

The 3rd International Workshop on
Global Software Development

Co-located with ICSE 2004
International Conference on Software Engineering

Edinburgh, Scotland
May 24, 2004

Table of Contents

Workshop Introduction ... 1

Session 1: Feasibility of Global Software Development

Transitioning from a Co-Located to a Globally-Distributed Software
Development Team : A Case Study at Analog Devices Inc. .. 4
 David Boland, Analog Devices;
 Brian Fitzgerald, University of Limerick

Global Software Development Process Research at Siemens .. 8
 Matthew Bass and Daniel Paulish, Siemens Corporate Research

Efficient Maintenance Support in Offshore Software Development: a
Case Study on a Global E-Commerce Project .. 12
 Zheng Yan, Helsinki University of Technology

Risk Management in Global Software Development: A Position Paper 18
 Rafael Prikladnicki and Marcelo Hideki Yamaguti,
 Pontifícia Universidade Católica do Rio Grande do Sul

Session 2: Strategies for Success in GSD

Can Global Software Teams Learn From Military Teamwork Models?.......................... 21
 Elizabeth Hargreaves and Daniela Damian, University of Victoria

Designing the Inter-Organizational Software Engineering Cooperation:
An Experience Report... 24
 Hans Nissen, RWTH Aachen, Informatik 5

Towards a Model of Awareness Support of Software Development in GSD 28
 James Chisan and Daniela Damian, University of Victoria

Peer-to-Peer Remote Conferencing .. 34
 Fabio Calefato, Filippo Lanubile and Teresa Mallardo, University of Bari

Test-Driven Global Software Development ... 38
 Bikram Sengupta, Vibha Sinha and Satish Chandra,
 IBM India Research Laboratory;
 Sharath Sampath and K. Guru Prasad, IBM Global Services India

Session 3: Research Methodologies and Challenges in GSD

Using Iterative and Incremental Processes in Global Software Development 42
 Maria Paasivaara and Casper Lassenius, Helsinki University of Technology

Communication Problems in Global Software Development: Spotlight
on a New Field of Investigation.. 48
 Sébastien Cherry and Pierre Robillard, École Polytechnique de Montréal

An empirical study on Global Software Development: Offshore
Insourcing of IT Projects .. 53

Rafael Prikladnicki and Jorge Audy, PUCRS;
Roberto Evaristo, University of Illinois

Analyzing Intercultural Factors Affecting Global Software
Development – A Position Paper.. 59
 Philippe Kruchten, University of British Columbia

The Benefits and Limitations of Knowledge Management in Global
Software Development.. 63

Torgeir Dingsøyr, SINTEF ICT;
Knut-Helge Rolland and M. Letizia Jaccheri, NTNU

The 3rd International Workshop on Global Software Development
May 24, 2004

http://gsd2004.uvic.ca

Daniela Damian Filippo Lanubile Elizabeth Hargreaves and James Chisan

University of Victoria, BC, Canada
danielad@cs.uvic.ca

University of Bari, Italy
lanubile@di.uniba.it

University of Victoria, BC, Canada
{elizabeth.hargreaves, chisan}@cs.uvic.ca

The goal of this one-day workshop is to bring together participants from the research community as well as
software industry in order to explore both the state-of-the-art and the state-of-the-practice in global
software development (GSD). Increased globalization of software development creates software
engineering challenges due to the impact of temporal, geographical and cultural differences, and requires
the development of methods and technologies to address these issues. This workshop is being organized to
foster interaction between practitioners and researchers in order to address the pressing issues in this area.
Practitioners experiencing challenges in GSD will share their concerns and successful solutions and learn
from research about current investigations. Researchers addressing GSD will gain a better understanding of
the key issues facing practitioners and share their work in progress with others in the field.

This third workshop edition features an innovative program that discusses the feasibility of GSD,
successful strategies for GSD, as well as methodologies and challenges in conducting research in this
growing area of interest.

1. Workshop organization and program
It has been our tradition in the last three years at this

workshop to provide practitioners and researchers with an
opportunity to explore current challenges within the
growing field of global software development (GSD).
This year we solicited papers in the following categories:

(1) Case studies of GSD,
(2) Theories of communication, coordination,

collaboration and knowledge management in
GSD,

(3) Methods and tools to address challenges of GSD,
(4) Empirical evaluations of effectiveness of global

software projects and
(5) SE methodologies & processes for GSD.

In response, we received 17 submissions (11

technical papers and 6 position papers), out of which 14
were accepted for presentation and publication in the
workshop proceedings. These papers are available at:
 http://gsd2004.uvic.ca/upload/ContentTable.html

To our delight, the demographics of the submissions
addressing issues of GSD are truly international this year.
Authors are joining the workshop from North America
(Canada, US), South America (Brazil), Europe (Italy,
Ireland, Finland, Norway and Germany) and Asia (India

and Singapore). Research results are being reported from
case studies at large multi-national corporations such as
IBM India, Nokia, Siemens and Analog Devices, whose
industrial sites span the globe, including: Finland, US,
Ireland, Singapore, India, and Brazil.

Based on these submissions, we decided to organize
the workshop into four sessions, each session featuring a
different topic of discussion. The first session opens with
a keynote talk by Philippe Kruchten from UBC, Canada,
who will discuss the challenge of cultural differences in
GSD. This is followed by three sessions in which papers
will be presented in the following categories: (1) The
Feasibility of Existing GSD Practices, (2) Successful
Strategies for GSD, and (3) Research Methods and
Challenges.

During each session authors will briefly summarize
their work and form a panel to address the session topic.
Each session will be facilitated by a session chair who
will mediate discussions of this topic with the panel
members and the entire workshop audience.

The topics of the sessions in our program, together
with the relevant papers, are described below. This is
followed by a section summarizing background
information that motivates research in the area of global
software development.

1.1 Feasibility of Global Software Development
The long-term feasibility of global software

development (GSD) as standard practice remains
undetermined due to its relative novelty. This session will
address some of the existing concerns and explore
feasibility issues in depth. In particular, we will attempt to
determine the appropriate use of GSD practices in relation
to software engineering projects as a whole as well as
during specific project phases. Intercultural, logistical,
technical and fiscal limitations will be considered. Four
papers that relate directly to feasibility concerns will be
presented and discussed. Boland and Fitzgerald’s paper
will allow workshop participants to analyze transitioning
from co-located to globally distributed environments
within the framework of a specific case study. Bass and
Paulish’s contribution will provide insight into the GSD
strategies used by Siemens—one of the most globally
distributed software companies in the world. Yan’s case
study will highlight the GSD challenges experienced by
Nokia during the maintenance phase of an e-commerce
project. Finally, Prikladnicki and Yamaguti’s position
paper will highlight risk management issues related
specifically to GSD projects. The intention of this session
is to foster discussion, isolate key issues for further
research and establish strategies for future collaboration.

1.2 Strategies for success in GSD

While feasibility may be questioned by some, others
may argue that globalization is by now well-established,
and to suggest that software development should be
immune is foolish. Already, the trend toward outsourcing
is underway, especially in software development and
support. The question is not whether GSD is possible, but
how to improve it and how to make it more efficient. A
series of options presented in five papers will be
considered: from tool support to revising the development
process to engendering new attitudes among software
developers. The session will begin with Hargreaves and
Damian’s position paper describing how military-styled
team dynamics might be used as an example of how to
build highly successful GSD teams. Nissen follows,
describing how cooperation models were used as a basis
to manage expectations during a successful GSD project.
Chisan and Damian contribute a model for how awareness
of development artifacts can improve cooperation and
communication among software developers. Calefato et
al. take a tool-based approach, by describing in detail a
peer-to-peer conferencing tool that could address
communication needs in GSD. Finally, Sengupta et al.
posit a process approach of test-based-programming to
maintain a consistent project-wide view of requirements.
The goal of this session is to discuss and disseminate
practices, strategies and research endeavors among
participants to promote research and the state of the
practice.

1.3 Research methodologies and challenges in
GSD

The need for empirical research in GSD is
indisputable. Whether the research is about success
factors of global teams, the development of theories about
GSD or evaluating proposed strategies, the role of
empirical data from real-life software industrial settings is
critical. The fundamental question that emerges is which
research methodologies, strategies and techniques are
appropriate for the collection and analysis of empirical
data such that we achieve a systematic advancement of
knowledge in this growing area of research.

Paasivaara and Lassenius, and Prikladnicki et al
present case studies in which interviews and project
documents were used to identify collaboration practices in
GSD. In contrast, Cherry and Robillard study ad-hoc
communication through observations of global teams.
Further, Kruchten proposes the study of intercultural
factors through a combination of ethnographic studies,
content analyses, surveys and experiments. This strategy
is similar to that of Dingsoyr and colleagues who plan to
implement a multidisciplinary approach in studying global
teams in both commercial and open source projects. This
session will attempt to identify methodological issues
such as: what are the challenges in applying “traditional”
empirical methods in the context of geographical
distribution of study participants, and whether factors
such as trust and cultural differences that affect global
software development are having an impact on how
research is carried out in this field.

2. Global software development background

and motivation for research
Global software development (GSD) is increasingly

becoming common practice in the software industry. The
ability to develop software at remote sites allows
organizations to ignore geographical distance and benefit
from access to a larger, qualified resource pool with the
promise of reduced development costs. However, the
increased globalization of software development creates
software engineering challenges due to the impact of
temporal, geographical and cultural differences, and
requires development of methodologies, techniques and
technologies to address these issues.

