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Abstract. We prove that any metric space X homeomorphic to R2 with

locally finite Hausdorff 2-measure satisfies a reciprocal lower bound on modulus
of curve families associated to a quadrilateral. More precisely, let Q ⊂ X be

a topological quadrilateral with boundary edges (in cyclic order) denoted by

ζ1, ζ2, ζ3, ζ4 and let Γ(ζi, ζj ;Q) denote the family of curves in Q connecting ζi
and ζj ; then mod Γ(ζ1, ζ3;Q) mod Γ(ζ2, ζ4;Q) ≥ 1/κ for κ = 20002 · (4/π)2.

This answers a question in [6] concerning minimal hypotheses under which a

metric space admits a quasiconformal parametrization by a domain in R2.

1. Introduction

The classical uniformization theorem states that any simply connected Riemann
surface can be mapped onto either the Euclidean plane R2, the sphere S2, or the unit
disk D by a conformal mapping. For obtaining similar results in the setting of metric
spaces, the class of conformal mappings is too restrictive and it is natural to consider
instead some type of quasiconformal mapping. One such class is quasisymmetric
mappings, and a large body of recent literature is dedicated to quasisymmetric
uniformization of metric spaces. We mention specifically papers by Semmes [9] and
Bonk–Kleiner [2] as important references.

Another approach is to use the so-called geometric definition of quasiconformal
mappings, based on the notion of modulus of a curve family. In the recent paper [6],
the first-named author proves a version of the uniformization theorem for metric
spaces homeomorphic to R2 with locally finite Hausdorff 2-measure. In the present
paper, we call such spaces metric surfaces.

In [6] a condition on metric surfaces called reciprocality (see Definition 1.1 be-
low) is introduced and shown to be necessary and sufficient for the existence of
a quasiconformal parametrization by a domain in R2. We refer the reader to the
introduction of [6] for a detailed overview of the problem and additional references
to the literature.

In this paper, we show that one part of the definition of reciprocality is satisfied
by all metric surfaces and therefore is unnecessary. This result gives a positive
answer to Question 17.5 from [6].

We first recall the relevant definitions and establish some notation. Let (X, d, µ)
be a metric measure space. For a family Γ of curves in X, the p-modulus of Γ is
defined as

modp Γ = inf

∫
X

ρp dµ,

where the infimum is taken over all Borel functions ρ : X → [0,∞] with the property
that

∫
γ
ρ ds ≥ 1 for all locally rectifiable curves γ ∈ Γ. Such a function ρ is called

admissible. If the exponent p is understood, a homeomorphism f : (X, d, µ) →
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(Y, d′, ν) between metric measure spaces is quasiconformal if there exists K ≥ 1
such that

K−1 modp Γ ≤ modp f(Γ) ≤ K modp Γ

for all curve families Γ in X. In this paper, we always take p = 2 and assume that
a metric space (X, d) is equipped with the Hausdorff 2-measure H2, and we write
mod Γ in place of mod2 Γ.

Throughout this paper, we assume that (X, d) is a metric surface as defined
above. A quadrilateral in X is a subset Q ⊂ X homeomorphic to [0, 1]2 with four
designated non-overlapping boundary arcs, denoted in cyclic order by ζ1, ζ2, ζ3,
ζ4, which are the images of [0, 1] × {0}, {1} × [0, 1], [0, 1] × {1} and {0} × [0, 1],
respectively, under the parametrizing homeomorphism from [0, 1]2. We write Γ1(Q)
to denote the family Γ(ζ1, ζ3;Q) of curves in Q connecting ζ1 and ζ3, and Γ2(Q) to
denote the family Γ(ζ2, ζ4;Q) of curves in Q connecting ζ2 and ζ4. More generally,
for disjoint closed sets E,F contained in the set G ⊂ X, the notation Γ(E,F ;G) is
used to denote the family of curves in G which intersect both E and F .

Definition 1.1. The metric surface (X, d) is reciprocal if there exists κ ≥ 1 such
that for all quadrilaterals Q in X,

(1) mod Γ1(Q) mod Γ2(Q) ≤ κ
and

(2) mod Γ1(Q) mod Γ2(Q) ≥ 1/κ,

and for all x ∈ X and R > 0 such that X \B(x,R) 6= ∅,
(3) lim

r→0
mod Γ(B(x, r), X \B(x,R);B(x,R)) = 0.

We then have the following result.

Theorem 1.2 ([6], Thm. 1.4). There exists a domain Ω ⊂ R2 and a quasiconformal
mapping f : (X, d)→ Ω if and only if X is reciprocal.

