} \bmod \left(S(z, r) \backslash p_{j}, \partial U ; D_{j}\right)=0 \quad \text { for every } z \in p .
$$

Lemma 2.7. Every refinement $\Phi=\left(D_{j}\right)$ of Φ_{p} satisfies (13).
Proof. Fix $z \in p$ and let v be the largest integer such that

$$
B\left(z, e^{v}\right)=B(z, R) \subset U .
$$

It suffices to show that if j is large enough, then

$$
\begin{equation*}
\bmod \left(S(z, r) \backslash p_{j}, S(z, R) ; D_{j}\right) \leqslant \epsilon(r) \rightarrow 0 \quad \text { as } r \rightarrow 0, \tag{19}
\end{equation*}
$$

where $\epsilon(r)$ does not depend on j. We will do this by first constructing a suitable sequence of disjoint annuli, and then applying them to find admissible functions.

First, let $v_{1}=v$. Then, fix $n \geqslant 1$ and assume that $v_{n}<v_{n-1}<\cdots<v_{1}$ have been defined. Denote $R_{k}=e^{v_{k}}$ and $A_{k}=B\left(z, R_{k}\right) \backslash \bar{B}\left(z, R_{k} / e\right)$, and let $v_{n+1}<v_{n}$ be the largest integer such that

$$
\bar{B}\left(z, R_{n+1}\right) \cap \bar{B}(x, t+s)=\emptyset \text { for all } q=\bar{B}(x, t) \in \mathcal{C}(D, U), q \cap A_{n} \neq \emptyset,
$$

where s is as in (18).

Recall from Lemma 2.6 that

$$
\mathcal{C}\left(D_{j}(p), U\right)=\hat{\mathcal{C}}_{e, j} \cup \hat{\mathcal{C}}_{d, j} \cup\left\{\hat{p}_{j}\right\} .
$$

We denote $\hat{\mathcal{C}}_{e, j}=\hat{\mathcal{C}}_{b, j} \cup \hat{\mathcal{C}}_{s, j}$, where

$$
\begin{aligned}
& \hat{\mathcal{C}}_{b, j}=\left\{\hat{q}(j) \in \hat{\mathcal{C}}_{e, j}: \operatorname{diam}(\hat{q}(j)) \geqslant \operatorname{dist}(\hat{q}(j), z)\right\}, \\
& \hat{\mathcal{C}}_{s, j}=\left\{\hat{q}(j) \in \hat{\mathcal{C}}_{e, j}: \operatorname{diam}(\hat{q}(j))<\operatorname{dist}(\hat{q}(j), z)\right\} .
\end{aligned}
$$

Moreover, let $\mathcal{C}_{j}=\mathcal{C}_{d, j} \cup \mathcal{C}_{b, j} \cup \mathcal{C}_{s, j}$, where

$$
\mathcal{C}_{d, j}=\cup_{m \geqslant j} \hat{\mathcal{C}}_{d, m}, \quad \mathcal{C}_{b, j}=\cup_{m \geqslant \mathcal{j}} \hat{\mathcal{L}}_{b, m}, \quad \mathcal{C}_{s, j}=\cup_{m \geqslant j \hat{\mathcal{C}}_{s, m} .} .
$$

Fix a refinement $\Phi=\left(D_{j}\right)$ of Φ_{p}, and $u<v-100$. We denote $r=e^{u}$. Let j be large enough so that $2^{-j+1}<r / e$, and p_{j} the element of $\mathcal{C}\left(D_{j}, U\right)$ containing p. Since Φ is a refinement of Φ_{p}, we have $\mathcal{C}\left(D_{j}, U \backslash p_{j}\right) \subset \mathcal{C}_{j}$. In particular,
$\mathcal{C}\left(D_{j}, U \backslash p_{j}\right)=\mathcal{D}_{j} \cup \mathcal{B}_{j} \cup \mathcal{S}_{j}, \quad$ where $\mathcal{D}_{j} \subset \mathcal{C}_{d, j}, \mathcal{B}_{j} \subset \mathcal{C}_{b, j}, \mathcal{S}_{j} \subset \mathcal{C}_{s, j}$.
By Lemma 2.6 and the definition of the above sets, the following hold: First,

$$
\begin{equation*}
\sum_{q(j) \in \mathcal{D}_{j}} \operatorname{diam}(q(j)) \leqslant 2^{-j}<\frac{r}{2 e} . \tag{20}
\end{equation*}
$$

Secondly, denoting $\mathcal{B}_{j}(n)=\left\{q(j) \in \mathcal{B}_{j}: q(j) \cap A_{n} \neq \emptyset\right\}$, we have $\mathcal{B}_{j}(n) \cap$ $\mathcal{B}_{j}\left(n^{\prime}\right)=\emptyset$ if $n \neq n^{\prime}$. Moreover, since every $q(j) \in \mathcal{B}_{j}(n)$ contains a disk whose area is comparable to the area of A_{n}, the cardinality of $\mathcal{B}_{j}(n)$ has an absolute bound;

$$
\begin{equation*}
\left|\mathcal{B}_{j}(n)\right| \leqslant 30 \quad \text { for all } n \in \mathbb{N} \tag{21}
\end{equation*}
$$

Finally, every $q(j) \in \mathcal{S}_{j}$ satisfies

$$
\begin{equation*}
\operatorname{diam}(q(j))^{2} \leqslant 2 \operatorname{Area}(q(j)) \tag{22}
\end{equation*}
$$

Moreover, denoting $\mathcal{S}_{j}(n)=\left\{q(j) \in \mathcal{S}_{j}: q(j) \cap A_{n} \neq \emptyset\right\}$, we have $\mathcal{S}_{j}(n) \cap$ $\mathcal{S}_{j}\left(n^{\prime}\right)=\emptyset$ if $n \neq n^{\prime}$.

We construct an admissible function

$$
\begin{equation*}
\rho \in X\left(\Gamma\left(S(z, r) \backslash p_{j}, S(z, R) ; D_{j}\right)\right) \tag{23}
\end{equation*}
$$

as follows: let m be the largest integer such that $v_{m+1} \geqslant u$, and $1 \leqslant n \leqslant m$. Define $\rho_{n}: \hat{D}_{j} \rightarrow[0, \infty]$,

$$
\rho_{n}(w)= \begin{cases}\frac{1}{m}, & w \in \mathcal{B}_{j}(n) \\ \frac{2 e \operatorname{diam}(w)}{m R_{n}} & w \in \mathcal{S}_{j}(n), \\ \frac{2}{m|w-z|}, & w \in A_{n} \cap D_{j}\end{cases}
$$

and $\rho_{n}(w)=0$ otherwise. We claim that

$$
\begin{equation*}
\frac{1}{m} \leqslant \int_{\gamma} \rho_{n} d s+\sum_{q \in \mathcal{C}_{j} \cap|\gamma|} \rho_{n}(q) \tag{24}
\end{equation*}
$$

for all $\gamma \in \Gamma\left(S(z, r) \backslash p_{j}, S(z, R) ; D_{j}\right)$. Fix such a γ, and denote
$\Omega_{1}=\left\{R_{n} / e<T<R_{n}: T=|y-z|\right.$ for some $\left.y \in|\gamma| \cap D_{j}\right\}$,
$\Omega_{2}=\left\{R_{n} / e<T<R_{n}: T=|y-z|\right.$ for some $\left.y \in w, w \in|\gamma| \cap \mathcal{S}_{j}(n)\right\}$,
$\Omega_{3}=\left\{R_{n} / e<T<R_{n}: T=|y-z|\right.$ for some $\left.y \in w, w \in|\gamma| \cap \mathcal{D}_{j}(n)\right\}$.
We may assume that γ does not intersect any $w \in \mathcal{B}_{j}(n)$, otherwise (24) follows directly from the definition of ρ_{n}. We then have

$$
\int_{\Omega_{1}} \frac{d T}{T}+\int_{\Omega_{2}} \frac{d T}{T}+\int_{\Omega_{3}} \frac{d T}{T} \geqslant 1,
$$

which combined with (20) yields

$$
\int_{\Omega_{1}} \frac{d T}{T}+\int_{\Omega_{2}} \frac{d T}{T} \geqslant \frac{1}{2}
$$

The definition of ρ_{n} in $A_{n} \cap D_{j}$ yields

$$
\int_{\gamma} \rho_{n} d s \geqslant \frac{2}{m} \int_{\Omega_{1}} \frac{d T}{T} .
$$

On the other hand, combining the definition of ρ_{n} in $\mathcal{S}_{j}(n)$ with inequality

$$
\frac{e(\beta-\alpha)}{R_{n}} \geqslant \log \beta-\log \alpha, \quad \frac{e}{R_{n}} \leqslant \alpha \leqslant \beta,
$$

yields

$$
\sum_{q \in \mathcal{S}_{j}(n) \cap|\gamma|} \rho_{n}(q) \geqslant \frac{2}{m} \int_{\Omega_{2}} \frac{d T}{T} .
$$

Combining the estimates yields (24). In particular, $\rho=\sum_{n=1}^{m} \rho_{n}$ satisfies (23), i.e., ρ is admissible for $\Gamma\left(S(z, r) \backslash p_{j}, S(z, R) ; D_{j}\right)$.