This is the third Global Software Development
workshop organized at the International Conference on
Software Engineering (previous two workshops [3][4]),
and it is a continuation of the ICSE workshops on
Software Engineering held over the Internet from 1998 to
2001. The issues discussed at the workshop have focused
on addressing problems due to cultural and organizational
differences in multi-site and multi-national software
enterprises as well as the technical challenges experienced
by software development at a distance. This is
emphasized in the workshop reports [1][2][4] which

discuss the challenges of engineering software in
geographically distributed settings, and indicate that
further research needs to address technical and social
issues in global software development.

Global software development has been and
continues to be a phenomenon fueled by factors such as
access to a large and specialized labor pool, reduction in
development costs, global presence and proximity to the
customers. While we are witnessing reports of successful
global teams, research reveals that distance contributes to
heightened complexity in organizational processes.
Primarily, processes of communication, coordination and
control are affected by distance, with direct consequences
on how software is defined, constructed, tested and
delivered to customers, as well as how its development is
managed. Furthermore, inherent cultural issues are
perhaps the most confusing, yet intriguing aspect of
global teams. Stakeholders who are expected to work
together as a team do so despite their diverse attitudes
towards hierarchy, time management and adversity to risk.

These are only some of the factors that bring
challenges to managing software projects developed in
geographically distributed structures. Understanding the
intricacies of this complex phenomenon is critical in
framing research directions that aim at improving global
software development practice. There is a need for tools
and techniques that not only improve development
processes but also address organizational and social issues
in global software development. The previous workshops
each represent one more step in identifying and
understanding issues in the complex phenomenon of
global software development. In particular, the empirical
evidence and discussions during the workshop in the last
years indicate that technology is only a small part of
enabling effective global teams; there is a strong need to
address the study and practice of global software
development from a multidisciplinary perspective, in
which issues of social nature are as important as those of
technical nature.

In this workshop we intend to continue fostering
fruitful interactions between industry practitioners and
researchers, and help establish a community of interest in
this area. Industry practitioners experiencing challenges in
GSD will be encouraged to share their own solutions and
learn from research about current investigations in this
area. Researchers addressing GSD will have the
opportunity to gain a better understanding of the key
issues facing industry practitioners and share their work in
progress with others in the field.

4. Workshop main organizers’ background

Daniela Damian is an Assistant Professor at the
University of Victoria, BC, Canada, where she holds the
NSERC University Faculty Award. Daniela is the
director of the SEGAL Labs (Software Engineering
Global interAction Laboratories) at University of

Victoria, and was the primary contact and co-organizer of
the ICSE Workshops on Global Software Development
2002 and 2003. She has been acting on the Program
Committee of conferences and workshops in the areas of
requirements engineering and distributed software
engineering. She is an editorial board member of the
Journal of Requirements Engineering, Associate Editor
for the Int’l Journal of Human-Computer Studies.
Currently she is the Guest Editor of the special journal
issue on Global Software Development in the Journal of
Software Process: Improvement and Practice set to appear
in early 2004.

 Filippo Lanubile is an Associate Professor at the
University of Bari, Italy. While at University of Maryland
(1995-1997) he was a recipient of the NASA Group
Achievement Award (1996). In 2003 he was the co-
organizer of the Workshop on Global Software
Development and acted as a member of the program
committees for the Int’l. Conf. on Empirical Software
Engineering, the Int’l Symposium on Software Metrics,
and the Workshop on Cooperative Support for Distributed
Software Engineering Processes. Currently he is the
Program Co-Chair of the Int’l Workshop on Program
Comprehension 2004 and Program Co-Chair of the Int’l
Symposium on Software Metrics 2005.

Acknowledgements

We would like to thank all of the workshop authors and
participants for contributing to the workshop this year.

References
[1]. Damian, D., “Workshop on Global Software
Development”, SIGSOFT Software. Eng. Notes, vol. 27, no. 5,
September 2002
[2]. Lanubile, F., Damian, D., Oppenheimer, H. "Global
Software Development: Technical, Organizational, and Social
Challenges", SIGSOFT Software. Eng. Notes, vol. 28, no. 6,
November 2003
[3]. International Workshop on Global Software Development
2002, http://www.cis.ohio-state.edu/~nsridhar/ICSE02/GSD
[4]. International Workshop on Global Software Development
2003. http://gsd2003.cs.uvic.ca

Transitioning from a Co-Located to a Globally-Distributed Software

Development Team : A Case Study at Analog Devices Inc.

David Boland Brian Fitzgerald
Analog Devices University of Limerick
david.boland@analog.com bf@ul.ie

Abstract

Global software development has become an
extremely important issue for organizations at present in
the climate of increasing tendency towards globalization
and global outsourcing. A number of studies have been
conducted which have identified a set of problematic
areas which are common across projects, including
language and cultural differences, trust factors,
communication across temporal and spatial distances,
lack of shared contextual awareness. This study of global
software development at Analog Devices Inc. (ADI) is
especially noteworthy for a number of reasons. Firstly,
the project has recently moved from a co-located to a
globally-distributed one, and thus the team had already
had experience of being co-located, a factor that has not
typically been the case in the studies published to date
where teams are being established who have not
previously been co-located. Also, as language and
cultural factors were not an issue, the study was able to
focus on the problems of communication over temporal
and spatial distances. The study discusses how ADI
attempted to address these problems and identifies the
initiatives that worked well, and, more importantly, those
that did not work as well. Among the findings was the fact
that trust, which had been very solidly established among
team members during co-location, was significantly
eroded as the project team was reconstituted on a
distributed basis.

1. Introduction

There have been several documented studies on
globally distributed software development teams [e.g.
1,2,3,5,7, 9,10]. A common feature in most of these
studies, however, has been that the teams at the various
development sites have had little or no previous
experience with each other. Also, many of the case
studies have involved very large development teams and

substantial geographical and temporal distances (i.e.
greater than 8 hours). This particular case study, however,
was able to observe a very small development team (less
than 20 developers), that had worked together for four
years and were being redistributed into a global
development team across two development sites; one in
the United States and the other in Ireland. Many common
global development problems including language and
culture were not an issue and this allowed us to
concentrate on how communication and temporal
problems affected the group and how they attempted to
overcome them.

The paper is structured as follows: The next section
provides some background on the case study company,
Analog Devices Inc. Following this, the procedures and
processes that were established in the move from co-
location to a distributed team are identified. The next
section discusses the success of these procedures and
processes, and also identified the problematic areas where
these did not work as well. Finally, the conclusions and
implications of the study are addressed.

2. The Company

Analog Devices Inc. (ADI) is a world-leading
semiconductor company specializing in high-performance
analog, mixed-signal and digital signal processing (DSP)
integrated circuits (ICs). ADI currently has a worldwide
workforce of approximately 8,600 employees, including
3,100 engineers. There are development/manufacturing
facilities in the United States, Ireland, United Kingdom
and the Philippines.

Analog Devices is one of the few semiconductor
companies that have an internal division that provides
automatic test equipment (ATE) for the ICs the company
produces. Analog Devices’ ATE division is called the
Component Test Systems (CTS) division. The latest ATE
platform at CTS has been in development since 1999 and
for all that time the entire development team, both
hardware and software engineers, have been co-located.

In 2003, it was decided to distribute some of the team
members to the development facility at Limerick, Ireland.
The primary purpose for the relocation was to ensure that
CTS was better represented at the remote site. This would
provide better support to the local customers and their
concerns/issues would be more accurately relayed to
CTS.

3. Creating a Globally Distributed
Development Team

There are many problems to be addressed when
establishing a globally distributed development team,
including, for example, language and cultural differences,
trust factors, communication across temporal and spatial
distances, lack of shared contextual awareness [2, 4, 6, 8,
9]. CTS, however, believed that the creation of their team
would be successful as some of these problems would not
be an issue. The problems included:

1. Language. All the members of the team spoke

English and used a common vocabulary for identifying
specific hardware or software components. Therefore, the
team should have no difficulty understanding each other.

2. Culture. Although not all members of the team
were from the same geographical region, they had been
working together for four years at the time of the move to
a distributed team, and thus had developed their own
‘CTS’ culture. Unintentional rudeness, hostility or other
communications issues should not be a problem.

3. Trust. The developers had established strong
levels of trust between each other as a result of working
together for a long time.

Therefore, CTS was able to concentrate on addressing

the remaining global development problems of
communication across temporal and spatial distance, and
shared contextual awareness. The following
procedures/processes were enacted to address these
issues.

Single Software Manager

Due to the size of the development team, it was
decided to continue with one software manager for all
developers across all sites. The software manager is
responsible for assigning tasks that will reduce cross-site
dependencies especially with regard to expert
dependencies (i.e. assign tasks to the particular subsystem
expert directly or have experts and developers co-
located).

Weekly Task Report

To facilitate the work of the software manager each
developer was required to submit a task report at the
beginning of each week. The report includes a list of their
specific goals for the week and a summary of their
progress for the previous week. The report also indicates
if the developer intends to make any deliveries during the
week (i.e. check their work into the main source tree).
This reporting process enables the software manager to be
aware of work progressing across all the development
sites and provides the necessary information to coordinate
tasks among the developers.