The necessity of each condition in Definition 1.1 is immediate; standard com-
putations show that R2 is reciprocal. The actual content of Theorem 1.2 is that
these conditions are sufficient to construct “by hand” a mapping that can then be
shown to be quasiconformal. However, the question of whether a weaker set of
assumptions might still be sufficient to construct such a quasiconformal mapping
is not fully settled in [6].

It is not difficult to construct examples of metric surfaces for which conditions
(1) and (3) fail. For instance, the quotient space R2/ ∼, where x ∼ y if x = y or
if both x and y belong to the closed unit disc, has a natural metric for which both
conditions fail. On the other hand, it was conjectured in [6] (Question 17.5) that
in fact condition (2) holds for all (X, d). The main result of this paper shows that
this is indeed the case.

Theorem 1.3. Let (X, d) be a metric space homeomorphic to R2 with locally finite
Hausdorff 2-measure. There exists a constant κ ≥ 1, independent of X, such that
mod Γ1(Q) mod Γ2(Q) ≥ 1/κ for all quadrilaterals Q ⊂ X.

As a consequence of Theorem 1.3, condition (2) in Definition 1.1 is unnecessary.
Our proof as written gives a value of κ = 20002 · (4/π)2, though optimizing each
step would improve this to κ = 2162 · (4/π)2. It is a corollary of Theorem 1.5 in [6],
as improved in [7], that if X is reciprocal (and hence X admits a quasiconformal
parametrization), then Theorem 1.3 holds with κ = (4/π)2. For this reason, it is
natural to conjecture that the best possible κ for the general case is also (4/π)2,
though our techniques fall far short of this.
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In Proposition 15.8 of [6], Theorem 1.3 (with a larger value of κ) is proved under
the assumption that X satisfies the mass upper bound H2(B(x, r)) ≤ Cr2 for some
C > 0 independent of x and r. Our proof follows a similar outline; the difficulty is
to avoid using the upper bound.

The basic approach is to construct an “energy-minimizing” or “harmonic” func-
tion u : Q→ [0,∞) which satisfies the boundary constraints u|ζ1 = 0 and u|ζ3 = 1.
Working only from the assumptions at hand, one can establish relevant properties
of u. The main property needed to prove Theorem 1.3 is that a version of the
coarea inequality holds for u. For the case when X satisfies the mass upper bound
H2(B(x, r)) ≤ Cr2, this is found in Proposition 15.7 of [6]. The coarea inequality
implies that, from the level sets of u, one may extract a large family of rectifiable
curves contained in Γ2(Q). Since u is defined by means of the curve family Γ1(Q),
this provides the necessary link between Γ1(Q) and Γ2(Q). Roughly speaking, if
there are few curves in Γ1(Q), as quantified by modulus, then these corresponding
curves in Γ2(Q) must be short, which implies that the modulus of Γ2(Q) is large.

The organization of the paper is the following. Section 2 contains some basic
notation and background, including an overview of the construction of the harmonic
function u described in the previous paragraph. In Section 3, we prove several
properties of the level sets of u which are required for the proof of Theorem 1.3. This
section expands on the material present in Section 4 of [6]. Section 4 contains the
main technical portion of our paper, the coarea inequality for u described previously
valid for all metric surfaces, as well as the proof of Theorem 1.3. Section 5 contains a
final auxiliary result, namely that the harmonic function u is continuous in general.
The continuity of u had previously been proved as Theorem 5.1. of [6] using the
reciprocality conditions (2) and (3).

2. Preliminaries

In this section, we give a review of notation and auxiliary results from [6] that
will be needed. For the remainder of this paper, we let X be a metric surface and Q
denote a fixed quadrilateral in X. We write Γ1 for Γ1(Q). We assume throughout
this paper that all curves are non-constant.

For k ∈ {1, 2} and ε > 0, the k-dimensional Hausdorff ε-content of a set E ⊂ X,
denoted by Hkε (E), is defined as

Hkε (E) = inf

∑ ak diam(Aj)
k : E ⊂

∞⋃
j=1

Aj ,diamAj < ε

 ,

with normalizing constants a1 = 1 and a2 = π/4. The Hausdorff k-measure of E is
defined as Hk(E) = limε→0Hkε (E).

We proceed with an overview of the construction of the harmonic function u
corresponding to the curve family Γ1, as given in Section 4 of [6]. By a standard
argument using Mazur’s lemma, there exists a sequence of admissible functions (ρk)
for Γ1 that converges strongly in L2 to a function ρ ∈ L2(Q) satisfying

∫
Q
ρ2 dH2 =

mod Γ1. By Fuglede’s lemma,

(4)

∫
γ

ρk ds→
∫
γ

ρ ds <∞

for all curves γ in Q except for a family of modulus zero. In particular, this implies
that ρ is weakly admissible for Γ1 (that is, admissible after removing from Γ1 a
subfamily of modulus zero). We extend the definition of ρ to the entire space X by
setting ρ(x) = 0 for all x ∈ X \Q.