We prove (19) by estimating the energy

$$
\begin{equation*}
\int_{D_{j} \cap U} \rho^{2} d A+\sum_{w \in \mathcal{C}_{j}} \rho(w)^{2} \tag{25}
\end{equation*}
$$

from above. First, we have

$$
\begin{equation*}
\int_{D_{j} \cap U} \rho^{2} d A \leqslant \frac{4}{m^{2}} \sum_{n=1}^{m} \int_{D_{j} \cap A_{n}} \frac{d A(w)}{|w-z|^{2}} \leqslant \frac{8 \pi}{m} . \tag{26}
\end{equation*}
$$

In order to estimate the sum in (25), we recall that each $w \in \mathcal{B}_{j} \cup \mathcal{S}_{j}$ intersects at most one A_{n}. By (21),

$$
\begin{equation*}
\sum_{w \in \mathcal{B}_{j}} \rho(w)^{2} \leqslant \sum_{n=1}^{m} \frac{\left|\mathcal{B}_{j}(n)\right|}{m^{2}} \leqslant \frac{30}{m} . \tag{27}
\end{equation*}
$$

Finally, since every $w \in \mathcal{S}_{j}(n)$ is a subset of $B\left(z, 2 R_{n}\right)$, (22) yields

$$
\begin{align*}
\sum_{w \in \mathcal{S}_{j}} \rho(w)^{2} & \leqslant \frac{4 e^{2}}{m^{2}} \sum_{n=1}^{m} \sum_{w \in \mathcal{S}_{j}(n)} \frac{\operatorname{diam}(w)^{2}}{R_{n}^{2}} \tag{28}\\
& \leqslant \frac{8 e^{2}}{m^{2}} \sum_{n=1}^{m} \frac{\operatorname{Area}\left(B\left(z, 2 R_{n}\right)\right)}{R_{n}^{2}}=\frac{32 \pi e^{2}}{m}
\end{align*}
$$

Combining (26), (27) and (28), we conclude

$$
\int_{D_{j} \cap U} \rho^{2} d A+\sum_{w \in \mathcal{C}_{j}} \rho(w)^{2} \leqslant \frac{1000}{m} \rightarrow 0 \quad \text { as } r \rightarrow 0,
$$

and (19) follows. The proof is complete.
Remark 2.8. Schramm [19, Theorem 5.1] gives a simplified proof for the Koebe conjecture for countably connected domains, i.e., for the He-Schramm theorem. Although his proof uses transfinite induction, he explains in a remark how the proof can be modified to avoid it. Using his method, it is possible to modify the proof of Theorem 1.3 so that it no longer uses transfinite induction.

Remark 2.9. He and Schramm [12] and Schramm [19, Theorem 5.4] prove the Koebe conjecture for almost circle domains, i.e., domains D for which there is a closed and countable $B \subset \mathcal{C}(D)$ so that every $p \in \mathcal{C}(D) \backslash B$ is a circle or a point. Slight modifications to the proof above show that Theorem 1.3 also holds for almost circle domains D.

3. Proof of Theorem 1.1

3.1. Construction of the domain. We will construct a countably connected square domain ${ }^{1} D \subset \widehat{\mathbb{C}}$ so that $\{0\} \in \mathcal{C}(D)$, and an exhaustion Φ of D so that $\hat{f}_{\Phi}(\{0\})$ is non-trivial. The following result, which follows from the modulus estimate in [19, Theorem 6.2], then shows that $f_{\Phi}(D)$ cannot be a circle domain.

Proposition 3.1. If f is a conformal map from domain $D \subset \widehat{\mathbb{C}}$ with the above properties onto a circle domain, then $\hat{f}(\{0\})$ is a point-component.

We start the construction of D with a sequence of disjoint squares

$$
Q_{k}=\left[a_{k}-R_{k}, a_{k}+R_{k}\right] \times\left[-R_{k}, R_{k}\right], \quad R_{1}=1, R_{k}<a_{k},
$$

where $\left(a_{k}\right)_{k=1}^{\infty},\left(R_{k}\right)_{k=1}^{\infty}$ are decreasing sequences converging to zero, so that

$$
\begin{equation*}
D_{k}:=\operatorname{dist}\left(Q_{k}, Q_{k+1}\right)=a_{k}-\left(a_{k+1}+R_{k}+R_{k+1}\right)=2^{-k} R_{k+1} . \tag{29}
\end{equation*}
$$

Each $Q_{k}, 1 \leqslant k \leqslant j$, is surrounded by a sequence ($Q_{k, j}$) of inflated squares

$$
Q_{k, j}=\left[a_{k}-T_{k, j}, a_{k}+T_{k, j}\right] \times\left[-T_{k, j}, T_{k, j}\right], \quad T_{k, j}=R_{k}+2^{-j-1} D_{k} .
$$

We also denote

$$
Q_{0, j}=\left[-T_{j}, T_{j}\right] \times\left[-T_{j}, T_{j}\right], \quad T_{j}=a_{j+1}+R_{j+1}+D_{j} / 2 .
$$

Then

$$
\cup_{k=j+1}^{\infty} Q_{j} \subset \operatorname{int}\left(Q_{0, j}\right), \quad \cup_{k=1}^{j} Q_{k, j} \cap Q_{0, j}=\emptyset \quad \text { for every } j \in \mathbb{N} .
$$

[^1]

Figure 1. Part of the complement of D

Next, for $m \in \mathbb{N}$ and $1 \leqslant \ell \leqslant M_{m}$ (M_{m} will be chosen later), let

$$
\begin{equation*}
q_{m, \ell}=\left[(\ell-1)\left(s_{m}+d_{m}\right),(\ell-1) s_{m}+\ell d_{m}\right] \times\left[0, d_{m}\right] \tag{30}
\end{equation*}
$$

where d_{m}, s_{m} are positive numbers so that

$$
\left(M_{m}-1\right) s_{m}+M_{m} d_{m}=1 \quad \text { and } \quad d_{m} \geqslant s_{m}
$$

In particular, $d_{m} \leqslant M_{m}^{-1}$. For a fixed $m \in \mathbb{N}$, the sets $q_{m, \ell}$ are evenly spaced squares of sidelength d_{m} inside the rectangle $[0,1] \times\left[0, d_{m}\right]$.

For each $m \in \mathbb{N}$ and $1 \leqslant k \leqslant m$, let $\phi_{k+1, m}$ be the Möbius transformation so that $\phi_{k+1, m}(\infty)=\infty$,

$$
\begin{aligned}
\phi_{k+1, m}(0,0) & =\left(a_{k+1}+\left(1-s_{m}\right) T_{k+1, m-1},-R_{k+1}\right) \quad \text { and } \\
\phi_{k+1, m}(1,0) & =\left(a_{k+1}+\left(1-s_{m}\right) T_{k+1, m-1}, R_{k+1}\right)
\end{aligned}
$$

We denote

$$
\begin{equation*}
t_{k, m}=\left(a_{k}-T_{k, m-1}\right)-\left(a_{k+1}+\left(1-2 s_{m}\right) T_{k+1, m-1}\right)+d_{m} \tag{31}
\end{equation*}
$$

and define

$$
\begin{aligned}
q_{k+1, m, \ell}^{e} & =\phi_{k+1, m}\left(q_{m, \ell}\right) \\
q_{k, m, \ell}^{w} & =\phi_{k+1, m}\left(q_{m, \ell}\right)+\left(t_{k, m}, 0\right), \quad 1 \leqslant \ell \leqslant M_{m}
\end{aligned}
$$

The squares $q_{k+1, m, \ell}^{e}, q_{k, m, \ell}^{w}$ lie "between" Q_{k+1} and Q_{k}, and we can choose M_{m} large enough so that
(32) $\quad q_{k+1, m, \ell}^{e} \subset \operatorname{int}\left(Q_{k+1, m-1}\right) \backslash Q_{k+1, m}$ for all $1 \leqslant k \leqslant m-1$,
(33) $\quad q_{k, m, \ell}^{w} \subset \operatorname{int}\left(Q_{k, m-1}\right) \backslash Q_{k, m} \quad$ for all $1 \leqslant k \leqslant m$.