Delivery Report

A new check-in procedure was introduced to ensure
each developer was kept aware of all the work
progressing at each development site. At check-in the
developer must submit a report outlining a description of
the changes/features they are checking into the main
source tree. This description includes the specific files
(source code, documentation, etc) that have been changed
or added. The report also includes the primary purpose
behind the delivery and how to test the changes/new
features.

New Communication Tools

CTS developers rely heavily on informal
communication to design, implement and debug their
systems. To help facilitate informal communication
across the development sites, developers were encouraged
to use AOL’s Instant Messenger (IM). Microsoft’s Net
Meeting was also made available to all developers.

Quarterly meetings

Once a quarter all the developers are gathered together
to meet face-to-face for one week. This business trip is
called a ‘sync up’ trip. Development goals and future
projects are discussed but the primary purpose for the trip
is to increase the team’s morale and to maintain the
camaraderie between the developers.

4. Results

The globally-distributed development team has been
operational for four months. In general, the group is
performing well but communication and temporal
problems have resulted in reduced productivity, trust and
morale levels. The following are the procedures and
processes which have been initiated and seem to be
working well:

Software manager and weekly task reports – Reduced
inter-site dependencies

The software manager was able to make good use of
the weekly task reports and has been successful at

assigning the majority of tasks between the sites
appropriately.

Delivery reports - Maintained awareness and trust
levels

The delivery report has been successful at maintaining
group awareness and has made it easier for each
developer to know who is working on what, who are the
experts on particular subsystems, the problems being
addressed and the problems outstanding. This procedure,
if combined with the absence of other communication
problems, was perceived to be sufficient at maintaining
trust levels between the developers. Other communication
problems, however, did become evident and thus eroded
this procedure’s effectiveness in this area.

Quarterly sync-up meetings – Maintained morale and
motivation levels

These trips have proven to be very successful and
developers have commented on feeling ‘energized’ and
highly motivated after meeting with all the team
members.

Friendship – An important contributor to awareness

Some of the developers had become good friends
during the period they were co-located. These friendships
proved invaluable to maintaining informal
communication channels between the development sites.
When these developers needed to discuss an issue,
through either synchronous or asynchronous
communication channels, they invariably discussed other,
unrelated, issues. Discussions of this nature are a critical
component of software development [10]. At CTS these
discussions gave each developer greater insight into the
particular operations at each site and resulted in greater
overall awareness.

However, it was also the case that in some areas, the

procedures and processes initiated did not work as well as
anticipated:

Communication Tools - Not as effective as hoped

All the developers took the opportunity to use IM but
they found that the tool was only adequate for
transmitting yes or no style questions. Net Meeting was
never used by the developers due to the effort it required
to setup and use. Both, IM and Net Meeting are primarily
synchronous communication tools and developers
indicated that they prefer to use the telephone to converse
if an opportunity for synchronous communication is
available. This suggests that some of the technology for
synchronous communication which is commonly
provided does not afford developers sufficient richness as
a communication to be perceived as useful.

Communication levels - Did not match co-located
levels

Overall, the communication bandwidth was not
adequate to compensate for the richness of informal
communication between co-located developers. As a
consequence, minor issues, usually discussed through
informal communication channels [10], were not
discussed between the development sites. This resulted in
the introduction of bugs into the system. Also feedback
on successful deliveries, an important contributor to
morale, was completely lacking. Feedback on successful
deliveries had in the past been usually done at CTS
through informal channels via chance meetings with end
users or other developers. Due to the lack of informal
communication, however, many developers have stopped
getting this feedback and thus their morale has been
adversely affected.

Remote experts - Led to productivity and trust
problems

When a developer is working with unfamiliar code and
the subsystem expert is co-located, the developer would
seek their advice on the change/feature they intended to
make. The time taken to converse with the expert is
usually only a few minutes but if the expert is remote this
time can become several hours or even days. Thus in the
interests of rapid development most minor changes are
made to the subsystem without consulting the expert [10].
These changes, however, may have overlooked subtle
design considerations within the subsystem and thus have
introduced bugs or other problems.

When these problems become evident (either through
expert analysis of the delivery report or errant runtime
behavior) significant time is wasted at each development
site to address the issue. The level of trust between the
expert and the particular developer is also reduced.
Merely raising the newly discovered problem with the
group can also adversely impact morale, especially if the
expert is not very ‘diplomatic’ at pointing out the
problem. Thus, the previous high level of morale and trust
that had been built up over the years between developers
was possibly eroded somewhat.

Time zone differences - Led to productivity loss

Time zone differences are fundamental source of
difficulties for a globally distributed development team
[1, 6, 7, 10] and this was no different at CTS. Each day
developers arrive to work with an inbox full of questions
and other issues from the remote site. To resolve these
issues takes significant time for the developer and thus
their productivity is affected. Developers indicated that
the majority of these issues could actually be resolved
quickly, if synchronous communication was available.
Also, even when synchronous communication would be
possible, the extra effort to try accomplish a rich and

detailed interaction through a narrow communication
channel such as IM would also affect productivity.

5. Conclusion

The new global development team at CTS is
performing at acceptable levels. It is interesting, however,
that given the ability to concentrate on communication
and temporal problems the team could not retain the level
of productivity it enjoyed when all the members were co-
located. Most of the loss in productivity was a result of
inadequate processes that were established to address the
geographical and temporal distances. There were also
several unexpected problems, including the effort
required to maintain a globally-distributed development
team. This has resulted in an increased workload for some
of the developers and thus resulted in a drain on their
productivity.

Today, some developers are occasionally failing to
follow all of the processes due to project deadlines,
workload or other issues. Thus productivity, awareness,
trust and other areas will begin to be adversely impacted
unless the process can be improved.

Clearly a zero cost, synchronous communication
channel that can work around time zones would
drastically improve GSD – so we need either a Star Trek
transportation device or a time machine! In the somewhat
unlikely event of either appearing in the foreseeable
future, we will continue to work on the problems and
issues identified here.

6. References

[1] Kiel, L., “Experiences in Distributed Development: A
Case Study”, ICSE Workshop on Global Software
Development, May 2003.

[2] Pyysiainen, J., “Building Trust in Global Inter-
Organizational Software Development Projects: Problems
and Practices”, ICSE Workshop on Global Software
Development, May 2003.

[3] Passivaara, M., “Communication Needs, Practices and
Supporting Structures in Global Inter-Organization
Software Development Projects”, ICSE Workshop on
Global Software Development, May 2003.

[4] Damian, D., Chisan, P.A., and Corrie B., “Awareness
meets requirements management: awareness needs in
global software development”, ICSE Workshop on Global
Software Development, May 2003.

[5] Oppenheimer. H..L., “Project Management Issues in
Globally Distributed Development”, ICSE Workshop on
Global Software Development, May 2002.

[6] Carmel, E., and Agarwal, R., “Tactical Approaches
for Alleviating Distance in Global Software
Development”, IEEE Software, March/April 2001.

[7] Battin, R.D., Crocker, R., Kreidler, J., and
Subramanian, K., “Leveraging Resources in Global
Software Development”, IEEE Software, March/April
2001.

[8] Herbsleb, J., and Mockus, A., ”Challenges of Global
Software Development”, 7th IEEE International Software
Metrics Symposium, April 2001.

[9] Herbsleb, J., Mockus, A., Finhost, T.A., and Grinter,
R.E., “Distances, Dependencies, and Delay in a Global
Collaboration”, ACM Conference on Computer-
Supported Cooperative Work, December 2000.

[10] Herbsleb, J., and Grinter, R.E., “Splitting the
Organization and Integrating the Code: Conway’s Law
Revisited”, ICSE Workshop on Global Software
Development, May 1999.

Global Software Development Process Research at Siemens

Matthew Bass, Daniel Paulish
Siemens Corporate Research, Inc.

Princeton, NJ 08540
{ Matthew.Bass, Daniel.Paulish } @Siemens.com

Abstract

Siemens Corporate Research (SCR) is the
research and development unit of Siemens USA. The
Software Engineering department of Siemens
Corporate Research spends much of its time doing
consulting for Siemens Business Units. As a result,
we have been involved in a large number of software
development projects varying in size, complexity, and
domain. Many of these projects were developed with
globally distributed teams. Over the years, we have
identified best practices, and begun to organize these
practices into more cohesive set of development
processes focused on issues related to global
development. This paper describes our experience
with experimentation, lessons learned from one
specific project, and suggests future steps for global
software development (GSD) within Siemens.

1. Introduction

Siemens is one of the largest developers of
software intensive systems in the world. With a
presence in over 190 countries, it is also one of the
most globally distributed. As software products are
growing in complexity and the organizations that
develop them are also growing in staff size, Siemens
business managers are seeking new approaches to get
new software products quicker to market, while
reducing their overall development investments. One
of the strategies that Siemens has adopted is to move
some of its software development to low cost
countries. The implications of such a decision are
not entirely known. The associated risks, required
changes in the development process, needed
infrastructure changes, and required modifications to
the management practices for successful global
development are not fully known.

2. Data Processing System 2000

The Data Processing System 2000 (DSP2000) is a
software system for acquiring and processing meter
data, from electrical, gas, and water meters. The
meter data is stored and processed so that billing
determinants can be calculated for periodic transfer
to a billing system. The billing system generates the
bills for energy or resource consumers.