Let Γ0 be the family of curves in Q with a subcurve on which (4) does not hold.
Note that mod Γ0 = 0. We define the function u as follows. Let x ∈ Q. If there
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exists a curve γ ∈ Γ1 \ Γ0 whose image contains x, then define

(5) u(x) = inf

∫
γx

ρ ds,

where the infimum is taken over all such curves γ and over all subcurves γx of γ
joining ζ1 and x. Otherwise, define u(x) by

u(x) = lim inf
y∈E,y→x

u(y),

where E is the set of those y ∈ Q such that u(y) is defined by (5). Lemma 4.1 of
[6] shows that u is well-defined in Q.

We recall Lemma 4.3 of [6], which states that ρ is a weak upper gradient of u.
More precisely,

(6) |u(x)− u(y)| ≤
∫
γ

ρ ds

for all curves γ in Q with γ /∈ Γ0. In particular, u is absolutely continuous along any
curve γ /∈ Γ0. We also recall Lemma 4.5 of [6], where it is shown that 0 ≤ u(x) ≤ 1
for all x ∈ Q. It follows from (5) that if x ∈ ζ3 lies in the image of a curve
γ ∈ Γ1 \ Γ0, then u(x) ≥ 1 and thus u(x) = 1.

As final points of notation, for a set A ⊂ Q, let oscA u = supx,y∈A |u(x)− u(y)|.
Let |γ| denote the image of the curve γ in Q.

To study the harmonic function u, there are three auxiliary results which are
employed repeatedly in [6] and which we state here for easy reference. The first
concerns the existence of rectifiable curves and can be found as Proposition 15.1 of
[8].

Proposition 2.1. Let x, y ∈ X be given, x 6= y. Suppose that E ⊂ X is a
continuum with H1(E) < ∞ and x, y ∈ E. Then there is an L > 0, L ≤ H1(E),
and an injective 1-Lipschitz mapping γ : [0, L] → X such that γ(t) ∈ E for all t,
γ(0) = x, γ(L) = y and H1(γ(F )) = H1(F ) for all measurable sets F ⊂ [0, L].

The next is the standard coarea inequality for Lipschitz functions on metric
spaces, found in [1, Proposition 3.1.5].

Proposition 2.2 (Coarea inequality). Let A ⊂ X be Borel measurable. If m : X →
R is L-Lipschitz and g : A→ [0,∞] is Borel measurable, then∫

R

∫
A∩m−1(t)

g(s) dH1(s) dt ≤ 4L

π

∫
A

g(x) dH2(x).

We also need a topological lemma, cf. [5, IV Theorem 26].

Lemma 2.3. Let A,B ⊂ Q be non-empty sets, and let K ⊂ Q be a compact
set such that A and B belong to different components of Q \K. Then there is a
continuum F ⊂ K such that A and B belong to different components of Q \ F .
Moreover, if H1(K) < ∞ and the component of Q \K containing A is contained
in the interior of Q, then F may be taken to be the image of an injective Lipschitz
mapping γ : S1 → K.

3. Level sets of u

In this section, we prove a number of topological properties for the level sets of
the harmonic function u, or, more precisely, for the closure of these level sets. This
section can be viewed as an extension of Section 4 in [6], which also studies those
properties of u which can be proved without any use of the reciprocality conditions.

The primary technical difficulty we must deal with is that, without assuming the
reciprocality conditions, we do not know a priori that the function u is continuous.
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However, it is shown in Lemma 4.6 of [6] that u satisfies a maximum and a minimum
principle. To state it, we use the following notation. For an open set Ω ⊂ X, or a
relatively open set Ω ⊂ Q, let

∂∗Ω = (∂Ω ∩Q) ∪ (Ω ∩ (ζ1 ∪ ζ3)).

Then we have the following.

Lemma 3.1 ( Maximum principle). Let Ω ⊂ X be open. Then supx∈Ω∩Q u(x) ≤
supy∈∂∗Ω u(y) and infx∈Ω∩Q u(x) ≥ infy∈∂∗Ω u(y).

Lemma 3.1 allows us to establish topological properties for the closures of sets
of the form u−1([s, t]).

Proposition 3.2. For all s, t ∈ [0, 1], s ≤ t, the set u−1([s, t]) is connected and
intersects both ζ2 and ζ4.