We define D by

$$
\hat{\mathbb{C}} \backslash D=\{0\} \cup\left(\bigcup_{k=1}^{\infty} Q_{k} \cup\left(\bigcup_{m=1}^{\infty} \bigcup_{\ell=1}^{M_{m}} \bigcup_{k=1}^{m}\left(q_{k+1, m, \ell}^{e} \cup q_{k, m, \ell}^{w}\right)\right) .\right.
$$

3.2. Construction of the exhaustion. We define exhaustion $\Phi_{0}=\left(D_{j}\right)$ of D. First, every $\mathcal{C}\left(D_{j}\right)$ includes

$$
Q_{0, j} \quad \text { and } \quad Q_{k, j}, \quad 1 \leqslant k \leqslant j .
$$

To describe the rest of the elements of $\mathcal{C}\left(D_{j}\right)$, we first define

$$
\begin{align*}
q_{k+1, m, \ell, j}^{e} & =(1+\epsilon(j)) q_{k+1, m, \ell}^{e} \quad 1 \leqslant k \leqslant j-1, \tag{34}\\
q_{k, m, \ell, j}^{w} & =(1+\epsilon(j)) q_{k, m, \ell}^{w} \quad 1 \leqslant k \leqslant j \tag{35}
\end{align*}
$$

for all $k \leqslant m \leqslant j$ and $1 \leqslant \ell \leqslant M_{m}$, i.e., squares with same center and $(1+\epsilon(j))$ times the sidelength of $q_{k+1, m, \ell}^{e}$ and $q_{k, m, \ell}^{w}$, respectively. Here $(\epsilon(j))$ is a strictly decreasing sequence converging to zero, and $\epsilon(1)$ is small enough such that for any fixed $j \in \mathbb{N}$ we have
(i) none of the squares intersect each other, and
(ii) (32) holds for $q_{k+1, m, \ell, j}^{e}$ and (33) holds for $q_{k, m, \ell, j}^{w}$.

We let $\mathcal{C}\left(D_{j}\right)$ include all the squares in (34) and (35) for $k \leqslant m \leqslant j-1$ and $1 \leqslant \ell \leqslant M_{m}$. Notice that the squares for which $m=j$ are not included.
The remaining elements of $\mathcal{C}\left(D_{j}\right)$ will be components $\bar{U}_{k, j, \ell}$ which "surround" $Q_{k, j}$ and contain both $q_{k, j, \ell, j}^{e}$ and $q_{k, j, \ell, j}^{w}$. More precisely, fix $2 \leqslant k \leqslant$ j, and let $U_{k, j, \ell}, 1 \leqslant \ell \leqslant M_{j}$, be Jordan domains so that
(i) the sets $\bar{U}_{k, j, \ell}$ are pairwise disjoint,
(ii) $\bar{U}_{k, j, \ell} \subset \operatorname{int}\left(Q_{k, j-1}\right) \backslash Q_{k, j}$,
(iii) $\bar{U}_{k, j, \ell}$ contains both $q_{k, j, \ell, j}^{e}$ and $q_{k, j, \ell, j}^{w}$,
(iv) if $(x, y) \in \partial U_{k, j, \ell}$ has the largest x-coordinate among all points of $\partial U_{k, j, \ell}$, then $(x, y) \in q_{k, j, \ell, j}^{e}$,
(v) if $(x, y) \in \partial U_{k, j, \ell}$ has the smallest x-coordinate among all points of $\partial U_{k, j, \ell}$, then $(x, y) \in q_{k, j, \ell, j}^{w}$.
We conclude the definition of $\mathcal{C}\left(D_{j}\right)$ by including $\bar{U}_{1, j, \ell}:=q_{1, j, \ell, j}^{w}$ and

$$
\bar{U}_{k, j, \ell} \quad 2 \leqslant k \leqslant j, 1 \leqslant \ell \leqslant M_{j} .
$$

Then D_{j} is the set for which $\hat{\mathbb{C}} \backslash D_{j}=\cup\left\{p \in \mathcal{C}\left(D_{j}\right)\right\}$, and $\Phi_{0}=\left(D_{j}\right)$.
Proposition 3.2. There is $\delta>0$ such that

$$
\bmod \left(Q_{0, j_{0}}, Q_{1, j_{0}} ; D_{j}\right) \geqslant \delta \quad \text { for all } j_{0} \in \mathbb{N} \text { and } j \geqslant j_{0} .
$$

We postpone the proof of Proposition 3.2 and first show how it implies Theorem 1.1. Choose any subsequence $\Phi=\left(D_{j_{n}}\right)$ of $\left(D_{j}\right)$ so that $\left(f_{j_{n}}\right)$ converges to f_{Φ}. By Proposition 3.1 it suffices to show that $\hat{f}_{\Phi}(\{0\})$ is non-trivial. But this follows directly by combining Proposition 3.2 with Proposition 4.2 below. Here the latter proposition can be applied with $E=Q_{1,1}$ since every $j_{0} \geqslant 1$ satisfies

$$
\bmod \left(Q_{0, j_{0}}, Q_{1, j_{0}} ; D_{j}\right) \leqslant \bmod \left(Q_{0, j_{0}}, Q_{1,1} ; D_{j}\right) .
$$

Thus, Theorem 1.1 follows once we have proved these propositions.

Figure 2. Some of the sets $\bar{U}_{k, j, \ell}$
3.3. Proof of Proposition 3.2. Fix j_{0} and $j \geqslant j_{0}$, and let F_{j} be the projection of $\cup_{\ell=1}^{M_{j}} q_{j, \ell}$ to the real axis, recall the definition in (30). We construct a family of paths Γ parametrized by F_{j}, so that each $\gamma \in \Gamma$ connects $\pi_{D_{j}}\left(Q_{1, j_{0}}\right)$ and $\pi_{D_{j}}\left(Q_{0, j_{0}}\right)$ in \hat{D}_{j}. We then give a lower bound for $\bmod (\Gamma)$.

Fix $\tau \in F_{j}$, and denote

$$
\begin{aligned}
z_{k+1}^{e}(\tau) & =\phi_{k+1, j}\left(\left(\tau, d_{j} / 2\right)\right), \quad 1 \leqslant k \leqslant j-1 \\
z_{k}^{w}(\tau) & =\phi_{k+1, j}\left(\left(\tau, d_{j} / 2\right)\right)+\left(t_{k, j}, 0\right), \quad 1 \leqslant k \leqslant j
\end{aligned}
$$

where $t_{k, j}$ is the number in (31) and $\phi_{k+1, j}$ the Möbius transformation defined before (31). Then

$$
z_{k+1}^{e}(\tau) \in q_{k+1, j, \ell, j}^{e} \subset \bar{U}_{k+1, j, \ell} \quad \text { and } \quad z_{k}^{w}(\tau) \in q_{k, j, \ell, j}^{w} \subset \bar{U}_{k, j, \ell}
$$

where $\ell=\ell(j, \tau)$ is the index for which $(\tau, 0) \in q_{j, \ell}$.
We denote

$$
\bar{U}_{k, j, \ell}=: \bar{U}_{k}(\tau),
$$

and let $I_{k}(\tau)$ be the horizontal line segment in \mathbb{C} which connects $Q_{1, j_{0}}$ to $z_{2}^{e}(\tau), z_{k}^{w}(\tau)$ to $z_{k+1}^{e}(\tau)$ if $2 \leqslant k \leqslant j-1$, and $z_{j}^{w}(\tau)$ to $Q_{0, j}$. Then

$$
J(\tau)=\left(\cup_{k=1}^{j} I_{k}(\tau)\right) \cup\left(\cup_{k=2}^{j} \bar{U}_{k}(\tau)\right)
$$

is a continuum connecting $Q_{1, j_{0}}$ and $Q_{0, j_{0}}$ in \mathbb{C}. Moreover, $\pi_{D_{j}}(J(\tau))$ is a rectifiable curve in \hat{D}_{j}, with arc-length parametrization γ_{τ}. We define

$$
\Gamma=\left\{\gamma_{\tau}: \tau \in F_{j}\right\}
$$

We now estimate the modulus of Γ. Let $\rho \in X(\Gamma)$ be an admissible function and $\tau \in F_{j}$. We denote by \mathcal{A}_{j} all the sets in $\mathcal{C}\left(D_{j}\right)$ of the form $\bar{U}_{k, j, \ell}$, and by \mathcal{B}_{j} all the other squares in $\mathcal{C}\left(D_{j}\right)$ of the form (34) or (35).