The development for DSP2000 was done at four
sites in three countries. SCR staff acted as project
manager and lead architect, and developed one
component for this project. The product is currently
being successfully sold and distributed. This section
describes our experience with the DSP2000 project
as it relates to GSD, section 3 then highlights some of
the lessons learned from our experiences with GSD
projects, and section 4 describes planned next steps
towards improving the state of the practice of GSD
within Siemens.

2.1 Global Analysis

Global Analysis (GA) [1][2] is a technique for
analyzing, categorizing and documenting factors that
influence the architecture and project management of
a system. In the DSP2000, GA was completed early
on during the high-level design for the DSP2000
project. Three types of factors were considered;
organizational factors, technological factors, and
product related factors.

2.1.1 Organizational Factors

Organizational factors may apply only to the
project at hand (as in the case of schedule and
budget), or can impact every product developed by
that organization (as in the case of culture,
development site(s) location, and software
development process).

Two examples of organizational influencing
factors in the DSP2000 project were:

• Technical skills were in short supply, prior
products were Unix-based with local user
interfaces, and marketing required new
products to be Windows-based with web-
based user interfaces.

• Time to market was critical. The market was
rapidly changing, and it was viewed as
critical to quickly get some limited features of
the product to potential users so their
feedback could be solicited.

Two strategies were adopted to address these
organizational factors. In order to mitigate the lack
of technical expertise, it was decided that this project
would exploit expertise located at multiple
development sites, and to invest in training courses
early in the development. As a result of the
criticality of time to market, it was decided that the
product would be released incrementally. In this
way, release dates could be met even if some features
were missing. Additionally, a design strategy was
followed to reuse the current data-acquisition system,
and attempt to use third-party components wherever
possible.

2.1.2 Technological Factors

Technological factors may limit design choices to
the hardware, software, architecture, platform, and
standards that are currently available. Technology,
however, changes rapidly, and so if it is the case that
the architecture has even a reasonably significant
lifetime, then it should be designed with this in mind.

Two examples of technological factors that
influenced this project were:

• An object broker was necessary for meeting
the scalability and availability requirements
within a distributed hardware configuration.

• The database system was expected to change
over time. Oracle 8 was initially specified,
but it was known that new versions would
become available, and some customers would
prefer other vendors.

Microsoft COM was selected to as the object broker,
and a layer was designed in the architecture to
abstract the database in anticipation of future
database changes.

2.1.3 Product Factors

Product factors include features of a product as
well as qualities like performance, dependability,
security, and cost.

Two examples of product factors that influenced
this project were:

• This product was to be designed as a product
line. In order to support a product line
architecture, the graphical user interface
(GUI) had to be able to accommodate many
different types of users for different
applications.

• The required scalability and anticipated
performance requirements of the system were
another influencing factor. The DSP2000
was intended for industrial and commercial
applications where thousands of meters
would be handled. While it wasn’t originally
specified for the residential market, where
millions of consumers would be required, it
was known that this might be a future
possibility.

A web-based GUI was select to address the needed
flexibility. In order to allow for potential unknown
market performance requirements, we anticipated
that a scalable distributed platform was necessary.

2.2 Project Planning

The DSP2000 software development was planned
as a sequence of incremental engineering releases,
the first of which consisted of a “vertical slice” of the
architecture, which functioned as a prototype of the
architecture. The last planned release was the first
set of functionality that was sold as a package to a
customer.

We found that a six to eight week cycle time for
each iteration worked best. Some of the release dates
were driven by trade shows, at which time a new
release with the latest functionality was required.
Particularly in light of our global development, we
found that one of the best means of communication
was via the system itself. It was difficult to fully
understand and discuss the explicit and implicit
requirements without an appropriate prototype. The
system itself turned into the common language for all
involved, facilitated by the web-based GUI.

The planning process itself was complicated by
the distributed nature of the project. What ended up
working well was to distribute drafts of the proposed
schedule and task assignments for each incremental
release to the team members. Often, we would get
feedback in the form “This feature cannot be
achieved in the time frame provided”, or “I am

planning a vacation during these weeks”. A second
version of the schedule committing the release dates
and feature sets would then be distributed.

Another item that is useful in global project teams
is an explicit statement of the overall project goals.
An example of such a statement is “Quality will have
a higher priority than schedule, which will have a
higher priority than functionality.” Such an explicit
statement helps project managers make the inevitable
trade-offs that must be made right before a release.
We have found in the past that cultural bias exists
that will influence such trade-offs at a local level,
unless such an explicit statement of goals exist.

2.3 Project Management

Each development site had a local manager to
manage the team members at that site. There was
also an overall project manager, and a project
manager for each software application package
development. As a result there was overlapping
management responsibility for achieving the project
goals. These managers had to negotiate individual
work assignments. In practice, however, most
potential conflicts were resolved when the proposed
development plan was distributed for feedback.

The chief architect was responsible for decision
making and resolving technical conflicts for the
application package. Analogous to the overall
project manager, the chief architect was the overall
technical manager. In practice, both the technical
manager and the project manager reviewed key
technical decisions.

An engineer was assigned responsibility to each
subsystem. This engineer was responsible for the
detailed design and implementation of this
subsystem.

Project status tracking was done during weekly
teleconferences. Each team member was encouraged
to report on his development progress and to raise
information or issues to be shared with other team
members.

3. The Influence of Global Development

While the decision to develop DSP2000 across
multiple sites was primarily motivated by the lack of
resources with the required technical skills, the
implications of that decision were felt in the project
planning, project management, architecture, and
design of the system.

Communication is a key issue in most projects,
but additional barriers to effective communication

exist in globally distributed projects. Several
strategies were found to be useful in the DSP2000
project in overcoming the communication barriers.
Those strategies include:

• Explicitly documented project goals – in the
absence of clear direction, local cultural and
personal biases are going to influence
decisions. The resulting choices may not be
in line with the overall goals of the project.

• Incremental development – an incremental
release schedule with fairly short cycles helps
to facilitate communication, and highlight
ambiguities and misunderstandings. While
this can be useful in many projects, co-
located teams may have options that are not
available to a globally distributed team.

• Internationally aware calendar – it was
important that weekly teleconferences take
place to monitor status, and highlight issues.
It was important (and often difficult) that time
zones and local holiday schedules be taken
into account when scheduling these meetings.

• Well-partitioned architecture – in order to
facilitate work break down across multiple
sites, the architecture needed to reflect the
organizational structure of the project. There
needed to be well-defined components or
subsystems with understood dependencies for
each site. These components or subsystems
also needed to take into account the technical
skills of the staff at the responsible
development sites. As it turned out, the
decision to distribute the development
globally had a large impact on the
architecture.

• Communication of progress – in the DSP2000
project, the Uniform Resource Locator (URL)
for the test system was made available for all
the team members and their management.
This was a big morale boost for the team,
since everyone was aware of the rapid
progress being made. The result was a much
greater sense of team then would otherwise
have been possible in a globally distributed
project.

4. Current Research Focus

We were pleased with our experience on the
DSP2000 project. We feel that many of our
approaches were validated based on the success of
this project. Ideally the decision to use distributed
development teams would result from influencing

factors relating to the project in question. More and
more, however, this is not the case. Distributing
development to low cost countries has become a
cost-saving strategy for many organizations.
Siemens is no different. It is not clear what the
impact of such an approach has on the bottom line.
While the hourly development cost may be reduced,
extra effort is likely to be spent on project
management, architectural design, requirements
engineering, and so forth.

SCR is currently in the process of codifying past
experience in the form of questionnaires, checklists,
processes, and other decision aids to assist in the
successful application of global software
development. We are attempting to correlate project
characteristics with proven strategies in order to
better establish criteria for success for given projects.

One area where we are planning additional work
is the experimental application of a reference process
for GSD. Our process includes best practices from
requirements engineering, software architecture
design, and organizational patterns. Engineering
rules of thumb are used to plan projects, specify the
size of software components, the division of
responsibilities between a central product

management team and remote component
development teams, metrics, tools, and operational
procedures. The experimental projects are used as
case studies to further support the identification of
best practices.

We feel that we have a good start in
understanding some of the issues related to
successfully managing a global software
development project. We now need to further
substantiate, refine, and transfer our approach to the
Siemens operating companies.

References:

[1] Hofmeister, C., Nord, R., and Soni, D.,
Applied Software Architecture, Addison
Wesley, Massachusetts, 2000.

[2] Paulish, D.J., Architecture-Centric Software
Project Management, Addison Wesley,
Massachusetts, 2002.

Efficient Maintenance Support in Offshore Software Development: a Case Study
on a Global E-Commerce Project

Zheng Yan

Helsinki University of Technology
Software Business and Engineering Institute

POB 9210, FIN-02015 HUT, FINLAND
Zheng.Yan@hut.fi

Abstract

Software maintenance is a very important phase in
software development. It generally occupies the most of
development life cycle in order to ensure software quality.
This paper takes an e-commerce project as an example to
study how to efficiently provide software maintenance
support in offshore software development for a global
deployed software product. Through interviews and a
survey to the project developers, authors summarize the
good methods and approaches used in its maintenance
that greatly helped its success. Meanwhile, the authors
also study lessons that influenced its efficient
maintenance (e.g. extra workload caused by performance
tuning, troubles due to sharp time-difference, problem-
reproducing difficulty caused by testing environment
difference and slow code transfer). Suggestions for
further improvement are also proposed based on real
experiences in order to benefit similar software
development in the future.