Proof. Let E = u−1([s, t]). To prove the first claim, suppose that E is not con-
nected. Then there is an open set U ⊂ X such that

(7) U ∩ E 6= ∅, (Q \ U) ∩ E 6= ∅, ∂U ∩ E = ∅.
Let E1 = U ∩ E and E2 = (Q \ U) ∩ E. By passing to a subset if needed, we may
assume that E1 and E2 are each contained within a single component of U and
Q \ U , respectively. We fix ε > 0 such that dist(∂U,E) > ε. By Proposition 2.2
applied to h(x) = dist(∂U, x), there is 0 < p < ε such that H1(h−1(p)) < ∞ and
every rectifiable curve γ for which |γ| ⊂ h−1(p) lies outside the exceptional set Γ0.
By (7) and our choice of p, the sets E1 and E2 belong to different components of
Q\h−1(p). Lemma 2.3 then shows that h−1(p) has a connected subset F ⊂ Q such
that E1 and E2 belong to different components of Q \ F . Notice that, for every
rectifiable curve γ with |γ| ⊂ F , u||γ| is continuous and either u(x) < s or u(x) > t
for all x ∈ |γ|. We divide the rest of the proof into cases.

Case 1. Suppose there is an open set G ⊂ X such that ∂G ⊂ F and Ej ⊂ G for
j = 1 or j = 2. By Lemma 3.1 there are x0, x1 ∈ G such that u(x0) ≤ s and
u(x1) ≥ t. Moreover, by Proposition 2.1 there is a rectifiable curve γ joining x0

and x1 in F . Since u||γ| is continuous, we conclude that u(x) ∈ E for some x ∈ |γ|.
This is a contradiction, since E ∩ F = ∅.

Suppose next that the set G in Case 1 does not exist. We then find a subcon-
tinuum F ′ of F with the following properties: F ′ ∩ ∂Q consists of two distinct
points x0 and x1, and E1 and E2 belong to different components, say Ω1 and Ω2,
of X \ (∂Q∪F ′). By Proposition 2.1 we may moreover assume that F ′ = |γ|, where
γ : [0, 1]→ Q is simple and rectifiable, and γ(0) = x0, γ(1) = x1.

Case 2. Suppose that both x0 and x1 belong to ζj for some j = 1, . . . , 4. Then
∂Ωk ⊂ |γ| ∪ ζj for k = 1 or k = 2. As in Case 1, Lemma 3.1 and the continuity
of u||γ| show that there exists x ∈ |γ| such that u(x) ∈ [s, t]. This contradicts the
construction of γ. A similar argument can be applied when x0 ∈ ζi and x1 ∈ ζj ,
where either i ∈ {1, 3} and j ∈ {2, 4}, or j ∈ {1, 3} and i ∈ {2, 4}.

Case 3. Suppose that x0 ∈ ζ1 and x1 ∈ ζ3. Then, since γ /∈ Γ0, the construction of
u shows that u||γ| takes all values between 0 and 1. In particular, u(x) ∈ [s, t] for
some x ∈ |γ|. This contradicts the fact that |γ| ∩ E = ∅. The argument remains
valid if the roles of x0 and x1 are reversed.

Case 4. Suppose that x0 ∈ ζ2 and x1 ∈ ζ4. Without loss of generality, we may
assume that Ω1 is the component containing ζ1. It then follows from Lemma 3.1
that u(x) ≥ s for some x ∈ |γ|. Moreover, since u||γ| is continuous and |γ| ∩E = ∅,
it follows that in fact u(x) > t for every x ∈ |γ|. Similarly, applying Lemma 3.1 to
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Ω2 shows that u(x) < s for every x ∈ |γ|. This is a contradiction. The argument
remains valid if the roles of x0 and x1 are reversed.

We conclude that the set E is connected. It remains to show that E intersects
both ζ2 and ζ4. Suppose towards contradiction that this is not the case. We
may assume without loss of generality that E does not intersect ζ4. Proposition
2.2 applied to g(x) = dist(ζ4, x) shows that there exists a small p > 0 such that
H1(g−1(p)) < ∞. Moreover, by Lemma 2.3 there is a continuum F ⊂ g−1(p)
joining ζ1 and ζ3 in Q\E. Proposition 2.1 gives a simple curve γ such that |γ| ⊂ F
also joins ζ1 and ζ3. As before, we may assume that γ /∈ Γ0 so that u||γ| takes all
values between 0 and 1. This is a contradiction since |γ| ∩ E = ∅. The proof is
complete. �

Next, we give a generalization of Lemma 15.6 in [6], with a corrected constant.
The proof is essentially the same as the corresponding proof in [6].

