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Abstract. We reduce boundary determination of an unknown
function and its normal derivatives from the (possibly weighted and
attenuated) broken ray data to the injectivity of certain geodesic
ray transforms on the boundary. For determination of the values
of the function itself we obtain the usual geodesic ray transform,
but for derivatives this transform has to be weighted by powers of
the second fundamental form. The problem studied here is related
to Calderón’s problem with partial data.

1. Introduction

For a compact Riemannian manifold M with boundary, we study
the problem of recovering an unknown function f : M → R and its
derivatives at the boundary from its broken ray transform. We turn this
boundary determination problem to injectivity of weighted geodesic ray
transforms (X-ray transforms) on the boundary manifold ∂M . If these
transforms are injective and f is smooth enough, one may recover the
Taylor series of f at any point on ∂M . This result is stated in theorem 1
and corollary 2.

A broken ray is a curve in M which is geodesic in intM and reflects
by the usual reflection law (angle of incidence equals angle of reflection)
at ∂M . We fix a set E ⊂ ∂M , called the set of tomography, where
measurements can be done. The broken ray transform of a function
f : M → R is a function that takes a broken ray with both endpoints
in E into the integral of f along the broken ray. We allow a broken ray
to reflect also on E if that is convenient. Weight and attenuation may
be included in the broken ray transform. The broken ray transform in
this setting has been studied in [12, 11, 9, 10].

The results presented here are based on the observation that bro-
ken rays in a suitably convex region of the boundary can tend to a
geodesic on the boundary. This observation allows reconstruction of
the boundary values under favorable circumstances, though recovery
of normal derivatives requires more careful analysis of the details of
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this convergence. This phenomenon is well known in the study of bil-
liards, and billiard trajectories (broken rays) near or at the boundary
are known as ‘glancing billiards’ [15], ‘creeping rays’ [27], ‘whispering
gallery trajectories’ [28], or ‘gliding rays’ [1].

1.1. Main results. These results assume that the broken ray trans-
form of f ∈ C∞(M) with respect to a given set of tomography E ⊂ ∂M
is known.

Our main result is theorem 1 and it states the following: Suppose σ
is a geodesic on ∂M with endpoints in intE along which ∂M is strictly
convex. Then the integral of f along σ may be constructed. Further-
more, if the normal derivatives of f of orders 0, 1, . . . , k− 1 are known
in a neighborhood of σ, one may recover the integral of ∂kνf along σ
weighted by the second fundamental form to the power −k/3.

Corollary 2 follows easily: Suppose ∂M is strictly convex. If the
geodesic ray transform on ∂M \ E weighted with any power −k/3,
k ∈ N, is injective, then one may recover the Taylor polynomial of f
at every boundary point.

The theorem with its corollary remains true if one introduces a
weight and attenuation in the broken ray transform. These results
are stated in more detail in section 2.2.

1.2. Earlier and related results. Eskin [5] reduced a partial data
problem for the electromagnetic Schrödinger operator to injectivity of
the broken ray transform and proved this injectivity under some geo-
metrical conditions. Kenig and Salo [12] recently showed that partial
data for Calderón’s problem (as reduced to the Schrödinger equation) is
enough to reconstruct conductivity in a certain tubular manifold if the
broken ray transform is injective on the transversal manifold. The re-
sult [12, Theorem 2.4] motivates the study of the broken ray transform
for general Riemannian manifolds.

The broken ray transform has gained interest recently, and injectiv-
ity results have been given in the disc [11] (partial result), square [9],
and conical sets [10]. The aim of the present paper is to provide tools
for reconstructing the boundary values of a function from its broken
ray transform. The reason for focusing attention to the boundary is
twofold: first, the problem reduces to ray transforms without reflec-
tions, which are easier to analyze, and second, boundary reconstruction
can be a useful first step in interior determination.

Boundary determination results for a number of inverse problems
have been obtained, and they have been used for interior determination.
In particular, for Calderón’s problem, boundary determination (see
e.g. [13, 24, 3, 18, 20]) allows one to convert the conductivity equation
into a Schrödinger equation, for which the problem is easier to study.
For a review of Calderón’s problem we refer to [25].
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For boundary determination of a metric from the boundary distance
function, see [29] and references therein. Boundary rigidity is related
to ray transforms via linearization.

There are also boundary determination results for ray transforms.
Recovering the boundary value of a scalar function from its ray trans-
form on a strictly convex manifold is trivial, but recovering tensors or
derivatives requires more work. As an example of a boundary deter-
mination result we mention [21, Lemma 2.1], which is used as a step
towards interior determination. This boundary determination result
was later generalized by Stefanov and Uhlmann [22].

Whereas a boundary determination result only gives the unknown
function and possibly its derivatives at the boundary, a local support
theorem gives it in a neighborhood of the boundary. Such a local
support theorem in the Euclidean case follows from Helgason’s global
support theorem [8, Theorem 2.6], and there are also more recent re-
sults on manifolds [14, 26]. Boundary recovery for ray transforms at the
accessible part of the boundary is rather different in nature from the
present problem. In general, boundary recovery results are local, but
the reconstruction scheme presented here is not local on the reflecting
part of the boundary. Our method is local only in the sense that one
only needs to consider broken rays in an arbitrary neighborhood of the
boundary.

The ray transform problem to which which we transform the bound-
ary reconstruction problem includes weights. Attenuated ray trans-
forms have been studied extensively, but the case with general weights
has received less attention – possibly because it does not arise as often
in other problems. There are, however, some recent results in this di-
rection [6, 23]. There are also counterexamples in the Euclidean plane
given by Boman [2].

1.3. Outline. We organize our paper as follows. In section 2.1 we
present notation and assumptions that we will use throughout. We
present our main result and some immediate corollaries in section 2.2.
We prove the necessary geometrical lemmas in section 3 and use them
to prove the main result in section 4. Finally we consider the example
of boundary determination for surfaces in section 5.