Then

$$
\begin{align*}
1 & \leqslant \int_{\gamma_{\tau}} \rho d s+\sum_{q \in \mathcal{C}\left(D_{j}\right) \cap\left|\gamma_{\tau}\right|} \rho(q) \tag{36}\\
& =\sum_{k=1}^{j} \int_{I_{k}(\tau) \cap D_{j}} \rho d s+\sum_{k=1}^{j} \rho\left(\bar{U}_{k}(\tau)\right)+\sum_{q \in \mathcal{B}_{j} \cap\left|\gamma_{\tau}\right|} \rho(q) .
\end{align*}
$$

Given $1 \leqslant k \leqslant j$, let A_{k} be the smallest rectangle containing all the segments $I_{k}(\tau) \cap D_{j}, \tau \in F_{j}$. Then by (29),

$$
\begin{equation*}
\operatorname{Area}\left(A_{k}\right) \leqslant 2 D_{k} R_{k+1} \leqslant 2^{1-k} R_{k+1}^{2} \tag{37}
\end{equation*}
$$

To estimate the modulus, we integrate both sides of (36) over τ and apply change of variables and Fubini's theorem to get

$$
\begin{align*}
\ell\left(F_{j}\right) & \leqslant \sum_{k=1}^{j}\left(2 R_{k+1}\right)^{-1} \int_{A_{k} \cap D_{j}} \rho d A+\int_{F_{j}} \sum_{k=1}^{j} \rho\left(\bar{U}_{k}(\tau)\right) d \tau \tag{38}\\
& +\int_{F_{j}} \sum_{q \in \mathcal{B}_{j} \cap\left|\gamma_{\tau}\right|} \rho(q) d \tau=S_{1}+S_{2}+S_{3}
\end{align*}
$$

We apply Hölder's inequality and (37) to estimate S_{1} as follows:

$$
\begin{align*}
S_{1} & \leqslant \sum_{k=1}^{j}\left(2 R_{k+1}\right)^{-1} \operatorname{Area}\left(A_{k}\right)^{1 / 2}\left(\int_{A_{k} \cap D_{j}} \rho^{2} d A\right)^{1 / 2} \tag{39}\\
& \leqslant\left(\sum_{k=1}^{j} 2^{-1-k}\right)^{1 / 2}\left(\int_{D_{j}} \rho^{2} d A\right)^{1 / 2} \leqslant\left(\int_{D_{j}} \rho^{2} d A\right)^{1 / 2}
\end{align*}
$$

To estimate S_{2} and S_{3}, we choose M_{m} so that

$$
\begin{equation*}
M_{m} \geqslant m 2^{m+1} \quad \text { for all } m \in \mathbb{N} \tag{40}
\end{equation*}
$$

We notice that the length of the set of parameters τ for which a given $\bar{U}_{k, j, \ell} \in \mathcal{A}_{j}$ is $\bar{U}_{k}(\tau)$ equals d_{j}. We have $d_{j} M_{j} \leqslant 1$ by construction. Thus, Hölder's inequality and (40) yield

$$
\begin{align*}
S_{2} & =d_{j} \sum_{k=1}^{j} \sum_{\ell=1}^{M_{j}} \rho\left(\bar{U}_{k, j, \ell}\right) \leqslant d_{j}\left(j M_{j}\right)^{1 / 2}\left(\sum_{k=1}^{j} \sum_{\ell=1}^{M_{j}} \rho\left(\bar{U}_{k, j, \ell, j}\right)^{2}\right)^{1 / 2} \\
& \leqslant\left(\sum_{\bar{U} \in \mathcal{A}_{j}} \rho(\bar{U})^{2}\right)^{1 / 2} . \tag{41}
\end{align*}
$$

Next, we notice that the length of the set of parameters τ for which a given $q=q_{k, m, \ell, j}^{y} \in \mathcal{B}_{j} \cap\left|\gamma_{\tau}\right|$ is at most M_{m}^{-1}. Here $y=e$ or w. As before, Hölder's inequality yields

$$
\begin{equation*}
S_{3} \leqslant \sum_{q \in \mathcal{B}_{j}} M_{m}^{-1} \rho(q) \leqslant\left(\sum_{q \in \mathcal{B}_{j}} M_{m}^{-2}\right)^{1 / 2}\left(\sum_{q \in \mathcal{B}_{j}} \rho(q)^{2}\right)^{1 / 2} . \tag{42}
\end{equation*}
$$

Figure 3. First steps in the construction of D
We estimate the first sum from above by summing over all $q \in \mathcal{B}_{j}$ and applying (40) to have

$$
\begin{equation*}
\sum_{q \in \mathcal{B}_{j}} M_{m}^{-2} \leqslant 2 \sum_{m=1}^{j} \sum_{k=1}^{m} \sum_{\ell=1}^{M_{m}} M_{m}^{-2}=2 \sum_{m=1}^{j} m M_{m}^{-1} \leqslant \sum_{m=1}^{\infty} 2^{-m}=1 . \tag{43}
\end{equation*}
$$

We have $\ell\left(F_{j}\right) \geqslant \frac{1}{2}$ by construction. Combining with (38), (39), (41), (42), and (43), yields

$$
\begin{align*}
\frac{1}{2} & \leqslant\left(\int_{D_{j}} \rho^{2} d A\right)^{1 / 2}+\left(\sum_{\bar{U} \in \mathcal{A}_{j}} \rho(\bar{U})^{2}\right)^{1 / 2}+\left(\sum_{q \in \mathcal{B}_{j}} \rho(q)^{2}\right)^{1 / 2} \\
& \leqslant 3\left(\int_{D_{j}} \rho^{2} d A+\sum_{q \in \mathcal{C}\left(D_{j}\right)} \rho(q)^{2}\right)^{1 / 2} . \tag{44}
\end{align*}
$$

Since (44) holds for all $\rho \in X(\Gamma)$, we conclude that

$$
\bmod \left(Q_{0, j_{0}}, Q_{1, j_{0}} ; D_{j}\right) \geqslant \bmod (\Gamma) \geqslant \frac{1}{36} .
$$

The proof is complete.