1. Introduction

Offshore software development generally means that
software is developed through collaboration of a team in
an emerging country. It is one type of distributed software
development that is adopted by many companies [2].
Lower cost, plentiful skilled staffs, high quality and
trustworthy are main attractions for software development
abroad. However, the offshore software development also
faces difficulties and risks on decision-making,
coordination, execution, communications and project
management. There are many issues worth studying in the
offshore software development regarding how to
overcome its difficulties and reduce its risk. Amorbieta et
al. [2] and Muller et al. [7] discussed how to make a
decision on the offshore development, and how to choose
right partner, and successfully start, organize, manage and
execute this kind of projects.

Moreover, considering the software development,
maintenance is a very importance phase, which generally

occupies most of the software development time. It is a
necessity in order to ensure sound software quality. When
an offshore-developed software is used all over the world,
it becomes more difficult for an offshore software
development team to support the essential maintenance
when code development is over.

Nowadays, seldom work studies software
maintenance’s influence on the offshore software
development regarding the issues mentioned above. This
raised a number of doubts from our literature study,
comparing to our industrial experiences. For example, we
believe that the challenges in offshore software
maintenance may also affect the project decision-making
and execution. How to provide efficient maintenance
support in the offshore software development could be a
big challenge worth special study.

Regarding the maintenance, some existing results need
further study. For example, some work indicated that
round-the-clock development is one of the advantages
that benefit distributed software development by making
use of the time zone difference [4-6]. It is worth further
studying whether time difference can really benefit or
retard the offshore software maintenance, because we
experienced a lot of troubles to overcome the time
difference in an offshore software development project
that will be studied herein.

Culture liaison was introduced as a great help for
alleviating distance and leveraging resources in [3, 7].
Are culture difference and understanding difficulties the
only demand for a liaison role? What is the real need in
terms of the efficient offshore maintenance? These
questions are also worth studying, especially based on
real cases.

Generally, the projects that require limited interaction
with customers and have low strategic importance and
high market capacity are treated suitable for the offshore
development in [2, 7]. However, for a global e-commerce
project that has more additional challenges than other
software projects [1], but developed successfully offshore
like the case we will study herein, good approaches used
and challenges or lessons learned in its maintenance are

mailto:Zzheng.z.Yyan@hut.finokia.com

especially worth studying in order to extend the theory of
offshore software development.

All of above are motivations of this paper. In this
paper, we will take a global e-commerce project (GEC
hereafter) as an example to analyze the reasons behind its
great success and problems/lessons that are worth
learning for future offshore software development. The
focus will be on software maintenance: how to efficiently
support the software maintenance in offshore e-commerce
software development.

2. GEC overview

GEC was a web-based service for a global company’s
partners to order various company products. It was
installed at a number of fulfillment sites to support
product ordering from any country in the world. It was
believed as the biggest B2B e-commerce system in 2000.
This system greatly reduced ordering cost, tremendously
improved the efficiency of ordering procedure and
provided great convenience for both the company and its
partners.

GEC provided global automatic management on
products ordering, processing and order-maintaining for
one of the biggest global companies in the world
(customer company hereafter). Its main software was
outsource-developed at a company in Singapore (provider
company hereafter) during 1998-2001. The provider
company completed the GEC software development and
maintenance support on totally eight product versions,
until the system was very stable and most features’
implementation had been done. The system is currently
maintained and enhanced by the customer company.

The GEC project was a project executed at different
places all over the world. There were totally about fifty
persons involved into this project at the provider’s
company including a development team and a testing
team. Figure 1 shows its execution map. At the GEC
software maintenance phase, the cooperation among
different teams located at different places was needed in
order to solve a problem.

Figure 1: GEC project execution map

The GEC maintenance included several phases after
the code development was finished. In this paper, we
focus our discussion on the software maintenance
conducted at Singapore. Figure 2 illustrates the
maintenance phases of the GEC software.

The first phase of maintenance was conducted after the
code was built and installed at the local test server in the
provider company. The second phase of maintenance was
conducted after the local testing passed. The build was
uploaded to the testing server located at Place 1, US. The
customer company’s testing team there retested the
software. The third phase of maintenance was started
after the build was installed at the pre-product server at
Place 1, US. The testing team of the customer company
continued the test on more complicated use cases. The
forth phase of maintenance was also required if there was
any problem found in the product used by the GEC users
all over the world. Generally, the product problems were
emergent and required to be solved immediately because
they directly affected the customer’s business.

If there was a problem found in the maintenance
phases, the testers either in Singapore or in US reported it
using a team-connection tool. The development team
could check and reply to the problem report after the fix
was done. The team-connection tool managed all problem
reports and processing history. Generally, the
maintenance work was conducted in parallel with new
version’s development; especially the third phase and
forth phase maintenance.

Figure 2: Maintenance phases of GEC software

3. Research questions and methodology

GEC was a successful B2B e-commerce system that
brought a lot of benefits for the customer company’s
global sale. What we intend to study herein is the merits
that benefited the GEC maintenance and the lessons that
influenced the maintenance efficiency, as well as the
aspects worth further improvement. This is because
software maintenance support is one of the crucial aspects
that influence the whole project’s success. In addition, we
also aim to clarify the questions mentioned in the
introduction through the case study on GEC.

In order to conduct our research, we designed
questionnaire and distributed it to all GEC developers for
their feedback. The questionnaire was designed based on
the first author’s personal experience in the GEC
development. The first author participated the GEC’s
development and maintenance on most versions as a

component leader. We received pieces of feedback. The
questionnaire includes three parts:
• Participator’s basic information regarding personal role

inside the GEC project and contributions: Based on this
part, we can identify the importance of response.

• Factors that affected the maintenance success: We asked
the participators to mark the importance of those factors
that we thought benefited the GEC maintenance.

• Potentiality for further improvement: In this part, we
tried to propose questions in order to study over-time
hard work’s influence on maintenance efficiency, the
reasons of extra maintenance work caused by
performance issues, opinions on the difficulties of
maintenance support in the GEC, and the reasons that
caused the maintenance delay, as well as the hardness of
code transference from old responsible person to the
new one and from the provider company to the
customer company.

Apart from the questionnaire, we also telephony
interviewed several GEC developers. These interviewees
are software component leaders from whom we can get to
know all software components’ maintenance information.
One of them is the only person experienced all versions’
development and maintenance. The main questions asked
in the interview are shown in Table 1.

Table 1: Interview questions
1 Which event you experienced in the GEC maintenance gave you

deepest impression?
2 What do you think the worst aspects that greatly influenced the

efficient maintenance in GEC?
3 What do you think the good methods or approaches used that

benefited the GEC maintenance?
4 What do you think the main reasons that delayed or benefited your

maintenance work?
5 What is the reason that caused performance issue?
6 What is your opinion on improving the efficiency of GEC

maintenance? What are your suggestions?
7 What do you like in GEC? What do you dislike?

In the telephony interview, we tried to get direct
feedback on advantages and disadvantages experienced in
the GEC maintenance. Especially, we got to know the
interviewees’ personal opinions on further improvement
in order to overcome those bad factors that greatly
influenced the maintenance efficiency. Each interview
lasted for more than one hour. The interviewees provided
valuable answers for each question. Through interview to
them, we got a complete perspective on the whole GEC
maintenance work.

4. Results

The results we got from the questionnaire and
interviews are studied and analyzed as follows.

4.1 Factors benefiting successful maintenance

Based on the questionnaire and interviews, we
specified the factors that benefited the GEC maintenance
as follows.

It seems that the most important factor for efficient
maintenance was attitude and relationship between the
development team and its customer. With good attitude
and relationship, mutual understanding was easier to
build up in order to make trade-off on many issues at both
sides. For example, the customer could be easier to
understand the reasons of delay on problem solving if
they knew the barriers and the hard work at the remote
site. The development team would more like to accept
extra requirements in urgent and offered solutions as soon
as possible.

Compatible development/maintenance environment
and efficient communications with the customer were also
very important for efficient maintenance. But the provider
company’s maintenance environment was not perfect to
support efficient maintenance. Both testers at US and
Singapore did not share the same testing-system
Database. This was one of the reasons that made it hard to
reproduce the same problem in Singapore, but reported by
the tester in US.

The tools such as project pager and approaches (e.g.
sending liaison engineer and time-shift work) also played
an important role for the efficient maintenance. The
project pager was used in project emergency cases. For
example, if there was a big problem found in product, the
GEC help desk called the project pager. The pager taker
at Singapore should call back and get to know the request
for urgent maintenance support, even thought at midnight.
On the other side, the provider company generally sent a
liaison engineer to place 1, US for on-site maintenance
support after the first maintenance phase. In addition, a
development engineer was also arranged to work at
Singapore nighttime, but daytime of US, to support
immediate maintenance.

Since the project was big, it was impossible for one
person to know all components of the whole system.
Generally, it was hard for one liaison engineer and one
time-shift developer to solve various problems raised at
Singapore nighttime. Generally, they tried to look at the
problem, but without any sense to solve the problem.
They tried to console the customer until the next morning.
They delayed time in order to let the responsible
developers have enough time to rest at night, so that they
could work efficiently next day. At the same time, they
consoled the customer by giving them some feedback to
make them feel that the problem was processing at the
remote site.

Expert support was also very essential for performance
issue. For example, the provider company lacked experts
on DB2. The DB2 query caused a lot of performance
problems since the database structure is very complicated
in order to support the customer’s business logic. In order

to help the development team, the customer sent a DB2
expert to Singapore. The face-to-face discussion
effectively helped the performance tuning work at the
maintenance phase.