2. Notation and precise statement of results

2.1. Notation and assumptions. The assumptions given in this sec-
tion are assumed to hold throughout the subsequent discussion without
mention.

The setting of the problem involves a compact Riemannian mani-
fold M with boundary ∂M and a C3 metric g, and the set of tomogra-
phy E ⊂ ∂M . We do not assume that E is open. We write m = dimM
and assume m ≥ 2.
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We assume that the boundary is C3; this ensures that the (local)
change to boundary normal coordinates is a C2 diffeomorphism. As-
suming that the boundary is C3 will be important – see remark 13 for
details.

A broken ray is a geodesic in M which reflects on ∂M according
to the usual reflection law: the angle of incidence equals the angle of
reflection. All broken rays are assumed to have finite length and unit
speed.

We assume the attenuation coefficient a and weight w to be known
continuous functions on TM . For brevity, we denote

(1) Wα(t) = w(α(t), α̇(t)) exp

(ˆ t

0

a(α(s), α̇(s))ds

)
for any piecewise C1 curve α : [0, L] → M . (The integral is evaluated
piecewise if α is not C1.) If there is no weight or attenuation, then
a ≡ 0, w ≡ 1 and W ≡ 1.

We denote by ΓE the set of broken rays with both endpoints on E.
We define the broken ray transform of a continuous function f : M → R
as GWf : ΓE → R by letting

GWf(γ) =

ˆ L

0

Wγ(t)f(γ(t))dt

for γ : [0, L]→M .
We use boundary normal coordinates near ∂M ; they can be used

up to some distance h > 0 from the boundary. The normal direction
corresponds to the zeroth coordinate and the inward unit normal vector
is therefore να = δα0 in these coordinates, where δ is the Kronecker
symbol. Greek indices α, β, . . . take values 0, 1, 2, . . . and Latin indices
i, j, . . . take values 1, 2, . . . as is common in the theory of relativity.
We use the Einstein summation convention.

For a point x in B(∂M, h) = {y ∈ M ; d(y, ∂M) < h} we define
its projection to ∂M by setting the normal coordinate to zero: x̌ =
(0, x1, x2, . . . ). We write coordinates as x = (x0, x̌).

We write Γ̌ and ∇̌ for the Christoffel symbol and the covariant deriv-
ative on the submanifold ∂M . We occasionally write a boundary object
(such as Γ̌) with Greek indices by extending it by zero: for example,
Γ̌iαβ = 0 whenever α = 0 or β = 0.

We denote derivatives with respect to coordinates by T,α := ∂αT for
any function T on M . In case of iterated derivatives we do not repeat
the comma: T,αβ := ∂β∂αT .

We define the (scalar) second fundamental form in B(∂M, h) by

(2) II(a, b) = −1

2
gij,0a

ibj
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for a, b ∈ T (B(∂M, h)). This coincides with the usual definition at ∂M
and extends it to the neighborhood B(∂M, h) in a coordinate indepen-
dent way. The splitting of a tangent space if a point in B(∂M, h) to the
tangential and normal spaces of the shortest geodesic to the boundary
is independent of the choice of coordinates. We remark that the normal
components a0 and b0 do not appear in the second fundamental form
II(a, b) even outside ∂M .

We mention the following useful formulas, which are easy to verify:

Γ0
ij = −1

2
gij,0,

Γi00 = 0,

Γij0 =
1

2
gikgkj,0,

Γijk = Γ̌ijk.

(3)

The last identity is only meaningful on ∂M , while the others hold in
all of B(∂M, h). It follows from the definition of the boundary normal
coordinates that g0i = 0 and g00 = 1.

For a broken ray γ in B(∂M, h) we define its energy as

E(t) =
1

2
γ̇0(t)2 + γ0(t)II(γ̇(t), γ̇(t)) .

The energy E (as well as II(γ̇(t), γ̇(t))) is well defined and continuous
even on points of reflection, since ˙̌γ and (γ̇0)2 are continuous. As

it turns out, II(γ̇(t), γ̇(t))−2/3 E(t) has a nicer limit as the broken ray
approaches the boundary (see lemma 16 and equation (16)), but we
find the energy E more convenient to work with.

Let σ : [0, L] → ∂M be a geodesic of finite length on the mani-
fold ∂M . We say that σ is admissible if

• σ(0) ∈ Ē and σ(L) ∈ intE (or vice versa) and
• II(σ̇(t), σ̇(t)) > 0 for all t ∈ [0, L].

The geometrical meaning of the second condition is that ∂M is strictly
convex along σ. We will assume that σ(0) ∈ Ē and σ(L) ∈ intE;
the corresponding results for the opposite situation are trivial gener-
alizations of the ones we present. As we shall show in lemma 7, an
admissible boundary geodesic is a C1 uniform limit of broken rays with
endpoints in E.

Given an admissible geodesic σ, we construct a sequence of broken
rays γn as follows. A broken ray γ is uniquely determined by its initial
point and direction; we continue the broken ray for time L. We let
(γn(0), γ̇n(0)) → (σ(0), σ̇(0)), γ̇0

n(0) > 0, and γn(0) ∈ E. In this limit
γ̇0
n(0) → 0 as n → ∞. We denote the energy of γn by En; we have

assumed thus that En(0) → 0. Any sequence of broken rays satisfying
these assumptions converges to the boundary geodesic σ as shown in
lemma 7 below.
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We will denote by γ any broken ray sufficiently closee to a given
admissible boundary geodesic σ and by E the corresponding energy.
When we refer to the broken rays γn in the sequence constructed above,
we denote the energy by En.

The constants implied by the notations O and o are uniform (for a
fixed σ) and the estimates hold in the limit n → ∞ without mention.
When otherwise stating that a constant is uniform, we mean that it is
independent of n and t ∈ [0, L].

We use the notations N = {0, 1, . . . }, N̄ = N ∪ {∞}, and k = {i ∈
N : i ≤ k} for k ∈ N̄ ∪ {−1}.