4. Proof of Theorem 1.2

4.1. Construction of the domain. The set $\mathcal{C}(D)$ of complementary components of D, which we now describe, consists of countably many segments and a Cantor set. ${ }^{2}$ Let $\mathcal{W}_{0}=\{e\}, \mathcal{Y}_{0}=\{(e, e)\}$, and for $k=1,2, \ldots$, let

$$
\begin{aligned}
\mathcal{W}_{k} & =\left\{w=w_{1} w_{2} w_{3} \cdots w_{k}: w_{\ell} \in\{0,1\} \text { for } 1 \leqslant \ell \leqslant k\right\}, \\
\mathcal{W}_{\infty} & =\left\{\bar{w}=w_{1} w_{2} w_{3} \cdots: w_{\ell} \in\{0,1\} \text { for } \ell=1,2, \ldots\right\}, \quad \text { and } \\
\mathcal{Y}_{k} & =\left\{(w, v): w \in \mathcal{W}_{k}, v=v_{1} v_{2} v_{3} \cdots v_{k}, v_{\ell} \in\{0,1,2,3\} \text { for } 1 \leqslant \ell \leqslant k\right\} .
\end{aligned}
$$

If $\bar{w}=w_{1} w_{2} \cdots \in \mathcal{W}_{\infty}$ and $k \in \mathbb{N}$, we denote $\bar{w}(k)=w_{1} \cdots w_{k}$.
Next, let $\left(R_{k}\right)$ be a sequence of positive real numbers so that $R_{k+1}<R_{k} / 2$ for all $k=0,1,2, \ldots$. Moreover, given such a k let

$$
\begin{equation*}
\mathcal{Q}_{k}=\left\{Q_{w}=\left[x_{w}-R_{k}, x_{w}+R_{k}\right] \times\left[-R_{k}, R_{k}\right]: w \in \mathcal{W}_{k}\right\} \tag{45}
\end{equation*}
$$

[^2]be a family of disjoint, congruent closed squares in \mathbb{C} with centers on the real axis so that
$$
\text { if } w \in \mathcal{W}_{k} \text { and } a \in\{0,1\}, \text { then } Q_{w a} \subset \operatorname{int}\left(Q_{w}\right)
$$

The intersection

$$
\begin{equation*}
K=\bigcap_{k=0}^{\infty}\left(\bigcup_{w \in \mathcal{W}_{k}} Q_{w}\right) \tag{46}
\end{equation*}
$$

is a Cantor set on the real axis. It is the Cantor set part of $\mathcal{C}(D)$. Each $p=p_{\bar{w}} \in K$ is uniquely determined by the $\bar{w} \in \mathcal{W}_{\infty}$ that satisfies

$$
\left\{p_{\bar{w}}\right\}=\cap_{k=1}^{\infty} Q_{\bar{w}(k)}
$$

We now inductively define the segments in $\mathcal{C}(D)$. The definition involves a sequence $\left(\epsilon_{k}\right)$ of positive real numbers converging rapidly to zero. We initially require that $\epsilon_{k}<R_{k-2} / 10$. The segments are of the form

$$
I_{m}(w, v)=\left[a_{m}(w, v), b_{m}(w, v)\right], \quad m=1,2,3
$$

where $a_{m}(w, v), b_{m}(w, v) \in \mathbb{C}$ and $(w, v) \in \mathcal{Y}_{k}$ for some $k=0,1,2, \ldots$ We denote by $\pi_{1}: \mathbb{C} \rightarrow \mathbb{R}$ the projection to the real axis.

We first choose

$$
\begin{equation*}
\left[a_{1}, b_{1}\right]=I_{1}=I_{1}(e, e),\left[a_{2}, b_{2}\right]=I_{2}=I_{2}(e, e),\left[a_{3}, b_{3}\right]=I_{3}=I_{3}(e, e) \tag{47}
\end{equation*}
$$

of length larger than ϵ_{1} in $Q_{e} \backslash\left(Q_{0} \cup Q_{1}\right)$, so that

$$
\begin{aligned}
\pi_{1}\left(a_{1}\right) & <\pi_{1}\left(b_{1}\right)<x_{0}-R_{1}<\pi_{1}\left(b_{1}\right)+\epsilon_{2} / 10 \\
\pi_{1}\left(a_{2}\right)-\epsilon_{2} / 10 & <x_{0}+R_{1}<\pi_{1}\left(a_{2}\right) \\
\pi_{1}\left(a_{2}\right) & <\pi_{1}\left(b_{2}\right)<x_{1}-R_{1}<\pi_{1}\left(b_{2}\right)+\epsilon_{2} / 10 \\
\pi_{1}\left(a_{3}\right)-\epsilon_{2} / 10 & <x_{1}+R_{1}<\pi_{1}\left(a_{3}\right)<\pi_{1}\left(b_{3}\right)
\end{aligned}
$$

We can also require the segments to be horizontal, but this is not necessary and such a requirement cannot be made below when $k \geqslant 1$.

Next fix $k \geqslant 1$ and assume that $I_{m}\left(w^{\prime}, v^{\prime}\right)$ and ϵ_{ℓ} are defined for $\left(w^{\prime}, v^{\prime}\right) \in$ $\mathcal{Y}_{\ell}, 0 \leqslant \ell \leqslant k-1$, so that

$$
\begin{equation*}
\text { if } B_{1} \in \mathcal{B}_{\ell_{1}} \text { and } B_{2} \in \mathcal{B}_{\ell_{2}}, B_{1} \neq B_{2}, \text { then } \bar{B}_{1} \cap \bar{B}_{2}=\emptyset \tag{48}
\end{equation*}
$$

Here

$$
\begin{equation*}
\mathcal{B}_{\ell}=\left\{B\left(z, \epsilon_{\ell}\right): z \text { endpoint of } I_{m}(w, v),(w, v) \in \mathcal{Y}_{\ell}, m=1,2,3\right\} \tag{49}
\end{equation*}
$$

Let
$I_{1}(w, v), I_{2}(w, v), I_{3}(w, v) \subset \operatorname{int}\left(Q_{w}\right) \backslash\left(Q_{w 0} \cup Q_{w 1}\right), \quad(w, v)=\left(w^{\prime} \alpha, v^{\prime} \beta\right) \in \mathcal{Y}_{k}$,
be disjoint segments with the following properties: if we denote $a_{m}(w, v)=$ a_{m} and $b_{m}(w, v)=b_{m}$, then

$$
\begin{aligned}
\pi_{1}\left(a_{1}\right) & <\pi_{1}\left(b_{1}\right)<x_{w 0}-R_{k+1}<\pi_{1}\left(b_{1}\right)+\epsilon_{k+1} / 10 \\
\pi_{1}\left(a_{2}\right)-\epsilon_{k+1} / 10 & <x_{w 0}+R_{k+1}<\pi_{1}\left(a_{2}\right) \\
\pi_{1}\left(a_{2}\right) & <\pi_{1}\left(b_{2}\right)<x_{w 1}-R_{k+1}<\pi_{1}\left(b_{2}\right)+\epsilon_{k+1} / 10 \\
\pi_{1}\left(a_{3}\right)-\epsilon_{k+1} / 10 & <x_{w 1}+R_{k+1}<\pi_{1}\left(a_{3}\right)<\pi_{1}\left(b_{3}\right) .
\end{aligned}
$$

Figure 4. Positioning of the segments $I_{m}(w, v)$
We also require that (See Figure 4) if we denote

$$
\begin{align*}
r_{v}=\epsilon_{k}, R_{v}=\left(\epsilon_{k-1} \epsilon_{k}\right)^{1 / 2} & \text { if } \beta=0 \text { or } 1, \\
r_{v}=\left(\epsilon_{k-1} \epsilon_{k}\right)^{1 / 2}, R_{v}=\epsilon_{k-1} & \text { if } \beta=2 \text { or } 3, \tag{50}
\end{align*}
$$

then for each $r_{v}<r<R_{v}$ there are arcs

$$
\begin{aligned}
J_{1}(r, w, v) \subset S\left(b_{m}\left(w^{\prime}, v^{\prime}\right), r\right), & m=\alpha+1, \\
J_{3}(r, w, v) \subset S\left(a_{m}\left(w^{\prime}, v^{\prime}\right), r\right), & m=\alpha+2,
\end{aligned}
$$

whose relative interiors are disjoint and do not intersect any segment $I_{m}(\tilde{w}, \tilde{v})$, $(\tilde{w}, \tilde{v}) \in \mathcal{Y}_{\ell}, 0 \leqslant \ell \leqslant k$, so that
(i) the endpoints of $J_{1}(r, w, v)$ lie in $I_{\alpha+1}\left(w^{\prime}, v^{\prime}\right)$ and $I_{1}(w, v)$.
(ii) the endpoints of $J_{3}(r, w, v)$ lie in $I_{\alpha+2}\left(w^{\prime}, v^{\prime}\right)$ and $I_{3}(w, v)$.