Lemma 3.3. Let x ∈ Q and r ∈ (0, r0), where r0 = min{diam ζ1,diam ζ3}/4.
Then

(8) rH1(u(B(x, r) ∩Q)) ≤ 4

π

∫
B(x,2r)

ρ dH2.

Moreover, if U(x, r) is the x-component of B(x, r) ∩Q, then

(9) r osc
U(x,r)

u ≤ 4

π

∫
B(x,2r)

ρ dH2.

Proof. By applying Proposition 2.2 to the function d(·, x) and arguing as in the first
paragraph of the proof of Proposition 3.2, we see that for almost every s ∈ (r, 2r),
the sphere S(x, s) satisfies H1(S(x, s)) < ∞ and has the property that η /∈ Γ0 for
every curve η with |η| ⊂ S(x, s) ∩Q. Fix such an s ∈ (r, 2r).

Then B(x, s)∩Q consists of countably many relatively open components Vj . By
Lemma 2.3, for such a component Vj there is a simple curve γj with |γj | ⊂ S(x, s)

that separates Q into the relative components Uj and Q \ U j , where Vj ⊂ Uj .
Observe that either γj is a closed curve, or the two endpoints of γj are contained
in ∂Q.

Since B(x, r) ∩Q ⊂
⋃
j Uj , we have

H1(u(B(x, r) ∩Q)) ≤
∑
j

diamu(Uj).

By the maximum principle Lemma 3.1, we have

diamu(Uj) ≤ sup
y,z∈∂∗Uj

|u(y)− u(z)|.

By our assumption that r ≤ min{diam ζ1,diam ζ3}/4, it follows that if ζ1∩∂∗Uj 6= ∅,
then there exists a point z1 ∈ |γj | ∩ ζ1. Indeed, if y ∈ ζ1 ∩ ∂∗Uj , then d(y, x) ≤ 2r.
But by assumption, there exists z ∈ ζ1 such that d(y, z) > 4r. The triangle inequal-
ity gives d(z, x) > 2r, and in particular z /∈ U j . Since γj separates Q, we conclude
there is a point z1 ∈ |γj | ∩ ζ1. In this case it follows that 0 = infz∈∂∗Uj

u(z) =
u(z1) = minz∈|γj | u(z). On the other hand, if ζ1 ∩ ∂∗Uj = ∅, then by Lemma 3.1
we again have infz∈∂∗Uj

u(z) = minz∈|γj | u(z).
The same argument shows that if ζ3 ∩ ∂∗Uj 6= ∅, then there exists y1 ∈ |γj | ∩ ζ3

such that 1 = supy∈∂∗Uj
u(y) = u(y1) = maxy∈γj u(y). In general, we likewise have

supy∈∂∗Uj
u(y) = maxy∈|γj | u(y). This establishes the equality

sup
y,z∈∂∗Uj

|u(y)− u(z)| = max
y,z∈|γj |

|u(y)− u(z)|.
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By the upper gradient inequality (6),

max
y,z∈|γj |

|u(y)− u(z)| ≤
∫
γj

ρ dH1.

Finally, combining the estimates gives

H1(u(B(x, r) ∩Q)) ≤
∑
j

diamu(Uj) ≤
∑
j

∫
γj

ρ dH1 ≤
∫
S(x,s)

ρ dH1.

Observe that this estimate is the same independent of our choice of s. Inequality
(8) then follows from integrating over s from r to 2r and applying Proposition 2.2.

The same argument also verifies inequality (9), since for each choice of s ∈ (r, 2r)
it holds that oscU(x,r) u = diamu(U(x, r)) ≤

∑
j diamu(Uj). �

Without assuming the reciprocality conditions, it is not clear that the function
u is continuous. Nevertheless, Lemma 3.3 implies a certain amount of continuity
for u, as we show in the following corollary.

Corollary 3.4. The function u is continuous at H2-almost every x ∈ Q.

Proof. Inequality (9) implies that

lim sup
r→0

osc
U(x,r)

u ≤ lim sup
r→0

4r

π
· 1

r2

∫
B(x,2r)

ρ dH2

for all x ∈ Q \ ∂Q. Here, U(x, r) is as in Lemma 3.3. From basic properties of
pointwise densities of measures (see [3, Sec. 2.10.19(3)]), the integrability of ρ and
local finiteness of H2 imply that

lim sup
r→0

1

r2

∫
B(x,2r)

ρ dH2 <∞

for H2-almost every x ∈ Q. The result follows by combining the estimates. �

4. Reciprocal lower bound

This section is devoted to a proof of Theorem 1.3. We first state and prove
the coarea inequality mentioned above which constitutes the main technical contri-
bution of this paper. This corresponds to Proposition 15.7 in [6], where a sim-
ilar result is proved under the assumption that X has the mass upper bound
H2(B(x, r)) ≤ Cr2. The proof of Proposition 4.1, like Proposition 15.7 in [6],
is based on standard arguments such as that in [1, Prop. 3.1.5].