The normal derivative ∂νf of a function f : M → R is well defined
in the neighborhood B(∂M, h) if the limit of the difference quotient
exists in the boundary normal coordinates. We define

Ck
ν = {f : M → R; ∂iνf is continuous in B(∂M, h) for all i ∈ k}

and C∞ν =
⋂∞
k=0C

k
ν .

We will occasionally omit the time argument in various functions
depending on t.

2.2. Statement of results. These results are stated in the notations
and assumptions of section 2.1. Unless otherwise mentioned, γ is a
broken ray in B(∂M, h).

Theorem 1. Let (M, g) be a Riemannian manifold with boundary sat-
isfying the assumptions of section 2.1 and define the weight Wσ by (1).
Let k ∈ N. For any admissible geodesic σ : [0, L] → ∂M and f ∈ Ck

ν

one can reconstruct the integral

(4)

ˆ L

0

Wσ(t)II(σ̇(t), σ̇(t))−k/3 ∂kνf(σ(t))dt

from the broken ray transform GWf (on the whole ΓE) and the knowl-
edge of ∂iνf for all i ∈ k − 1 in a neighborhood of σ on ∂M .

In the case k = 0 the theorem simply states that one can reconstruct
the weighted integral of f over any admissible σ. We also have the
following immediate corollary.

Corollary 2. Let k ∈ N̄ and f ∈ Ck
ν . Suppose the data set

(5){(
σ,

ˆ L

0

Wσ(t)II(σ̇(t), σ̇(t))−i/3 F (σ(t))dt

)
;σ : [0, L]→ ∂M admissible

}
determines F ∈ C(∂M,R) uniquely for every i ∈ k. Then one can
recover ∂iνf |∂M for every i ∈ k from GWf .

Proof. By theorem 1 we may recover the data (5) with i = 0 from GWf .
By assumption, this determines f |∂M . Using theorem 1 again, we may
thus recover the data (5) with i = 1. This again determines ∂νf |∂M .
Continuing inductively up to order k verifies the claim. �
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Figure 1. A broken ray near the boundary in an ellipse.
The geodesic is closer to the boundary where curvature
is larger. This causes the second fundamental form to
appear in the weight in theorem 1. See text for details.

Emergence of the second fundamental form in the weight is due to
the fact that a geodesic near the boundary is on average closer to the
boundary where the second fundamental form is large. This phenom-
enon is illustrated in the ellipse in figure 1.

If the data (5) is enough to reconstruct F on a suitable subset of ∂M ,
the argument in corollary 2 can be used to prove reconstruction on this
subset. We present a version of this generalization as the following
corollary. This is in fact a local boundary determination result for the
geodesic ray transform. We do not claim that the result is new, but we
present it because it follows easily from theorem 1.

Corollary 3. Let k ∈ N̄ and f ∈ Ck
ν . Suppose that for every x ∈ intE

there is v ∈ Tx(∂M) with II(v, v) > 0 and w(x, v) 6= 0. Then one can
recover ∂iνf |intE for every i ∈ k from GWf .

In fact, it suffices to know GWf(γ) for geodesics γ (without reflec-
tions) with endpoints in E.

Proof. We prove reconstruction in intE; the rest follows from continu-
ity.

For x ∈ intE, denote by σTx,v the unique boundary geodesic σTx,v :
[0, T ]→ ∂M with initial position and speed (x, v). For T small enough
the geodesic lies in intE and is admissible. We may now reconstruct
the limit

lim
T→0

1

T

ˆ T

0

Wσx,v(t)II(σ̇x,v(t), σ̇x,v(t))
−i/3 ∂iνf(σx,v(t))dt

= w(x, v)II(v, v)−i/3 ∂iνf(x)
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and therefore also ∂iνf(x) for i = 0 from GWf by theorem 1. For i > 0
we iterate the argument as in the proof of corollary 2.

Let us now turn to the last claim. The proof of theorem 1 only
uses broken rays near σ, whence in the present case it is enough to
consider broken rays with all reflections in E. One can easily construct
the broken ray transform for such broken rays from the knowledge of
broken ray transform for the geodesic segments. �

Remark 4. The reconstruction scheme is based on broken rays very
close to the boundary. Hence it does not matter if there are obstacles,
singularities or any kind of abnormalities in the manifold, as long as
there is a neighborhood B(∂M, h) of the boundary where the assump-
tions of section 2.1 are met. The parameter h can be chosen as small
as desired.

Remark 5. If the data (5) with i = 0 determines F and the second fun-
damental form satisfies II(a, b) = c 〈a, b〉 for some nonvanishing function
c : ∂M → R (i.e. the first and second fundamental forms are confor-
mally equivalent), then the data (5) with any i determines F . On a
Euclidean sphere Sn, for example, this coefficient c is a constant.

As an example of remark 5, consider the ball Bn ⊂ Rn where n ≥ 3
and E ⊃ {x ∈ Sn−1;x1 < ε} for some ε > 0. Now the first and second
fundamental forms at the boundary are conformal and {x ∈ Sn−1;x1 ≥
ε} is simple, whence one can reconstruct the full Taylor polynomial of
a smooth function at the boundary from its broken ray transform; for
reconstruction on E one can apply corollary 3. For injectivity of the
geodesic ray transform on simple manifolds we refer to [4]. Interior
reconstruction for the broken ray transform in the Euclidean ball was
shown recently [11] when n ≥ 2 and E ⊂ Sn−1 is any open set, but
only by assuming that the unknown function is (in a suitable sense)
analytic in the angular variable.

Remark 6. Theorem 1 holds true also when f is a tensor field in the
case k = 0. In fact, it may be any continuous function on the tangent
bundle, and proof is the same as for scalars. Recovery of derivatives
and normal components of a tensorial f , however, would be a nontrivial
generalization.

The important question remains whether the data (5) determines
the continuous function F . If E is an open subset of ∂M , then every
boundary geodesic with endpoints in Ē along which ∂M is strictly con-
vex is admissible. In this case the question amounts to asking whether
the weighted geodesic ray transform on ∂M\E (restricted to admissible
geodesics) is injective. The weight contains only attenuation generated
by α if i = 0 and w ≡ 1.