We are now ready to define D; it is the domain for which

$$
\mathcal{C}(D)=K \cup\left\{I_{m}(w, v): m=1,2,3,(w, v) \in \mathcal{Y}_{k}, k=0,1,2, \ldots\right\},
$$

where K is the Cantor set in (46).
4.2. Construction of the exhaustion. We now construct an exhaustion $\Phi_{0}=\left(D_{j}\right)$ of D. We fix $k \in \mathbb{N}$ and $(w, v) \in \mathcal{Y}_{k}$. First, let $U(w, v)$ be a Jordan domain so that if we denote $I(w, v)=I_{1}(w, v) \cup I_{2}(w, v) \cup I_{3}(w, v)$ then

$$
I(w, v) \subset U(w, v) \subset \bar{U}(w, v) \subset \operatorname{int}\left(Q_{w}\right) \backslash\left(Q_{w 0} \cup Q_{w 1}\right) .
$$

We also require that if $B \in \cup_{\ell} \mathcal{B}_{\ell}$ where \mathcal{B}_{ℓ} is the family of balls in (49), then either $U(w, v) \cap B=\emptyset$ or $I(w, v) \cap B \neq \emptyset$ and

$$
\begin{equation*}
U(w, v) \cap B \subset N_{k}(I(w, v)) \cap B . \tag{51}
\end{equation*}
$$

Here $N_{k}(I(w, v))$ is the set of those $x \in \mathbb{C}$ for which

$$
\begin{equation*}
\operatorname{dist}(x, I(w, v))<\frac{\min \left\{\epsilon_{k+1}, \operatorname{dist}(I(w, v), \mathbb{C} \backslash(D \cup I(w, v))\}\right.}{100} . \tag{52}
\end{equation*}
$$

Next, for $m=1,2,3$ denote

$$
U_{m}(k+1, w, v)=U(w, v)
$$

and let

$$
U_{m}(j, w, v), \quad j=k+2, k+3, \ldots
$$

be Jordan domains so that

$$
\bar{U}_{m}(k+2, w, v) \cap \bar{U}_{m^{\prime}}(k+2, w, v)=\emptyset \quad \text { if } m \neq m^{\prime},
$$

and, with $N_{j}\left(I_{m}(w, v)\right)$ defined as in (52),

$$
I_{m}(w, v) \subset U_{m}(j, w, v) \subset \bar{U}_{m}(j, w, v) \subset U_{m}(j-1, w, v) \cap N_{j}\left(I_{m}(w, v)\right)
$$

We denote

$$
\mathcal{A}_{j}=\left\{\bar{U}_{m}(j, w, v): m=1,2,3,(w, v) \in \mathcal{Y}_{k}, 0 \leqslant k \leqslant j-1\right\}
$$

and define D_{j} by

$$
\mathcal{C}\left(D_{j}\right)=\mathcal{Q}_{j} \cup \mathcal{A}_{j},
$$

where \mathcal{Q}_{j} is the family of squares in (45). Then $\Phi_{0}=\left(D_{j}\right)$ is an exhaustion of D. Theorem 1.2 follows by combining the two propositions below and choosing any $\Phi=\left(D_{j_{n}}\right)$ so that $\left(f_{j_{n}}\right)$ converges.

Proposition 4.1. There is $\delta>0$ such that if $p=p_{\bar{w}} \in K$, then

$$
\begin{equation*}
\bmod \left(I_{1}, Q_{\bar{w}\left(j_{0}\right)} ; D_{j}\right) \geqslant \delta \quad \text { for all } j_{0} \in \mathbb{N} \text { and } j>j_{0} \tag{53}
\end{equation*}
$$

Here I_{1} is the segment in (47).
Recall that, given a domain $D \subset \widehat{\mathbb{C}}, p \in \mathcal{C}(D)$, and an exhaustion $\Phi=$ $\left(D_{j}\right)$ of D, we denote by p_{ℓ} the component in $\mathcal{C}\left(D_{\ell}\right)$ containing p. With this notation, $Q_{\bar{w}\left(j_{0}\right)}=p_{j_{0}}$ in (53).

Proposition 4.2. Suppose $D \subset \widehat{\mathbb{C}}$ is a domain with exhaustion $\Phi=\left(D_{j}\right)$. Fix $p \in \mathcal{C}(D)$ and a compact set $E \subset \hat{\mathbb{C}}$ such that $E \cap p=\emptyset$. If

$$
\begin{equation*}
\lim _{\ell \rightarrow \infty} \liminf _{j \rightarrow \infty} \bmod \left(E, p_{\ell} ; D_{j}\right)>0, \tag{54}
\end{equation*}
$$

then $\hat{f}(p)$ is non-trivial for all $f \in \mathcal{F}_{\Phi}$.
4.3. Proof of Proposition 4.1. Fix $p=p_{\bar{w}} \in K, j_{0} \in \mathbb{N}$, and $j>j_{0}$. Let $\mathcal{V}_{0}=\{e\}$, and for $k=1,2, \ldots$, let

$$
\mathcal{V}_{k}=\left\{v=v_{1} v_{2} \cdots v_{k}: v_{\ell}=\{0,1,2,3\} \text { for all } 1 \leqslant \ell \leqslant k\right\},
$$

so that $\mathcal{Y}_{k}=\mathcal{W}_{k} \times \mathcal{V}_{k}$. We consider the family of continua

$$
\eta(v, t) \subset \hat{D}_{j}, v \in \mathcal{V}_{j-1}, 1 / 4<t<3 / 4,
$$

defined as follows: if $v=v_{1} v_{2} \ldots v_{j-1}$, let $\eta(v, t)=A_{j}(v) \cup B_{j}(v, t)$, where

$$
\begin{aligned}
A_{j}(v) & =\cup\left\{\bar{U}_{m}\left(j, w, v_{k}\right) \in \mathcal{A}_{j}: m=1,2,3, w \in \mathcal{W}_{k}, 0 \leqslant k \leqslant j-1\right\}, \text { and } \\
B_{j}(v, t) & =\cup\left\{J_{m}\left(r[t, k], w, v_{k}\right): m=1,3, w \in \mathcal{W}_{k}, 1 \leqslant k \leqslant j-1\right\} .
\end{aligned}
$$

Here $r[t, k]=R_{v_{k}}^{t} r_{v_{k}}^{1-t}$ and $R_{v_{k}}, r_{v_{k}}$ are the radii in (50).
Each $\eta(v, t)$ is a continuum joining $\bar{U}_{1}(j, e, e)$ and $\bar{U}_{3}(j, e, e)$ in \hat{D}_{j}. Moreover, each $\eta(v, t)$ intersects $Q_{\bar{w}\left(j_{0}\right)}$. By (51), we have $\eta(v, t) \backslash A_{j}(v) \subset D_{j}$. It is important to notice that the continua $\eta(v, t)$ do not intersect any of the squares in $\mathcal{Q}_{j} \subset \mathcal{C}\left(D_{j}\right)$.

Let $\gamma_{v, t}$ be an arc-length parametrization of $\eta(v, t)$, and

$$
\Gamma_{j}=\left\{\gamma_{v, t}: v \in \mathcal{V}_{j-1}, 1 / 4<t<3 / 4\right\} .
$$

In view of the comments above, (53) follows if we can prove a lower bound for $\bmod \Gamma_{j}$ independent of j. Fix $\rho \in X\left(\Gamma_{j}\right)$;

$$
1 \leqslant \sum_{q \in A_{j}(v)} \rho(q)+\sum_{J \in B_{j}(v, t)} \int_{J} \rho d s .
$$

Integrating both sides over $1 / 4<t<3 / 4$ and summing over $v \in \mathcal{V}_{j-1}$ yields

$$
\frac{4^{j-1}}{2} \leqslant \frac{1}{2} \sum_{v \in \mathcal{V}_{j-1}} \sum_{q \in A_{j}(v)} \rho(q)+\sum_{v \in \mathcal{V}_{j-1}} \int_{1 / 4}^{3 / 4} \sum_{J \in B_{j}(v, t)} \int_{J} \rho d s d t=S_{1}+S_{2} .
$$