Proposition 4.1. Let u and ρ be as above. For all Borel functions g : Q→ [0,∞],∫ ∗
[0,1]

∫
u−1(t)

g dH1 dt ≤ 2000

∫
Q

gρ dH2.

Here
∫ ∗
A
a(t) dt is the upper Lebesgue integral of a over A (see [3, Sec. 2.4.2]).

Proof. It suffices to consider the case where g is a characteristic function, that is,
g = χE for some Borel set E ⊂ Q. Moreover, we may assume that E is open in
Q. Indeed, for a Borel set E we find open sets Uj ⊃ E, Uj+1 ⊂ Uj , such that
H2(Uj)→ H2(E). Assuming the proposition for g = χUj , we have∫ ∗

[0,1]

∫
u−1(t)

χE dH1 dt ≤
∫ ∗

[0,1]

∫
u−1(t)

χUj
dH1 dt ≤ 2000

∫
Q

χUj
ρ dH2

−→ 2000

∫
Q

χEρ dH2.
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So we want to show that

(10)

∫ ∗
[0,1]

H1(u−1(t) ∩ E) dt ≤ 2000

∫
E

ρ dH2

whenever E is open in Q. The proof is divided into two steps, the first dealing with
the subset of “good” points of E and the second dealing with the subset of “bad”
points. Throughout this proof, all metric balls are considered as subsets of Q.

Step 1. Consider the set

G =

{
x ∈ E : ∀ε > 0,∃r < ε,

∫
B(x,10r)

ρ dH2 ≤ 200

∫
B(x,r)

ρ dH2

}
.

Fix ε > 0. We apply the basic covering theorem ([4, Thm. 1.2]) to choose a
countable collection of pairwise disjoint balls Bj = B(xj , rj) such that xj ∈ G and
10rj ≤ min{ε, d(xj , Q \ E)} for each j, the collection {5Bj} covers G, and∫

10Bj

ρ dH2 ≤ 200

∫
Bj

ρ dH2

for each j. We also require that 20rj < min{diam ζ1,diam ζ3} for our application
of Lemma 3.3. We have∑

j

∫
10Bj

ρ dH2 ≤
∑
j

200

∫
Bj

ρ dH2 ≤ 200

∫
E

ρ dH2,

where the last inequality follows since by our choice the balls Bj are pairwise disjoint
subsets of the open set E. For each j fix a measurable set Aj ⊃ u(5Bj) such that
H1(Aj) = H1(u(5Bj)). Moreover, define gε : [0, 1]→ R by

gε(t) =
∑
j

rjχAj
(t).

Integrating and applying Lemma 3.3 gives∫ 1

0

gε(t) dt =
∑
j

rjH1(u(5Bj)) ≤
4

π

∑
j

∫
10Bj

ρ dH2.

We observe that if x ∈ u−1(t)∩G for a given t ∈ [0, 1], with jx such that x ∈ 5Bjx ,

then of necessity t ∈ u(5Bjx). Hence H1
ε(u
−1(t) ∩ G) ≤ 10gε(t), by the definition

of Hausdorff ε-content. Letting ε→ 0 and applying Fatou’s lemma gives∫ ∗
[0,1]

H1(u−1(t) ∩G) dt ≤ 10

∫ 1

0

lim inf
ε→0

gε(t) dt ≤ 10 lim inf
ε→0

∫ 1

0

gε(t) dt.

Combining estimates, we obtain∫ ∗
[0,1]

H1(u−1(t) ∩G) dt ≤ 4 · 2000

π

∫
E

ρ dH2.

Step 2. We turn our attention next to the set F = E \G. We claim that

(11)

∫ ∗
[0,1]

H1(u−1(t) ∩ F ) dt = 0.