If not all boundary geodesics are admissible, one ends up with the
geodesic ray transform with partial data. This question was dealt with



BOUNDARY RECONSTRUCTION FOR THE BROKEN RAY TRANSFORM 9

by Frigyik, Stefanov, and Uhlmann [6]. Their result applies in dimen-
sion two or higher when the weight is a C2 perturbation of an analytic
one and suitable geometric conditions are met. The weights appearing
in the data (5) are analytic if the metric g and the boundary ∂M are
analytic.

In the case of full data the answer is more complete. In the absence of
weight or attenuation injectivity was shown by Mukhometov [16] (Eng-
lish translation [17]) for some Riemannian surfaces (including simple
ones). Injectivity has later been shown for the attenuated ray trans-
form on simple surfaces [19] and simple manifolds of any dimension
with small attenuation [4, Theorem 7.1].

In dimension three or higher a local injectivity result was recently
obtained [26] and subsequently generalized to the case of arbitrary
positive weights [23, Corollary 3.2]. If the manifold admits a suitable
convex foliation, these injectivity results become global.

If the dimensionm−1 of ∂M is three or higher, the problem is overde-
termined. If m = 3, the problem is formally determined. The Radon
transform of compactly supported functions in the plane is not injective
for all smooth positive weights (see e.g. [2] and references therein), and
one cannot expect that an arbitrarily weighted geodesic ray transform
would be injective on a Riemannian surface with boundary.

The case m = 2 is even worse, since the ray transform in one di-
mension is not invertible. However, all metrics on a one dimensional
manifold are conformally equivalent, and remark 5 is easy to use. If
the ray transform is known with all constant attenuations, boundary
determination is possible, as discussed in section 5.

Injectivity results for the geodesic ray transform on a manifold often
assume convexity of some kind. Therefore our boundary reconstruction
method works best when the geometry is doubly strictly convex in the
sense that M has a strictly convex boundary and also ∂M \ E (or
∂M \ E ′ for some E ′ ⊂ E) is strictly convex.

The assumptions of admissibility of geodesics in theorem 1 cannot
be relaxed easily. As the proof will demonsrate, the assumption on
endpoints is necessary for the present reconstruction method. The
second condition states that the boundary is strictly convex along the
boundary geodesic. If the second fundamental form is negative along a
boundary geodesic, broken rays starting close to it fail to follow it and
escape into the interior of the manifold.

We only assume that the metric g on M (and thus on ∂M) is C3, but
we can still recover integrals of ∂kνf for k > 3. Although surprising, this
makes sense; the geodesic normal to the boundary is well defined at
any boundary point, and when restricted to this geodesic any function
on the manifold becomes a function on some interval on the real line,
where smoothness of any order is meaningful.
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3. Convergence to admissible geodesics

3.1. Uniform convergence. In this section we prove the following
lemma and study the necessary details of this convergence.

Lemma 7. For an admissible geodesic σ : [0, L]→ ∂M and a sequence
(γn)n∈N of broken rays satisfying the assumptions of section 2.1, we
have

γ0
n → 0,

γ̇0
n → 0,

γ̌n → σ,

˙̌γn → σ̇, and

En → 0

(6)

uniformly on [0, L].

The proof of this lemma will be given right after lemma 10.
We split the interval [0, L] into N parts of length L/N in such a way

that for each i ∈ {0, . . . , N − 1} there is a chart on ∂M such that the
chart contains the ball B(σ(iL/N), 2L/N).

We also assume N to be so large that the following holds for some δ >
0: if α : [0, L/N ]→M is a C1 curve with |α̇| ≤ 2, |∇α̇α̇| ≤ 1 and

dTM((α(0), α̇(0)), (σ(t0), σ̇(t0))) < δ

for some t0 ∈ [0, L(1− 1/N)], then

(7) II(α̇(t), α̇(t)) ≥ 1

2
II(σ̇(t0), σ̇(t0))

for all t ∈ [0, L/N ]. This choice of N is possible due to continuity of
of II(·, ·).

Lemma 8. Let σ : [0, T ] → ∂M be a geodesic on a single coordinate
chart of ∂M in such a way that the chart contains the ball B(σ(0), 2T ).
Suppose we have a sequence of curves (σn) parametrized by [0, T ] on
this chart satisfying

|σ̇n| → 1 uniformly,

|∇σ̇nσ̇n| → 0 uniformly,

σn(0)→ σ(0), and

σ̇n(0)→ σ̇(0).

Then for any t ∈ [0, T ] we have

(σn(t), σ̇n(t))→ (σ(t), σ̇(t)),

and the convergence is uniform.



BOUNDARY RECONSTRUCTION FOR THE BROKEN RAY TRANSFORM 11

Proof. The sequence ((σn(t), σ̇n(t)))n in R2m is uniformly bounded on
the interval [0, T ]. Due to the assumption that |σ̇n| → 1 uniformly
we eventually have |σ̇n| < 2. Thus the curve σn([0, T ]) is eventually
contained in the chart.

We start by showing that there is a subsequence converging uniformly
to (σ, σ̇). By the Ascoli-Arzelà theorem, there is a uniformly converging
subsequence. By the assumptions, the limit σ∞ is a geodesic with
σ∞(0) = σ(0), and σ̇∞(0) = σ̇(0). By uniqueness of geodesics, σ∞ = σ.

Suppose then that the full sequence does not converge to (σ, σ̇). Then
there is a neighborhood U of (σ, σ̇) in R2m and a subsequence which
stays outside U . By the Ascoli-Arzelà theorem this subsequence has a
uniformly converging subsequence; denote the limit by σ∞. As above,
one may conclude that σ∞ = σ, which is in contradiction with the
assumption that the subsequence lies outside a neighborhood of σ. �

Lemma 9. If γ is a geodesic in B(∂M, h), then

(∇̌ ˙̌γ
˙̌γ)i = −γ̇0γ̇jgik(0, γ̌)gkj,0(0, γ̌)− γ̇αγ̇β

ˆ γ0

0

Γijk,0(t, γ̌)dt

for each i.