We estimate the sums S_{1}, S_{2} from above. First, changing the order of summation yields
$2 S_{1}=\sum_{k=0}^{j-2} 4^{j-1-k} \sum_{\substack{\left(w, v^{\prime}\right) \in \mathcal{V}_{k} \\ m=1,2,3}} \rho\left(\bar{U}_{m}\left(j, w, v^{\prime}\right)\right)+\sum_{(w, v) \in \mathcal{Y}_{j-1}} \rho(\bar{U}(j, w, v))=\sum_{k=0}^{j-1} S_{k}^{\prime}$.
Hölder's inequality yields
$S_{k}^{\prime} \leqslant 4^{j-k-1}\left(3 \cdot 2^{k} \cdot 4^{k}\right)^{1 / 2}\left(\sum_{q \in \mathcal{C}\left(D_{j}\right)} \rho(q)^{2}\right)^{1 / 2} \leqslant 2^{2 j-k / 2-1}\left(\sum_{q \in \mathcal{C}\left(D_{j}\right)} \rho(q)^{2}\right)^{1 / 2}$
for all $0 \leqslant k \leqslant j-1$. Thus, summing over k we have

$$
S_{1} \leqslant 4^{j} \sum_{k=0}^{j-1} 2^{-k / 2}\left(\sum_{q \in \mathcal{C}\left(D_{j}\right)} \rho(q)^{2}\right)^{1 / 2} \leqslant 4^{j+1}\left(\sum_{q \in \mathcal{C}\left(D_{j}\right)} \rho(q)^{2}\right)^{1 / 2} .
$$

We now estimate S_{2}. First, we denote by \mathcal{Z}_{ℓ} the set of centers z in the definition of \mathcal{B}_{ℓ} in (49). Fubini's theorem and (48) yield

$$
\begin{equation*}
S_{2} \leqslant \sum_{k=1}^{j-1} 4^{j-k-1} \sum_{z \in \mathcal{Z}_{k}} \int_{1 / 4}^{3 / 4} \int_{S(z, r[t, k])} \rho d s d t=\sum_{k=1}^{j-1} T_{k} . \tag{55}
\end{equation*}
$$

We apply change of variables to the integral in (55) to conclude that

$$
\begin{equation*}
T_{k} \leqslant 4^{j-k}\left(\log \frac{\epsilon_{k-1}}{\epsilon_{k}}\right)^{-1} \sum_{z \in \mathcal{Z}_{k}} \int_{B\left(z, \epsilon_{k-1}\right) \backslash \bar{B}\left(z, \epsilon_{k}\right)} \frac{\rho(x)}{|x|} d A(x) . \tag{56}
\end{equation*}
$$

Applying Hölder's inequality to the integral in (56) yields

$$
T_{k} \leqslant(2 \pi)^{1 / 2} 4^{j-k}\left(\log \frac{\epsilon_{k-1}}{\epsilon_{k}}\right)^{-1 / 2} \sum_{z \in \mathcal{Z}_{k}}\left(\int_{B\left(z, \epsilon_{k-1}\right)} \rho(x)^{2} d A(x)\right)^{1 / 2} .
$$

Since $\operatorname{card}\left(Z_{k}\right) \leqslant 6 \cdot 8^{k-1} \leqslant 8^{k}$ for all $0 \leqslant k \leqslant j-1$, we moreover have

$$
T_{k} \leqslant(2 \pi)^{1 / 2} 4^{j} \cdot 2^{-k / 2}\left(\log \frac{\epsilon_{k-1}}{\epsilon_{k}}\right)^{-1 / 2}\left(\int_{D_{j}} \rho(x)^{2} d A(x)\right)^{1 / 2} .
$$

Thus, if we require that $\epsilon_{k} \leqslant \epsilon_{k-1} / e$ for all k, we have

$$
S_{2} \leqslant(2 \pi)^{1 / 2} 4^{j} \sum_{k=1}^{j-1} 2^{-k / 2}\left(\int_{D_{j}} \rho(x)^{2} d A(x)\right)^{1 / 2} \leqslant 4^{j+2}\left(\int_{D_{j}} \rho(x)^{2} d A(x)\right)^{1 / 2}
$$

Combining the estimates yields

$$
\begin{aligned}
4^{j-2} & \leqslant 4^{j+1}\left(\sum_{q \in \mathcal{C}\left(D_{j}\right)} \rho(q)^{2}\right)^{1 / 2}+4^{j+2}\left(\int_{D_{j}} \rho(x)^{2} d A(x)\right)^{1 / 2} \\
& \leqslant 4^{j+3}\left(\int_{D_{j}} \rho(x)^{2} d A(x)+\sum_{q \in \mathcal{C}\left(D_{j}\right)} \rho(q)^{2}\right)^{1 / 2}
\end{aligned}
$$

We conclude that $\bmod \left(\Gamma_{j}\right) \geqslant 4^{-10}$. The proof is complete.
4.4. Proof of Proposition 4.2. By taking a subsequence of $\left(D_{j}\right)$, we may assume $f_{j} \rightarrow f$. Suppose towards contradiction that $\hat{f}(p)$ is a point component. We lose no generality by assuming $\hat{f}(p)=\{0\}$.

Lemma 4.3. Suppose $\hat{f}(p)=\{0\}$. For every $R>0$ there are $r>0$ and $m \in \mathbb{N}$ so that if $j \geqslant m$ and if $q \in \mathcal{C}\left(D_{j}\right)$ satisfies $\hat{f}_{j}(q) \cap S(0, R) \neq \emptyset$, then $\hat{f}_{j}(q) \cap S(0, r)=\emptyset$.

Proof. Suppose towards contradiction that there is $R>0$ and a sequence $\left(q_{n_{j}}\right), q_{n_{j}} \in \mathcal{C}\left(D_{n_{j}}\right)$, so that each $\hat{f}_{n_{j}}\left(q_{n_{j}}\right)$ intersects both $S(0, R)$ and $S\left(0,2^{-j}\right)$. By passing to a subsequence if necessary, we may assume $n_{j}=j$.

For each $j \in \mathbb{N}$, fix a point $x_{j} \in q_{j}$. Since $\widehat{\mathbb{C}} \backslash D$ is compact, $\left(x_{j}\right)$ has a subsequence converging to $x_{0} \in q_{0}$ for some $q_{0} \in \mathcal{C}(D)$. We may assume that $x_{j} \rightarrow x_{0}$. It follows that if $k \in \mathbb{N}$ and if $q_{0}(k)$ is the element of $\mathcal{C}\left(D_{k}\right)$ containing q_{0}, then

$$
q_{j} \subset q_{0}(k) \text { for all } j \geqslant j_{k} .
$$

In particular, since $\hat{f}_{j}\left(q_{j}\right)$ intersects both $S(0, R)$ and $S\left(0,2^{-j}\right)$, so does $\hat{f}_{j}\left(q_{0}(k)\right)$. We conclude that $\hat{f}\left(q_{0}(k)\right)$ contains both the origin and a point in $S(0, R)$. But this holds for all k, so also $\hat{f}\left(q_{0}\right)$ contains both the origin and a point in $S(0, R)$. This contradicts our assumption, that $\hat{f}(p)=\{0\}$. The proof is complete.

We use Lemma 4.3 to construct a decreasing sequence $\left(R_{n}\right)$ of positive real numbers and an increasing sequence j_{n} of indices as follows (compare to the proof of Lemma 2.7): First, choose R_{1}, j_{1} so that $\hat{f}_{j}(E) \cap B\left(0,2 R_{1}\right)=\emptyset$ for all $j \geqslant j_{1}$. Here E is the compact set in the statement of the proposition.

Then, assuming that R_{n}, j_{n} have been constructed, choose $R_{n+1}<R_{n} / 2$ and $j_{n+1} \geqslant j_{n}$ such that if $q \in \mathcal{C}\left(D_{j}\right), j \geqslant j_{n+1}$, and $\hat{f}_{j}(q) \cap S\left(0, R_{n}\right) \neq \emptyset$, then $\hat{f}_{j}(q) \cap S\left(0,2 R_{n+1}\right)=\emptyset$.