Other factors that benefited the maintenance work are
also important, but those are common factors for both
distributed software maintenance and centralized software
maintenance.

4.2 Improvement potentiality

Based on the results from the questionnaire and

interviews, we summarize the lessons learned from the
GEC maintenance in order to seek potentiality for further
improvement.

4.2.1 Influence of over-time work. Over-time work was
hated by all developers participated in the GEC,
especially long-time over-time working (e.g. work from
10am in the morning to 3am next morning for two weeks
or work over 3 hours every day for more than one month,
which was normal during GEC maintenance). If working
over-time, it is impossible to work efficiently and more
mistakes may be made because of fatigue. But over-time
working was generally forced to do, which happened
mostly at maintenance phases if there were urgent
problems to fix.

4.2.2 Reasons of extra maintenance work caused by
performance issue. Performance issue found later on
when the GEC had launched caused a lot of extra
maintenance work. This kind of extra work sometimes
greatly affected the whole project’s schedule. The
following reasons were pointed out as importance by the
interviewees.

The first reason was that the software designers lacked
experience on B2B e-commerce software. They had no
much idea which aspects should be paid special attention
in the design. GEC is one of the earliest E-commerce
applications. It is also among the biggest ones in the
world. At that time, no many people held real experience
on such kind of software development. In addition, the
platform APIs used for GEC development were not
mature either.

The second reason was that the software designers at
the provider company lacked concrete knowledge on real
usage scale and system execution scenarios. Due to tight
time schedule required by the customer, performance is
not seriously considered at the software design phase.

The third reason was caused by the rapid growth of the
GEC usage. The system scale was greatly enlarged within
a short period. The initial success also encouraged the
customer to deploy this system as broad as possible for its
business partners all over the world. This raised many
new requirements regarding performance improvement.

The dynamic system growth was actually very hard to be
anticipated at the design phase.

Herein, experiences were more crucial than
technologies in order to avoid performance issue found
later in the software product.

4.2.3 Difficulties for maintenance support. Based on
the results of questionnaire and interviews, we found that
the difficulties of maintenance support were generally
caused by long-distance between the customer and the
development team. The long-distance made face-to-face
communication difficult, which further caused
misunderstanding on the business requirements. It also
caused time-difference, which, treated as beneficial for
round-the-clock efficient software development, actually
brought a lot of trouble in the GEC maintenance. The
time difference made prompt support on product problem
difficult and made it delayed to get feedback from the
remote sites.

In addition, the product database was highly
confidential. If the product database access was necessary
for troubleshooting, the access duration issued was
generally quite limited, which made the developers feel
big pressure, not mention that the network connection
was very slow. Limited accessible machines to the
product system sometimes made trouble-shooters have to
wait in a queue.

4.2.4 Reasons of maintenance delay. The main reason
agreed by most developers about maintenance delay was
the difficulties to simulate and re-produce the problem in
the local environment. The database data applied for local
maintenance were totally different from those for the
customer’s testing and were obvious distinct from the
product. This caused a lot of trouble in reproducing the
reported problems. Besides, the execution environment
for development was different from the product execution
environment. This was another reason made problem
simulation difficult.

In addition, the difficulty to exchange idea regarding
problems was also an important reason caused the
maintenance delay. As commented by an interviewee, he
sometimes had to wait until next day in order to get
confirmation on some issue. If more discussion needed,
longer delay might occur.

Apart from the above, developers’ personal reasons
and lack of project training might also cause maintenance
delay. But those were not treated as so important.

4.2.5 Problems of slow code transference. Due to the
frequent resource shifting in IT projects, it is generally
impossible for one person to take charge of one software
component in all life cycle of a software product. This
introduces a practical symptom: responsibility transfer.
The slow transfer also affected the GEC maintenance

seriously. This was mainly caused by the following
reasons.
1. Lacking formal project training due to tight project
schedule: The new responsible person is not so familiar
with the project that he/she has to spend longer time to
solve the problem.
2. Job competition: The old developer had pressure to be
taken over by the new one. So he provided blur technical
documents and code comments, and explained the code
design carelessly. Similarly, the provider company also
faced pressure if the customer withdrew the project.
3. No standard document format, coding format and
design pattern deployed: This made new comers difficult
to read and understand the code written by other people.

The above reasons also influenced the code transfer
from the provider company to the customer’s
maintenance team after the contract was finished.

5. Discussion

5.1 Managerial implications

Based on the lessons learned from the GEC

maintenance, we provide some suggestions for other
offshore software projects.

Firstly, it is important design a series of working
procedure in order to formalize the project management.
It is necessary to make proper project schedule that saves
some space for emergent events that may happen later on.
Furthermore, it is also wise to make agreement with the
customer regarding the solutions on emergency
maintenance support, e.g. the accepted rules and policies
for additional requirements raised from the product
problems. In short, efforts should be made at the
contracting phase to evade unnecessary argument that
may occur in the maintenance phases. This is also a good
approach to avoid hard over-time work that greatly
affects the efficiency.

Secondly, it is crucial to pay special attention to
performance issue and system scalability in the system
software design. It is suggested to invite experienced
experts to participate the design on related design issues
and make instructions on software development regarding
system performance that could guide the developers’
programming in general. The customer should provide
enough information to its partner about system scalability.
It is suggested to provide a paper document to specify the
maximum scale of the system, e.g. the size of some
database table in the product, the quantity of a normal
user’s order request. With these approaches, extra
performance tuning cost and work could be greatly
reduced.

Thirdly, communication problem and time difference
raised by the long distance is generally hard to overcome
in the offshore software maintenance. It is better to

introduce efficient communication tools for easy contact.
Many literature studies have proposed a lot of good
suggestions on this aspect [8]. But on-line communication
or instant message is retarded by the time-difference. If
efficiency on maintenance is more important, sending
enough technical liaison engineers to the customer site is
an effective method. But this may increase the travel cost.
Those technical liaison engineers should be qualified
enough to handle most of urgent system problems. One
liaison engineer is impossible to know every aspect of a
big project, so it is impossible for him/her to solve all
kinds of problems.

Fourthly, It is better to provide as good as possible
equipment to improve the remote access speed for remote
problem solving and establish as similar as possible
maintenance environment at the local development site.
These will benefit problem re-producing.

Finally, It is essential to standardize offshore software
project management and organization in terms of efficient
code transfer. Project members should be trained for both
project general purpose and their personal role purpose. A
formalized project document template, coding template
and design pattern should be introduced to the project
members. This kind of training is a necessity in order to
work out uniformed project software.

5.2 Comparison of own results to literature

Maintenance is a very importance phase in the

software development. For the offshore software
development, the maintenance brings a lot of challenges.
Many challenges are actually caused by those advantages
that people think could benefit the development according
to the GEC experiences, e.g. round-the-clock
development actually delays the maintenance; cost saving
is normally not true at the maintenance phase because
skilled developers are needed to work at the customer site
in order to support on-site maintenance. Whilst the
development site should also provide maintenance
support as usual. The cost is obviously increased if hiring
more people. If keeping the same resources, workload
will definitely increase that will finally affect the
efficiency of maintenance. All of challenges raised by the
maintenance should and must be considered when the
customer makes decision on outsourcing. The potential
extra cost and difficulties that may be caused at the
maintenance phase should be seriously considered and
calculated at the decision making and contracting stages.
Obviously, the maintenance related formal management
should be involved into the offshore development
management.

Based on our case study, we think it is more
challengeable to provide sound maintenance support for
globally deployed software product in the offshore
development. The issues raised at the maintenance phase

are actually ignored in the current literature study. In
Table 2, we summarize the research results based on the
GEC experiences regarding the maintenance and compare
them to the current literature.

Table 2: Research results and comparison to
literature

Problems Good solutions / suggestions Literature study
Hard to build up
mutual
understanding to
make trade-off on
many issues at
both sides

The provider keeps good
attitude and relationship with
the customer (This should be
seriously considered at the
decision making phase on
partner selection.)

N.A. Trustworthy
is not considered
in [2, 7] for
offshore software
development

Hard to reproduce
the same problem
by the
development
team, but reported
by the product
users

Set up compatible
development/maintenance
environment with the product
system, prefer as same as
possible maintenance
environment as the product
system; provide sound
equipments to access the
product system for trouble
shooting

N.A.

Maintenance
delay caused by
time difference

Set up efficient
communications with the
customer, e.g. making use of
project pager for urgent
maintenance support; sending
enough technical liaison
engineers to the customer site
for local support; time-shift
working in order to provide
prompt support

Efficient
communication
tools are studied
in [8]. However,
no work proposed
technical liaison
engineers’ great
help and time-
shift working for
software
maintenance

Troubles in
maintenance
raised by
performance issue

Invite experts to the
provider’s site to cooperate
with the development team
for performance tuning issue;
pay special attention to
performance on the design;
provide as detail as possible
scalability description to the
provider company; define
programming regulations for
better performance

N.A.

Hard over-time
work that greatly
affects efficiency

Design a series of working
procedure in order to
formalize the project
management; consider urgent
maintenance issues at
contracting and project
scheduling

N.A.

Long term code
transfer internally
and to the
customer

Standardize offshore
software project management
and organization; train
project members regarding
formalized project document
template, coding template
and design pattern

N.A.