Proof. Since γ is a geodesic, we have

(∇γ̇ γ̇)i = γ̈i + Γiαβγ̇
αγ̇β = 0

for each i.
Using this we find

(∇̌ ˙̌γ
˙̌γ)i = ¨̌γi + Γ̌ijk(0, γ̌) ˙̌γj ˙̌γk

= Γ̌iαβ(0, γ̌) ˙̌γα ˙̌γβ − Γiαβ(γ0, γ̌)γ̇αγ̇β

= [Γ̌iαβ(0, γ̌)− Γiαβ(0, γ̌)] ˙̌γα ˙̌γβ

+ Γiαβ(0, γ̌)[ ˙̌γα ˙̌γβ − γ̇αγ̇β]

+ [Γiαβ(0, γ̌)− Γiαβ(γ0, γ̌)]γ̇αγ̇β

= 0− 2Γij0(0, γ̌)γ̇0γ̇j − γ̇αγ̇β
ˆ γ0

0

Γijk,0(t, γ̌)dt.

This is the claimed result. �

It follows from the geodesic equation with (2) and (3) that apart
from points of reflection γ satisfies

(8) γ̈0 + II(γ̇, γ̇) = 0.

From this it follows that

(9) Ė = γ0 d

dt
II(γ̇, γ̇) .



BOUNDARY RECONSTRUCTION FOR THE BROKEN RAY TRANSFORM 12

We define Aijk = gil,0Γlkj − 1
2
gij,0k and write A(v) = Aijkv

ivjvk for

short. A simple calculation shows that1

(10)
d

dt
II(γ̇, γ̇) = A(γ̇) + (gik,0g

klglj,0 −
1

2
gij,00)γ̇iγ̇j γ̇0

and

(11)
d

dt
II(σ̇, σ̇) = A(σ̇).

Therefore

Ė ≤ C1γ
0

for some uniform constant C1.
Consider now the geodesic segment σ|[iL/N,(i+1)L/N ], first for i = 0.

By admissibility of σ there is a constant C2 such that II(σ̇, σ̇) ≥ 2C2

on this segment. By the estimate (7) and lemma 9 this implies that

II(γ̇n, γ̇n) ≥ C2

on this interval. Thus E ≥ C2γ
0 on this interval and thus Ė ≤

(C1/C2)E .
By Grönwall’s inequality we have E(t) ≤ E(0) exp((C1/C2)t) for all

t ∈ [0, L/N ] and so E ≤ E(0) exp(C1L/C2N) on this interval. Thus, as
En(0) → 0, En → 0 uniformly on this interval. But since γ0

n ≤ En/C2

and |γ̇0
n| ≤

√
2En, this implies that also γ0

n → 0 and γ̇0
n → 0 uniformly.

By lemma 9 this implies that ∇̌ ˙̌γ
˙̌γ → 0 uniformly.

Combining these observations with lemma 8 we obtain the following.

Lemma 10. On the interval [0, L/N ] we have (6) uniformly.

We are now ready to finish the proof of lemma 7.

Proof of lemma 7. By lemma 10 we have (6) uniformly on [0, L/N ]. In
particular, it follows that γn(L/N) → σ(L/N), γ̇n(L/N) → σ̇(L/N)
and En(L/N) → 0. This allows us to use lemma 10 again on the
interval [L/N, 2L/N ]. Although the rate of convergence may deterio-
rate, the same uniform convergence results hold on the combined in-
terval [0, 2L/N ]. Iterating this argument, we finally conclude the proof
of lemma 7. �

Remark 11. Since γn → σ uniformly in C1 and II(σ̇, σ̇) is bounded
from below by admissibility and compactness, we may also assume
that II(γ̇n, γ̇n) is bounded from below with a constant independent of
time t or index n. In particular, this implies that γ0

n = O(En(0)).

1 We wish to point out that (gik,0g
klglj,0 − 1

2gij,00) = − 1
2gik(gklglr,0g

rs),0gsj
although we do not use this structure.
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3.2. Further estimates. The results of the previous section combined
with lemma 12 below are enough to prove theorem 1 for k = 0. For
k ≥ 1 we need more tools, and they will be developed in this section.

Lemma 12. Let τ be the time between two adjacent zeroes of γ0. If
the first of the two zeros is at time t0, then∣∣∣∣∣ τ

2
√

2E(t0)/II(γ̇(t0), γ̇(t0))
− 1

∣∣∣∣∣ = O(
√
E(t0)).

Proof. We take t0 = 0 for simplicity and denote v = γ̇0(0) and a =
II(γ̇(0), γ̇(0)). The claim is thus that

(12)
∣∣∣τ
τ̃
− 1
∣∣∣ = O(v),

where τ̃ = 2v/a. We have γ̈0(t) = −II(γ̇(t), γ̇(t)) and by Lipschitz
continuity of the second fundamental form

|II(γ̇(t), γ̇(t))− II(γ̇(0), γ̇(0))| ≤ Ct

for t ∈ [0, τ ] for some constant C. By remark 11 a is bounded from
above and below, and the constant C may also be taken uniform once
a boundary geodesic σ is fixed.

The fundamental theorem of calculus gives

γ0(t) = γ̇0(0)t+

ˆ t

0

ˆ s

0

γ̈0(u)duds

≤ vt+

ˆ t

0

ˆ s

0

(−a+ Cu)duds

= vt− 1

2
at2 +

C

6
t3 =: h+(t).

Suppose v < 3a2

8C
and denote ε = 8C

3a2
v ∈ (0, 1). Then γ0(τ̃(1 + ε)) ≤

h+(τ̃(1 + ε)) < 0 and thus τ < τ̃(1 + ε).
Similarly we have

γ0(t) ≥ vt− 1

2
at2 − C

6
t3 =: h−(t).