Given $k \in \mathbb{N}$, let N be the largest number for which there is $j_{N}^{\prime} \geqslant k$ so that $\hat{f}_{j}\left(p_{k}\right) \subset B\left(0, R_{N}\right)$ for all $j \geqslant j_{N}^{\prime}$. We may assume that $j_{N}^{\prime}=j_{N}$. Then

$$
\begin{equation*}
\bmod \left(\hat{f}_{j}(E), \hat{f}_{j}\left(p_{k}\right) ; f_{j}\left(D_{j}\right)\right) \leqslant \bmod \left(S\left(0,2 R_{1}\right), S\left(0, R_{N}\right) ; f_{j}\left(D_{j}\right)\right) \tag{57}
\end{equation*}
$$

for all $j \geqslant j_{N}$ (here the modulus on the left is over all paths connecting $\hat{f}_{j}(E)$ and $\hat{f}_{j}\left(p_{k}\right)$ in $\widehat{f_{j}\left(D_{j}\right)}$, a slight abuse of earlier terminology). Fix such a j. We construct a test function ρ as follows: First, let $1 \leqslant n \leqslant N$. We denote $A(R, r)=B(0, R) \backslash \bar{B}(0, r)$ and define
$\rho_{n}(x)= \begin{cases}\frac{1}{|x| \log 2}, & x \in D_{j} \cap A\left(2 R_{n}, R_{n}\right) \\ \frac{\operatorname{diam}(x)}{R_{n} \log 2}, & x \in \mathcal{C}\left(f_{j}\left(D_{j}\right)\right), x \cap A\left(2 R_{n}, R_{n}\right) \neq \emptyset, \operatorname{diam}(x) \leqslant \operatorname{dist}(x, 0), \\ 1, & x \in \mathcal{C}\left(f_{j}\left(D_{j}\right)\right), x \cap A\left(2 R_{n}, R_{n}\right) \neq \emptyset, \operatorname{diam}(x)>\operatorname{dist}(x, 0),\end{cases}$
and $\rho_{n}(x)=0$ otherwise. As in the proof of Lemma 2.7, we have

$$
\rho=\frac{1}{N} \sum_{n=1}^{N} \rho_{n} \in X\left(S\left(0,2 R_{1}\right), S\left(0, R_{N}\right) ; f_{j}\left(D_{j}\right)\right) \quad \text { for all } j \geqslant j_{N} \text {. }
$$

For each $q \in \mathcal{C}\left(D_{j}\right)$ there is at most one n such that $\rho_{n}(q) \neq 0$. Moreover, for every n there are at most 30 elements (disks) $q \in \mathcal{C}\left(f_{j}\left(D_{j}\right)\right)$ such that $q \cap A\left(2 R_{n}, R_{n}\right) \neq \emptyset$ and $\operatorname{diam}(q)>\operatorname{dist}(q, 0)$. Thus we can estimate

$$
\begin{aligned}
& \int_{f_{j}\left(D_{j}\right)} \rho_{n}^{2} d A+\sum_{q \in \mathcal{C}\left(f_{j}\left(D_{j}\right)\right)} \rho_{n}(q)^{2} \leqslant \frac{1}{(\log 2)^{2}} \int_{A\left(2 R_{n}, R_{n}\right)} \frac{d A}{|x|^{2}} \\
+ & \frac{\operatorname{Area}\left(B\left(0,4 R_{n}\right)\right)}{R_{n}^{2}(\log 2)^{2}}+30 \leqslant \frac{2 \pi}{\log 2}+\frac{16 \pi}{(\log 2)^{2}}+30 \leqslant 1000,
\end{aligned}
$$

and, since we have chosen j_{k} so that every $q \in \mathcal{C}\left(f_{j}\left(D_{j}\right)\right)$ satisfies $\rho_{n}(q) \neq 0$ for at most one n,

$$
\begin{equation*}
\int_{f_{j}\left(D_{j}\right)} \rho^{2} d A+\sum_{q \in \mathcal{C}\left(f_{j}\left(D_{j}\right)\right)} \rho(q)^{2} \leqslant \frac{1000 N}{N^{2}}=\frac{1000}{N} \tag{58}
\end{equation*}
$$

Since $N \rightarrow \infty$ as $k \rightarrow \infty$, combining (58) with (57) yields

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \liminf _{j \rightarrow \infty} \bmod \left(\hat{f}_{j}(E), \hat{f}_{j}\left(p_{k}\right) ; f_{j}\left(D_{j}\right)\right)=0 \tag{59}
\end{equation*}
$$

But (59) and the conformal invariance of the modulus contradict our assumption (54). The proof is complete.

Acknowledgement. We thank Toni Ikonen, Dimitrios Ntalampekos, Malik Younsi and the referee for their comments.

References

[1] M. Bonk. Uniformization of Sierpiński carpets in the plane. Invent. Math., 186(3):559665, 2011.
[2] M. Bonk. Uniformization by square domains. J. Anal., 24(1):103-110, 2016.
[3] M. Bonk and S. Merenkov. Quasisymmetric rigidity of square Sierpiński carpets. Ann. of Math. (2), 177(2):591-643, 2013.
[4] M. Bonk and S. Merenkov. Square Sierpiński carpets and Lattès maps. Math. Z., 296(1-2):695-718, 2020.
[5] M. Brandt. Ein Abbildungssatz für endlich-vielfach zusammenhängende Gebiete. Bull. Soc. Sci. Lett. Łódź, 30(3):12, 1980.
[6] C. C. Chang and H. J. Keisler. Model theory. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. Studies in Logic and the Foundations of Mathematics, Vol. 73.
[7] R. Courant. Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces. Interscience Publishers, Inc., New York, N.Y., 1950. Appendix by M. Schiffer.
[8] H. Hakobyan and W. Li. Quasisymmetric embeddings of slit Sierpiński carpets. preprint, 2019.
[9] A. N. Harrington. Conformal mappings onto domains with arbitrarily specified boundary shapes. J. Analyse Math., 41:39-53, 1982.
[10] Z.-X. He and O. Schramm. Fixed points, Koebe uniformization and circle packings. Ann. of Math. (2), 137(2):369-406, 1993.
[11] Z.-X. He and O. Schramm. Rigidity of circle domains whose boundary has σ-finite linear measure. Invent. Math., 115(2):297-310, 1994.
[12] Z.-X. He and O. Schramm. Koebe uniformization for "almost circle domains". Amer. J. Math., 117(3):653-667, 1995.
[13] D. A. Herron and P. Koskela. Quasiextremal distance domains and conformal mappings onto circle domains. Complex Variables Theory Appl., 15(3):167-179, 1990.
[14] S. Hildebrandt and H. von der Mosel. Conformal mapping of multiply connected Riemann domains by a variational approach. Adv. Calc. Var., 2(2):137-183, 2009.
[15] P. Koebe. über die uniformisierung beliebiger analytischer kurven iii. Nachr, Ges. Wiss. Gott., pages 337-358, 1908.
[16] F. Luo and T. Wu. Koebe conjecture and the Weyl problem for convex surfaces in hyperbolic 3-space. preprint, 2019.
[17] D. Ntalampekos. Potential theory on Sierpiński carpets, volume 2268 of Lecture Notes in Mathematics. Springer, Cham, 2020.
[18] D. Ntalampekos and M. Younsi. Rigidity theorems for circle domains. Invent. Math., 220(1):129-183, 2020.
[19] O. Schramm. Transboundary extremal length. J. Anal. Math., 66:307-329, 1995.
[20] O. Schramm. Conformal uniformization and packings. Israel J. Math., 93:399-428, 1996.
[21] A. Y. Solynin and N. C. Vidanage. Uniformization by rectangular domains: a path from slits to squares. J. Math. Anal. Appl., 486(2):123927, 12, 2020.
[22] M. Younsi. Removability, rigidity of circle domains and Koebe's conjecture. Adv. Math., 303:1300-1318, 2016.

Department of Mathematics and Statistics, University of Jyväskylä, P.O.
Box 35 (MaD), FI-40014, University of Jyväskylä, Finland.
Email address: kai.i.rajala@jyu.fi

[^0]: Research supported by the Academy of Finland, project number 308659. 2010 Mathematics Subject Classification. 30C20, 30C35.

[^1]: ${ }^{1}$ The construction of D is flexible in terms of the shapes of the complementary components. In particular, there are circle domains D satisfying the requirements of Theorem 1.1. We use squares in our construction for convenience of presentation.

[^2]: ${ }^{2}$ The size of the Cantor set is not relevant for our construction. For instance, the construction can be carried out so that $\hat{\mathbb{C}} \backslash D$ has σ-finite length.