6. Conclusions and future work

In this paper, the authors studied the maintenance
efficiency in offshore software development based on a
real case study. According to the questionnaire and

interview results, the authors summarized the good points
that benefited the GEC maintenance and studied the bad
sides that influenced its maintenance efficiency. In order
to overcome and avoid those disadvantages experienced
in the GEC, the authors further proposed several
suggestions that could be referred by similar software
development in the future.

Based on the practical experience and the GEC
success, the authors believe big global e-commerce
project can also be developed offshore although
additional challenges need special consideration. The
paper proposed some good solutions for potential
problems that mostly have not been considered in the
literature regarding the maintenance of offshore-
developed software.

Since our work is only based on one real case study,
the results achieved are only for reference purpose. Future
work includes studying a set of efficient maintenance
models that can be applied into various distributed
software development. It is also significant to define a
series of guidelines that could instruct maintenance
agreement generation and execution.

References

[1] Alan R. Hevner, Rosann W. Collins, Monica J. Garfield,
“Product and Project Challenges in Eletronic Commerce
Software Development”, ACM SIGMIS Database, Volume 33
Issue 4, December, 2002.
[2] Amorbieta, I., Bhaumik, K., Kanakamedala, K. & Parkhe,
A., “Programmers Abroad: A Primer on Offshore Software
Development”, The McKinsey Quarterly, No.2, 2001.
[3] Battin, R.D., Crocker, R., Kreidler, J. & Subramanian, K.,
“Leveraging Resources in Global Software Development”,
IEEE Software, March/April, 2001.
[4] Dedene, G. & De Vreese, J.-P., “Realities of off-shore
reengineering”, IEEE Software, Volume: 12 Issue: 1, Page(s):
35 –45, Jan. 1995.
[5] Herbsleb J.D., Mockus A., Finholt T. A. & Grinter R. E.,
“An Empritical Study of Global Software Development:
Distance and Speed”, in Proceedings of the 23rd International
Conference on Software Engineering, July, 2001.
[6] Mockus, A. & Herbsleb, J., “Challenges of Global Software
Development”, in Proceedings of Seventh International
Conference of Software Metrics Symposium METRICS 2001,
IEEE, pp182-184.
[7] Muller R., Ruland, D., Hoch, D., & Klosterkemper, B.
“Offshore Software Development in Emerging Countries”,
McKinsey & Company, Articles volumn one – IT Management.
[8] Herbsleb J.D., Mockus A., “An Empritical Study of Speed
and Communication in Global Distributed Software
Development”, IEEE Transactions on Software Engineering,
Volume: 29 Issue: 6, June 2001, pp481-494.

Risk Management in Global Software Development: A Position Paper

Rafael Prikladnicki, Marcelo Hideki Yamaguti
School of Computer Science, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil

rafael@inf.pucrs.br, yamaguti@inf.pucrs.br

Abstract

The number of organizations distributing their
software development processes worldwide keeps
increasing, and this change is having a profound impact
on the way products are conceived, designed,
constructed, tested, and delivered to customers. Global
software development exhibits certain features that make
it fundamentally different from traditional co-located
software development. As the global software
development involves additional steps and decisions,
these steps also impact the risk management process. The
goal of this paper is to discuss some of these impacts and
to suggest the development of a process taking into
account the dispersion, time zone difference, and cultural
boundaries, not only in the operational level, but also in
the organizations tactical and strategic level. The paper
discussion intends to motivate risk identification, analysis
and risk mitigation as earlier as possible in global
software projects, foster an efficient risk management
process.

1. Introduction

In the last decade, a great investment is being made to
convert national markets in global ones. This reality
creates new ways for competition and collaboration [1].
However, it also faces some problems like a great number
of project faults, and the scarcity of good resources. In
this environment, software development organizations
found in Distributed Software Development (DSD) an
alternative for these problems. DSD is causing a great
impact not only in the market, but also in the way the
software products are conceived, designed, constructed,
tested, and delivered to customers [2]. Sometimes, the
search for competitive advantage forces organizations to
search for external solutions in other countries, what we
call Global Software Development (GSD). In this context,
risk management becomes a more sensible activity with a
great importance.

Risk, in software area, was represented in a systematic
way by Boehm, in the 80's, through the spiral model. This

model has as principle to be iterative and risk analysis
driven in each iteration [3]. The word "risk" comes from
old Italian word "risicare", derived from Latin " risicu,
riscu" which means "to dare" [4]. In this vision, to run
with success to the risk needs more than good processes
and intuitive think ability, it needs discipline. This
discipline is called risk management.

Nowadays, risk management in software engineering is
an evolution of the risk concept that evolved from the
analysis in the process model to the management, which
should pervade all the processes in the software lifecycle.
The risks cannot be just simple details in the project, but
they should be the core of the business [5]. Also, risk
management have a proactively focus on preventing
problems, is continuous, and concurrent.

As the global software development involves
additional steps and decisions, we discuss in this paper
some approaches to manage risk in global projects, trying
to understand the role of all decisions taken in the
strategic and tactical levels, and what it represent for the
operational level. We call the operational level as the
project risk management process, and the strategic and
tactical levels all work concerning the decision to develop
a project offshore (the long-term offshore road map is part
of the strategic level, while the “which center” decision is
part of the tactical level).

This paper has the following structure: section 2
presents the impact of GSD on the Risk Management
Process; section 3 presents the conclusions, and section 4
presents the reference.

2. Impact of GSD on Risk Management
Process

Risk management in GSD is an important and more
sensible activity. In a research made by Prikladnicki [2] it
was detected that the effective risk management was an
alternative to solve existent problems in distributed
projects. This is a result from the fact that is hard to
deploy, execute and control project in GSD environments
because non-technical factors such as social, cultural,
behavioral, and political [6], [7]. Other studies [7], [8]

also present the same difficulties but due to technical
factors such as software development process, project
management, project size and complexity.

Therefore, the risk management becomes important in
projects that are developed with distributed teams (from
the same or different organizations). Besides,
independently whether the project is developed globally
or in the same city, the fact of having distant teams and
using collaboration technologies and developing specific
solutions to distributed projects also adds more risk
factors to the projects.

In a study conducted by Karolak [9], risk management
is part of any project, and risks in GSD projects tend to be
more centered in not visible aspects. Also, according to
the author, there are three categories of risks in GSD
projects: organizational, technical and of communication.
Besides, risks belong to more than one category, and these
should be in the top of the priorities list.

According to Prikladnicki [2], the risk management in
GSD projects should be done not only in the project level,
but also in the organizational level. First of all, to decide
if a particular project can be developed by globally
dispersed teams is difficult (strategic level). Moreover, the
decision of where the project will be better developed can
also be a problem (tactical level). Some analysis
considering the risk and benefit of projects dispersion can
be necessary. A number of models are possible and
appropriate under different circumstances.

Additionally, it is suggested that all the identified risks
in this level should be reflected in the project development
level. It means, since the risk analysis was made and the
decision of distributing a project was taken, the identified
risks must be passed to the project manager. In this way,
the project manager can plan response actions to these
risks and to add the risks of the whole project, following
the risk management process defined for software
development.

If we take as an example a multinational organization
that has software development units worldwide (offshore
software development), some strategies can be
implemented. In order to have a better control of the
global project allocation and planning, the organization
can create a set of activities to be implemented in all
projects being developed in the organization unit centers.

These activities involve since the offshore demand
definition (strategic level) until the resource allocation
(tactical level), what we can call as an Offshore
Distribution Model. Once the project is planned and is
able to be sent to the offshore centers, the project
execution is started, following the organization software
development process.

The Offshore Distribution Model can concentrate all
strategic and tactical decisions. In this process, a risk and
benefit analysis can take place in order to decide if the
project can be allocated to an offshore center. Once the

decision is made, a risk assessment can be performed
having as purpose to verify which center (among all
organization offshore centers), can better develop each
project. Once the center is defined, all resources are
allocated and the project execution can take place, which
is part of the operational level, following the organization
– or the unit – software development process.

The project execution involves all work concerning the
project development by the project team. And this process
includes risk management activities. The risk management
process in the operational level need to consider all risks
identified in the higher levels.

For example, the risk identification activity will search
for common risks and past risks in the risk repository, and
may involve all project team, including the ones globally
dispersed, clients and/or users. Risk identification can
consider as one input a document containing information
about the risk analysis and risk assessment performed in
the strategic and tactical levels (Offshore Distribution
Model).

3. Conclusions

Software projects are dynamics and unique, which lead
to the existence of many risks that it supposed to be
managed. In order to have success in all projects,
organizations need to manage risks effectively. But one of
the main reasons that risk management is inefficient or it
is not implement in many organizations is the lack of
documentation of both success and failures in projects.
Only the knowledge about risk management is not
sufficient.

This paper discussed the role of risk management in
global software development projects, considering the
strategic, tactical, and operational level of an organization
that has implemented GSD. From the point of view of the
strategic and tactical levels, organizations can create what
we call an Offshore Distribution Model, where a risk
analysis and a risk assessment can be performed in order
to help in the offshore decision. This can lead to the
selection of the best center for a specific project.

Additionally, from the operational level point of view,
the risk management in the software development process
involves the risk management concerning the project
itself. But a key point in the whole process is the
integration of the risk analysis and assessment done in the
strategic and tactical levels (generally performed by senior
managers and offshore centers directors) with the risk
management process done in the operational level
(performed by project managers). Despite the process to
select appropriate centers to develop each project, and a
process to manage risks when a project is running, the
processes must be integrated to achieve an efficient risk
management process for GSD projects.