With the same choice for ε and v we have γ0(τ̃(1−ε)) ≥ h−(τ̃(1−ε)) >
0 and thus τ > τ̃(1− ε).

Combining these results we have∣∣∣τ
τ̃
− 1
∣∣∣ < ε =

8C

3a2
v,

which is the estimate (12). �

Remark 13. The above lemma implies that the points of reflection on
a billiard trajectory cannot accumulate. If we reduce the regularity
assumption of the boundary ∂M from C3 to C2, there is an example
by Halpern [7] in the plane where the points indeed do accumulate.
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Halpern also proves that C3 regularity is enough to prevent accumula-
tion [7, Theorem 3].

We have the following important heuristics:

(13) γ0 ≈ 2

3
E/II(γ̇, γ̇) “on average”.

Compare this with throwing a ball (under ideal circumstances), when
the height at time t is h(t) = vt − 1

2
at2, where v is the initial vertical

speed and a is the gravitational acceleration. The energy E = 1
2
ḣ2 +ah

is conserved, and the maximum height is E/a. It is easy to calculate
that the average height on the time interval [0, 2v/a] (when the ball is
airborne) equals two thirds of the maximum height E/a. The role of
the gravitational acceleration is played here by the second fundamental
form. We make this heuristic explicit in the following two lemmas.

Lemma 14. Let t0 and t0 + τ be two adjacent zeros of γ0. Thenˆ t0+τ

t0

γ0(t)dt =
(γ̇0(t0))2

3II(γ̇(t0), γ̇(t0))
τ +O(τ 4).

Proof. To simplify notation, we assume t0 = 0.
We denote v = γ̇0(0), a = II(γ̇(0), γ̇(0)) and h(t) = vt− 1

2
at2. Since

γ̈0(t) = −II(γ̇(t), γ̇(t)) by (8), the function h is actually the second
order Taylor polynomial of γ0 at t = 0. And because γ̈0(t) is Lipschitz
continuous in t by (8), we have γ0(t)− h(t) = O(t3).

Elementary calculations show thatˆ 2v/a

0

h(t)dt =
(γ̇0(t0))2

3II(γ̇(t0), γ̇(t0))
τ

and h = O(E(0)). Lemma 12 gives
∣∣τ − 2v

a

∣∣ = O(E(0)) = O(τ 2), so
that ˆ τ

0

γ0(t)dt−
ˆ 2v/a

0

h(t)dt

=

ˆ τ

0

(γ0(t)− h(t))dt+O
(
E(0)

∣∣τ − 2v
a

∣∣)
=

ˆ τ

0

O(t3)dt+O(τ 2 · τ 2)

= O(τ 4),

which is the desired estimate. �

Lemma 15. Let T > 0 be a zero of γ0 and let F : [0, T ] → R be a
continuous function. Thenˆ T

0

γ0(t)kF (t)dt =

ˆ T

0

(
2E(t)

3II(γ̇(t), γ̇(t))

)k
F (t)dt+ o(E(0)k)

for any k ∈ N.
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Proof. The case k = 0 is trivial. We give the proof for k = 1; for larger
k the claim follows by iterating the result.

Let 0 = t0 < t1 < · · · < tN = T be the zeroes of γ0 and denote
τ = max1≤i≤N(ti − ti−1). By lemma 12 and uniform convergence of E
to zero (lemma 7) O(

√
E(0)) is the same as O(τ). By lemma 14 we

have ˆ ti

ti−1

γ0(t)dt =
2E(ti−1)

3II(γ̇(ti−1), γ̇(ti−1))
(ti − ti−1) +O(τ 4)

for all i = 1, . . . , N . We also have γ0 = O(τ 2) = O(E(0)). Thus

ˆ T

0

γ0(t)F (t)dt

=
N∑
i=1

ˆ ti

ti−1

γ0(t)F (t)dt

=
N∑
i=1

(ˆ ti

ti−1

γ0(t)F (ti−1)dt+ o(τ · τ 2)

)

=
N∑
i=1

(
2E(ti−1)

3II(γ̇(ti−1), γ̇(ti−1))
(ti − ti−1)F (ti−1) + o(τ 3)

)
=

ˆ T

0

2E(t)

3II(γ̇(t), γ̇(t))
F (t)dt+ o(τ 2)

=

ˆ T

0

2E(t)

3II(γ̇(t), γ̇(t))
F (t)dt+ o(E(0)),

since the continuous function F is Riemann integrable. �

We define ρ : [0, L]→ (0,∞) by

ρ(t) = exp

(ˆ t

0

2A(σ̇(s))

3II(σ̇(s), σ̇(s))
ds

)
.

This function obviously satisfies

ρ′(t) = ρ(t)
2A(σ̇(t))

3II(σ̇(t), σ̇(t))
.

Comparing with the equation Ė = γ0A(γ̇) +O(γ0γ̇0) (cf. (9) and (10))
and the heuristics (13), we suspect that ρn(t) := En(t)/En(0) converges
to ρ as n→∞.

To clarify further notation, we define

ϕn(t) =
2A(γ̇n(t))

3II(γ̇n(t), γ̇n(t))
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and

ρn(t) = exp

(ˆ t

0

ϕn(s)ds

)
.

Lemma 16. As n → ∞, we have ρn(t) = ρn(t) + o(1) = ρ(t) + o(1)
for all t ∈ [0, L].

Proof. Since γn → σ uniformly, it is clear that ρn → ρ uniformly.
It suffices to show that for any ε > 0 there is N ∈ N such that

(14) |ρn(t)− ρn(t)| ≤ ε

for all t ∈ [0, L].
Let t0 and t0 + τ be two adjacent zeros of γ0 on [0, L]. On this

interval, we have by (9) and (10)

E(t0 + τ)− E(t0) =

ˆ t0+τ

t0

Ė(t)dt

=

ˆ t0+τ

t0

γ0(t)[A(γ̇(t)) +O(γ̇0(t))]dt

=

ˆ t0+τ

t0

γ0(t)[A(γ̇(t0)) +O(τ) +O(γ̇0(t))]dt.