By the definition of F , for all x ∈ F there exists εx = 10−kx (for some integer
kx ≥ 1) such that
(12)∫

B(x,10−j)

ρ dH2 ≤ 200−1

∫
B(x,10−j+1)

ρ dH2 ≤ · · · ≤ 200−(j−kx)

∫
B(x,εx)

ρ dH2

for all j ≥ kx. For all k ∈ N, let Fk = {x ∈ F : kx ≤ k}. Observe that F =
⋃
k Fk.
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Now, fix k ∈ N and let j ≥ k. By definition of the (spherical) Hausdorff measure,
there exists a countable collection of balls Bm = B(xm, rm) which cover Fk, such
that xm ∈ Fk, rm ≤ min{10−j , d(xm, Q \ E),diam ζ1/4,diam ζ3/4}, and

∑
4r2
m ≤

4H2(Fk) + 4/j. For the last requirement, recall that the spherical Hausdorff 2-
measure is at most 4 times the usual Hausdorff 2-measure. For each m, let jm be
the largest integer such that 2rm ≤ 10−jm . Observe that 10−jm < 20rm ≤ 20 ·10−j

and hence that jm ≥ j − 1.
From Lemma 3.3 and (12) we deduce

rmH1(u(Bm)) ≤ 4

π

∫
2Bm

ρ dH2 ≤ 4

π

∫
B(x,10−jm )

ρ dH2

≤ 4

π
· 1

200

∫
B(x,10−jm+1)

ρ dH2

≤ · · · ≤ 4

π
· 1

200jm−k

∫
B(x,10−k)

ρ dH2.

In particular we have

(13) rmH1(u(Bm)) ≤ 4

π
· 200k

200jm

∫
Q

ρ dH2.

Similar to the first step of the proof, for each m fix a measurable Am ⊃ u(Bm)
such that H1(Am) = H1(u(Bm)) and define gj(t) =

∑
m rmχAm(t). Then, as

before, the definition of H1
1/j gives

(14) H1
1/j(u

−1(t) ∩ Fk) ≤ 2gj(t)

for all t ∈ [0, 1]. Integrating gives∫ 1

0

gj(t) dt ≤
∑
m

rmH1(u(Bm)).

Applying (13) and using the relationships 1 < 20 · 10jmrm and jm ≥ j − 1 gives∑
m

rmH1(u(Bm)) ≤
∑
m

3200

π
· 200kr2

m

(
100

200

)jm ∫
Q

ρ dH2

≤ 3200

π
· 200k

(
100

200

)j (∫
Q

ρ dH2

)∑
m

r2
m

≤ 3200

π
· 200k

(
100

200

)j (∫
Q

ρ dH2

)(
H2(Fk) + 1/j

)
.

From this we obtain

lim
j→∞

∫ 1

0

gj(t) dt ≤ lim
j→∞

3200

π
· 200k · 2−j

(∫
Q

ρ dH2

)(
H2(Fk) + 1/j

)
= 0.

Combining with Fatou’s lemma and (14) shows that H1(u−1(t)∩Fk) = 0 for almost
every t. Since this is true for all k, (11) follows.

�

With Proposition 4.1 in hand, the proof of Theorem 1.3 is now simple.

Proof of Theorem 1.3. First, observe from Proposition 4.1 thatH1(u−1(t)) <∞ for

almost every t ∈ [0, 1]. Also, as shown in Proposition 3.2, u−1(t) is connected for

all t and connects ζ2 and ζ4. By Proposition 2.1, for almost every t ∈ [0, 1], u−1(t)
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contains a simple rectifiable curve γt joining ζ2 and ζ4 in Q. Let g : Q→ [0,∞] be
an admissible function for Γ2. Then

(15) 1 ≤
∫
γt

g ds ≤
∫
u−1(t)

g dH1

for almost every 0 ≤ t ≤ 1. Combining (15) with Proposition 4.1 yields

1 ≤
∫ ∗

[0,1]

∫
u−1(t)

g dH1 dt ≤ 4 · 2000

π

∫
Q

gρ dH2.

By Hölder’s inequality,∫
Q

gρ dH2 ≤
(∫

Q

g2 dH2

)1/2(∫
Q

ρ2 dH2

)1/2

=

(∫
Q

g2 dH2

)1/2

(mod Γ1)1/2.

Infimizing over all admissible g, we obtain

1

20002 · (4/π)2
≤ mod Γ1 ·mod Γ2.

�

Remark 4.2. We can improve the value of κ as follows. For δ > 0, a version of the
basic covering theorem yields a family of balls Bj with the property that {(3+δ)Bj}
covers G, instead of {5Bj}. In the definition of the set G in Proposition 4.1, we
may then use B(x, 2(3 + δ)r) in place of B(x, 10r). We also replace the constant
200 with 4(3 + δ)2 + δ. Following the remainder of the proof and letting δ → 0
yields the final value of κ = 2162 · (4/π)2.

5. Continuity of u

In this section, we strengthen Corollary 3.4 by showing that the harmonic func-
tion u is continuous on the entire set Q. In Theorem 5.1 of [6], the continuity of u
is proved employing reciprocality condition (3). In contrast, we do not assume any
of the reciprocality conditions in this section.