Since γ0 = O(E) (remark 11), γ̇0 ≤
√

2E , and τ = O(
√
E) (lemma 12),

lemma 14 gives, after putting γ = γn and dividing by En(0),

ρn(t0 + τ)− ρn(t0) = ϕn(t0)ρn(t0)τ +O(En(0)).

But also (recall that
√
E = O(τ) by lemma 12)

ρn(t0 + τ)− ρn(t0) = ϕn(t0)ρn(t0)τ +O(En(0)).

Defining ∆n(t) = ρn(t)− ρn(t), these estimates give

(15) ∆n(t0 + τ) = (1 + ϕn(t0)τ)∆n(t0) +O(En(0)).

If we can show that ∆n → 0 uniformly, we have the estimate (14).
Let 0 = t1n < t2n < · · · < tNn

n be the zeros of γ0
n on [0, L]. By

lemma 12, remark 11 and the uniform convergence of E to zero we
have C−1

1

√
En(0) ≤ tmn − tm−1

n ≤ C1

√
En(0) for some C1 > 1. This

estimate implies that Nn ≤ C1L/
√
En.

There is obviously a constant Φ > 0 such that |ϕn| ≤ Φ. We denote
the constant associated with O(E(0)) in the estimate (15) by C2.

From (15) we obtain∣∣∆n(tln)
∣∣ ≤ C2En(0)(1 + (1 + ΦC1

√
En(0))

∣∣∆n(tl−1
n )
∣∣)
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for all l > 1. Using ∆n(0) = 0 and induction turns this into

∣∣∆n(tln)
∣∣ ≤ C2En(0)

l−1∑
j=0

(1 + ΦC1

√
En(0))j

=
C2

√
En(0)

ΦC1

[(1 + ΦC1

√
En(0))l − 1]

≤
C2

√
En(0)

ΦC1

[(1 + ΦC1

√
En(0))C1L/

√
En(0) − 1].

The estimate (1 + y/x)zx < eyz for positive x, y, z yields then

∣∣∆n(tln)
∣∣ ≤ C2

√
En(0)

ΦC1

[exp(C2
1LΦ)− 1] = O(

√
En(0)).

This shows that ∆n → 0 uniformly and concludes the proof. �

By (11) we have, in fact,

ρ(t)k = exp

(
k

ˆ t

0

2A(σ̇(s))

3II(σ̇(s), σ̇(s))
ds

)
= exp

(
2k

3

ˆ t

0

d

ds
log(II(σ̇(s), σ̇(s)))ds

)
=

(
II(σ̇(t), σ̇(t))

II(σ̇(0), σ̇(0))

)2k/3

.

(16)

In the reconstruction we will need the Taylor polynomials of f along
geodesics normal to ∂M . For p ∈ ∂M which we think of as p = (0, x̌),
we denote

T kp f(x0) =
k∑
i=0

(x0)i

i!
∂iνf(p).

If f ∈ Ck
ν , then

f(x0, x̌)− T kx̌ f(x0)

=

ˆ
· · ·
ˆ

0≤sk≤sk−1≤···≤s1≤x0

[∂kνf(sk, x̌)− ∂kνf(0, x̌)]dsk · · · ds1

= o((x0)k)

and thus

(17) f(x0, x̌)− T k−1
x̌ f(x0) =

(x0)k

k!
∂kνf(0, x̌) + o((x0)k).
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4. Proof of theorem 1

Now we are ready to prove theorem 1. We will assume that σ(L) ∈
intE; for endpoints in the closure, there is a sequence of admissible
geodesics converging to the desired admissible geodesic, giving the in-
tegral (4) for all admissible σ.

Let us begin with k = 0. Define

Ln = max{t ∈ [0, L]; γ0
n(t) = 0}.

By lemma 12 Ln → L as n→∞. Since σ(L) ∈ intE, we have γn(Ln) ∈
E for sufficiently large n (and γn(0) ∈ E by assumption). This is the
reason for the first condition in the definition of an admissible geodesic.

The integrals

(18) GWf(γn|[0,Ln]) =

ˆ Ln

0

Wγn(t)f(γn(t))dt

are known by assumption, and as n → ∞, this approaches the inte-
gral (4) by lemma 7. This proves the theorem for k = 0.

Let now k ≥ 1. Again, the integral (18) is known. Also, since normal
derivatives of f with order strictly less than k are known on each γn
for sufficiently large n by assumption, by (17) the integrals

ˆ Ln

0

Wγn(t)T k−1
γ̌n(t)f(γ0

n(t))dt

can be calculated.
Thus, if we show that

k!

(
3II(γ̇n(0), γ̇n(0))2/3

2En(0)

)k

×
ˆ Ln

0

Wγn(t)[f(γn(t))− T k−1
γ̌n(t)f(γ0

n(t))]dt

=

ˆ L

0

Wσ(t)II(σ̇(t), σ̇(t))−k/3 ∂kνf(σ(t))dt+ o(1),

(19)

we obtain the integral (4) from the given data.
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By (17), the estimate γ0
n = O(En(0)) (see remark 11), and lemma 15

with F (t) = Wγn(t)∂kνf(γ̌n(t)) we get

k!

ˆ Ln

0

Wγn(t)[f(γn(t))− T k−1
γ̌n(t)f(γ0

n(t))]dt

=

ˆ Ln

0

Wγn(t)[γ0
n(t)k∂kνf(γ̌n(t)) + o(γ0

n(t)k)]dt

=

ˆ Ln

0

Wγn(t)γ0
n(t)k∂kνf(γ̌n(t))dt+ o(En(0)k)

=

ˆ Ln

0

Wγn(t)

(
2En(t)

3II(γ̇n(t), γ̇n(t))

)k
∂kνf(γ̌n(t))dt+ o(En(0)k).

Thus, after simplification, we have

k!

(
3II(γ̇n(0), γ̇n(0))2/3

2En(0)

)k

×
ˆ Ln

0

Wγn(t)[f(γn(t))− T k−1
γ̌n(t)f(γ0

n(t))]dt

= II(γ̇n(0), γ̇n(0))2k/3

×
ˆ Ln

0

Wγn(t)

(
ρn(t)

II(γ̇n(t), γ̇n(t))

)k
∂kνf(γ̌n(t))dt+ o(1).

By lemmas 16 and 7 ρn → ρ and (γn, γ̇n) → (σ, σ̇) uniformly. Com-
bining these with the identity (16) and the result Ln → L proves the
estimate (19) and concludes the proof of theorem 1.

5. One dimensional boundaries

We now turn to the case when M is a compact surface with bound-
ary, and assume the surface to have a strictly convex boundary. By
theorem 1 the integral (4) can be recovered for k = 0 if the broken
ray transform of an unknown function f is known. This information
is clearly not enough to determine f , but if the broken ray transform
is known for several weights W , reconstruction may be possible. It is
also worth mentioning that at the boundary of a strictly convex surface
the first and second fundamental forms are conformally equivalent, so
remark 5 can be used for recovery of normal derivatives.

We formulate the following result to illustrate this idea.

Proposition 17. Let M be a C3 compact surface with strictly convex
boundary, let E ⊂ ∂M be open, k ∈ N̄, and λ0 ∈ R. Assume that the
broken ray transform of a function f ∈ Ck

ν vanishes for all weights W
with w ≡ 0 and a ≡ −λ for λ > λ0. Then ∂iνf = 0 everywhere at ∂M
for each i ∈ k.
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Proof. By corollary 3 the claim is true at E. We assume that the rest
of the boundary R = ∂M \ E is connected; if it is not, the argument
may be used on each connected component separately. We give the
proof only for k = 0; the rest follows from remark 5 and an induction
similar to the one in the proof of corollary 2.

Using arc length parametrization we write R = [0, L] for some L > 0.
(This requires that R is not only a point, but the single point case is
trivial.) We interpret the restriction f |R as a function on [0, L] and
denote it by f . By theorem 1 and the assumption

ˆ L

0

e−λsf(s)ds = 0

for each λ > λ0.
After extending f by zero to [0,∞), this means that the Laplace

transform Lf(λ) of f vanishes for all λ > λ0. The Laplace trans-
form of a compactly supported function is analytic, so this implies
that Lf(λ) = 0 for all λ ∈ R. Injectivity of the Laplace transform
gives the claim. �

In a similar vein, we study boundary recovery of the potential in a
Schrödinger equation from the partial Dirichlet to Neumann map. This
problem can in some cases be reduced to boundary reconstruction for
the broken ray transform in the following sense [12]: Suppose for a
compactly supported continuous function f : R×M → R the integral

ˆ L

0

ˆ
R
e−2λ(t+ix)f(x, γ(t))dxdt

is known for each broken ray γ : [0, L] → M .2 Can we recover f |∂M?
The function f is essentially the difference of two potentials for the
Schrödinger equation, which one attempts to observe from the Cauchy
data.

Theorem 1 and parametrization of the reflecting part of the boundary
by [0, L] as in the proof of proposition 17 reduce the problem to asking
whether ˆ L

0

ˆ
R
e−2λ(t+ix)f(x, t)dxdt = 0

for all λ ∈ C (the expression is complex analytic in λ, so vanishing for
all real values implies the same for all complex values) implies that f ≡
0, where f is interpreted as a function on R× [0, L].

2Starting with partial Cauchy data, one ends up with this integral by construct-
ing solutions to the Schrödinger equation concentrating near a given broken ray.
The argument involves complex geometrical optics solutions based on reflected
Gaussian beam quasimodes. For a more detailed description, see [12].
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Denoting z = t+ix and extending f by zero to C turns the condition
into ˆ

C
e−2λzf(z)dH2(z) = 0

for all λ ∈ C, when f is a compactly supported function in C. Here H2

is the two dimensional Hausdorff (or Lebesgue) measure.
To study this, we define the integral transform I : L1

0 → C, where L1
0

is the space of integrable, compactly supported, measurable complex
functions in the complex plane and C is the space of complex analytic
functions, by setting

If(λ) =

ˆ
C
eλzf(z)dH2(z).

We define scaling and translation in L1
0 by Sµf(z) = f(µz) for µ > 0

and Twf(z) = f(z − w) for w ∈ C. Simple calculations show that

I(Sµf)(λ) = µ−2If(λ/µ) and

I(Twf)(λ) = eλwIf(λ).

For the convolution of two functions f, g ∈ L1
0 (which is still in L1

0) we
have

I(f ∗ g)(λ) =

ˆ
C
eλwf(w)Ig(λ)dH2(w).

If f is rotationally symmetric (i.e. f(eiϑz) = f(z) for all z ∈ C and
ϑ ∈ R), elementary calculations with a symmetry argument show that
all derivatives of If with respect to λ vanish at λ = 0. By analyticity,
this implies that If is constant. For such f thus If(λ) = If(0) =´
C fdH2 for all λ ∈ C.
Therefore the kernel of I contains (but may not be limited to) func-

tions rotationally symmetric with respect to any point in the plane that
integrate to zero, and convolutions of such functions against functions
in L1

0. However,
´
C fdH2 = 0 does not generally imply that If = 0,

as the example of subtraction of characteristic functions of two squares
shows: if

f(a+ bi) =


1 if a, b ∈ [0, 1]

−1 if a, b ∈ [−1, 0]

0 otherwise,

we have
´
C fdH2 = 0 but If 6= 0.

In conclusion, some information of f is contained in If , but some
is also lost. Translating this to the original partial data problem, the
reconstruction method based on theorem 1 cannot fully detect the un-
known potential, but can detect some properties of it.
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