First, we need a technical fact. This is proved using Proposition 3.1 in [6] (which
is a re-statement of Proposition 15.1 in [8]) and an induction and limiting argument.

Proposition 5.1. Let X be a metric space and E ⊂ X a continuum with H1(E) <
∞. For all x, y ∈ E, there is a 1-Lipschitz curve γ : [0, 2H1(E)] → E such that
|γ| = E, γ(0) = x, γ(2H1(E)) = y, and γ−1(z) contains at most two points for
H1-almost every z ∈ E.

Proof. For this proof, we will let D denote the length metric on E induced by
d. We write Dzw in place of D(z, w). Observe that Dzw < ∞ for all z, w ∈ E
by Proposition 3.1 in [6]. Also, for z, w ∈ E, we use γzw to denote some fixed
choice of injective 1-Lipschitz curve in E from z to w whose length attains Dzw;
the existence of at least one such curve is guaranteed by the Hopf-Rinow theorem.
Let L = 2H1(E).

We will inductively define a sequence of curves γj : [0, L] → E. We define first
γ1 by

γ1(t) =

{
γxy(t) 0 ≤ t ≤ Dxy

y Dxy ≤ t ≤ L
.

For the inductive step, assume that γj has been defined for some j ∈ N. If
|γj | = E, then stop and take γ = γj . Otherwise, define γj+1 as follows. Let zj be a
point in E maximizing D-distance from |γj |. Such a point exists by the compactness
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of E. Let γwjzj be a shortest curve from |γj | to zj , with initial point wj ∈ |γj |. Let
tj denote the smallest point in [0, L] for which γj(tj) = wj . Define now γj+1 by

γj+1(t) =


γj(t) 0 ≤ t ≤ tj
γwjzj (t− tj) tj ≤ t ≤ tj +Dwjzj

γwjzj (tj + 2Dwjzj − t) tj +Dwjzj ≤ t ≤ tj + 2Dwjzj

γj(t− 2Dwjzj ) tj + 2Dwjzj ≤ t ≤ `(γj) + 2Dwjzj

y `(γj) + 2Dwjzj ≤ t ≤ L

.

Observe that the curve γj has multiplicity at most 2, except possibly at the

points wj . Thus `(γj) + 2Dwjzj ≤ Dxy +
∑j
k=1 2Dwkzk < 2H1(|γj |) ≤ L. Hence

the curve γj+1 is well-defined.
We also note that D(γj+1(t), γj(t)) ≤ 2Dwjzj for all t ∈ [0, L] and j ∈ N, and

thus the curves γj converge pointwise to a curve γ : [0, L] → E. By construction,
the curve γ has multiplicity at most 2, except possibly on the countable set {wj}.
To see that |γ| = E, assume there exists z ∈ E \ |γ|. But then D(z, |γ|) > 0.
In particular, there exists j ∈ N with D(wj , zj) < D(z, |γj |), contradicting the
maximality of the choice of zj . �

We proceed now to the main result of this section.

Theorem 5.2. The function u is continuous in Q.

Proof. For all t ∈ [0, 1] such that H1(u−1(t)) <∞, let γt denote a curve connecting

ζ2 to ζ4 whose image is u−1(t) satisfying the conclusions of Proposition 5.1. By
Lemma 4.3 in [6], u is continuous on each γt except on a curve family of modulus
zero. Observe that ∫

γt

g ds ≤ 2

∫
u−1(t)

g dH1

for each t such that γt is defined, for any Borel function g : Q→ [0,∞]. From this
fact and the coarea inequality Proposition 4.1, it follows that u is continuous on γt
for every t ∈ E, where E ⊂ [0, 1] has full measure.

Suppose for contradiction that u is not continuous at the point x ∈ Q. Let s1 =
lim infy→x u(y) and s2 = lim supy→x u(y); then 0 ≤ s1 < s2 ≤ 1. Take ε satisfying

0 < ε < (s2 − s1)/2. We have then x ∈ A1 ∩ A2, where A1 = u−1([s1 − ε, s1 + ε])

and A2 = u−1([s2 − ε, s2 + ε]). Pick t1, t2 ∈ (s1+ε, s2−ε)∩E with t1 < t2. Observe
that Q \ |γt1 | consists of two disjoint relatively open sets U1, U2 ⊂ Q, where each
component of U1 intersects ζ1 and each component of U2 intersects ζ3. Lemma
3.1 implies that A1 ⊂ U1 and that A2 ⊂ U2. This shows that x ∈ U1 ∩ U2 and
hence that x ∈ |γt1 |. Since u−1(t1) is a dense subset of |γt1 |, we see that u(x) = t1.
However, the same argument shows that u(x) = t2, giving a contradiction. �
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