In short, there are a set of inherent problems and
challenges to software development. The GSD, by adding
factors like geographic dispersion, temporal dispersion
and cultural differences, has accentuated some challenges
and added new ones to the development process. Among
these challenges we can add as important ones: strategic
issues, cultural issues, knowledge management and risks
management.

The practice of learning from past experiences, for
example, can help senior managers and project managers
to plan and control risks [10]. We see a good opportunity
to exploit knowledge management benefits, since we are
talking about risk management in GSD, which involves
some additional steps in the traditional models. And
sometimes, risk management in this kind of projects can
take longer than in traditional projects, because of the
geographic dispersion and time zone difference.

As a result, the work in GSD environments is more
problematic than in centralized ones, and the effective risk
management can never be depreciated. The risk
management importance must be emphasized and its
participation must be more decisive in the GSD projects.

Planned follow up studies in this topic will try to
analyze some software development units from
multinational organizations in order to evaluate the
effectiveness of its risk management process, considering
all decision levels, and the strategies adopted for global
projects.

3. References

[1]. Herbsleb, J. D., and Moitra, D. “Global Software
Development”, IEEE Software, March/April, USA, 2001,
p. 16-20.

[2]. Prikladnicki, R. “MuNDDoS: A Reference Model for
Distributed Software Development (in Portuguese)”. 145
f. 2003. Master Thesis, PPGCC – PUCRS, Porto Alegre,
Brazil, 2003.

[3]. Boehm, B. “Software risk management: principles
and practices”, Piscataway: IEEE Software, v. 8, p. 32-41,
jan. 1991..

[4]. Bernstein, P. “Challenge to God: the risk history (in
Portuguese)”. Rio de Janeiro: Campus, 1997.

[5]. Kerzner, H. “Project Management: a systems
approach to Planning, Scheduling, and Controlling”. John
Wiley & Sons Inc., USA, 2000.

[6]. Kiel, L. “Experiences in Distributed Development: A
Case Study”, Proceedings of International Workshop on
Global Software Development at ICSE, Oregon, USA,
2003, 4p.

[7]. Carmel, E. “Global Software Teams – Collaborating
Across Borders and Time-Zones”. Prentice Hall, USA,
1999, 269p.

[8]. Herbsleb, J. D; Grinter, R. “Splitting the organization
and integrating the code: Conway's Law revisited”. In:
ICSE, 1999, Carolina do Norte. Proceedings… EUA,
1999. 11 p.

[9]. Karolak, D. W. “Global Software Development –
Managing Virtual Teams and Environments”. Los
Alamitos, IEEE Computer Society, USA, 1998, 159p.

[10]. Kwak, Y. H.; Stoddard, J. “Project Risk
Management: lessons learned from software
development”, Technovation, In Press, Corrected, 2003

Can Global Software Teams Learn From Military Teamwork Models?

Elizabeth J. Hargreaves, Daniela E. Damian
University of Victoria, BC, Canada

{elizabeth.hargreaves, danielad}@cs.uvic.ca

Abstract

Examining a domain outside of traditional software
development may provide opportunities to address the
challenges faced by global software teams. In this
position paper, we examine the military model since its
spirit of cooperative teamwork is well known and clearly
documented. Specifically, we explore how an underlying
code of conduct and the reinforcing subculture can create
highly cohesive, effective teams. Referring to military
models in order to build civilian teams is not without
historical precedent; we hope that this investigation will
prove fruitful. Ultimately, we seek to discover the
qualities of the exceptional global software developer
while exploring what we believe to be a rich research
opportunity.

1. Introduction

A critical success factor for military teams is the
underlying ethos that governs the interactions between
team members. Dangerous working conditions and high
stress levels require these teams to meet positive
stereotypes of being honest, hard-working, disciplined
and loyal (Feaver and Kohn, 2001). Furthermore, military
organizations intentionally develop a distinct subculture
to facilitate communication and minimize conflict
between individuals from disparate backgrounds,
including cultural differences within national boundaries.
In contrast, global software development (GSD) teams
experience challenges specifically related to teamwork
and cultural differences.

This paper intends to stimulate further research into
ways in which GSD research can learn from models of
military teamwork and which may possibly benefit
civilian GSD teams. Note that an examination of the
weaknesses and problems inherent to military
organizations is considered outside the current scope; in
addition, the idealistic nature of this paper is readily
acknowledged. For our purposes, we assume that the
demands placed on GSD teams differ significantly from
those experienced by collocated teams. A GSD team itself

is understood to include individuals who rely on
computer-mediated communication tools in order to
collaborate across significant geographic boundaries.

Military values are typically impressed upon recruits

during initial induction and can become an intrinsic part
of professional and personal identity. The justification for
this philosophy of cooperative teamwork is group
survival—with the distinction between the individual
versus the group often being ignored. With varying
degrees of effectiveness, military organizations
coordinate the activities of thousands of people on a
global scale and dynamically form new teams on a regular
basis. Relying on an established interaction framework
that every individual knows, teams can quickly be built
from a selection of complete strangers. While this
framework may seem impersonal, it can also create a
highly productive work environment that prioritizes
cooperation over interpersonal politics.

Research shows that GSD teams experience challenges

relating to trust, communication, conflict and cultural
differences (Damian and Zowghi, 2003; Herbsleb and
Moitra, 2001; Oppenheimer, 2002). For example, GSD
teams have few opportunities to benefit from the
advantages of informal communication. Geographic
distances make it harder to establish and maintain
interpersonal relationships critical to teambuilding.
Subsequently, cross-site negotiations are often
characterized by extreme caution in making
commitments; in particular, it is harder to trust a remote
colleague’s arguments, to “see the value of a person” and
to anticipate and resolve conflicts at a distance (Damian
and Zowghi, 2003). In addition, global teams rarely agree
upon communication practices or development processes
in which project roles are clearly and well defined at the
beginning of the project (Paasivaara, 2003). Many GSD
teams operate within corporate environments which thrive
on a ‘survival of the fittest’ mentality with competition
between team members often being intentionally fostered
by management. Due to this attitude, the ‘enemy’ can in
fact be one’s closest team members; as a result, GSD

team members may face the additional overhead of
protecting themselves from their own team.

In many ways, military teams face challenges similar

to their GSD counterparts. For example, naval teams
communicate using radio or satellite technologies across
huge distances for months at a time with colleagues they
may have never met in person. Interactions between
coworkers are regulated by a known code since a
previously established relationship of trust and
accountability cannot be assumed. Undoubtedly, not all
military teams function effectively, and sometimes with
disastrous results. However, in the interests of
productivity and efficiency within the context of GSD, it
may be worthwhile to examine the characteristics of
successful teams outside the corporate sphere. This
exploration is simplistic and not intended to cover the
topic extensively; instead, we hope to foster discussion
and encourage further research. In the following sections
we intentionally consider only two of the potential
success factors of military teams.

2. Code of Conduct

Military organizations, such as the American army,
rely on codes of conduct as the foundation of
teambuilding. Simplistic versions of these codes are
typically found in many forms of military literature. The
US Army describes itself as: “It's having individual
strength and the support of an unstoppable team.” [1] The
US Soldier’s Creed places an emphasis on single-
mindedness and accountability for teammates as a critical
part of the military ethos: “I will always place the mission
first./ I will never accept defeat./ I will never quit./ I will
never leave a fallen comrade.” [2] How closely the code
is followed is, in a sense, a measure of the level of
professionalism achieved. Despite an uncertain level of
confidence in the military overall, Americans continue to
consider their soldiers to be the most highly respected
professionals in the country (Feaver and Kohn, 2001).

While professionalism is undeniably important within

corporate spheres, the corresponding conduct is often
ambiguous and can change dramatically based on context.
Shifting mores within the field of GSD can be particularly
problematic when faced with the previously mentioned
challenges of reduced trust and ambiguous
communication. Furthermore, the professional
responsibilities of software developers remain in
embryonic form since a comprehensive code of conduct
for software developers is still developing. Personal
reputations are frequently based on technical expertise as
opposed to an ability to ensure the success of fellow team
members or a high level of personal integrity. High

turnover and unstable markets no doubt also contribute to
shifting allegiances and a diminished sense of loyalty.

3. Military Subculture

Military codes of conduct are reinforced by the
surrounding subculture. Stripped of the financial and
professional incentives found in corporate environments,
soldiers have fewer motivations to work against one
another. Known pay scales and the rigidity of the rank
system do not provide an equivalent opportunity for
advancement and reduces competition among peers.
Furthermore, the vertical chain of command and a visible
hierarchy simplifies communication between coworkers.
Informal communication is also highly influenced by this
subculture—slang, jokes and topics commonly discussed
within the military environment contribute to creating
cohesive teams.

In contrast, corporate environments provide a lot of

opportunity for ‘leapfrogging’ over colleagues while
corporate secrecy permits negotiable salaries. Invisible
hierarchies within corporate environments (exacerbated in
global software teams) often result in personnel devoting
a significant amount of time negotiating political
minefields instead of working productively. While a
software subculture certainly exists, interactions with
others are not necessarily based on principles of trust and
integrity, nor is there a consistent level of personal
accountability for other team members.

4. Conclusion

In this paper we encouraged approaching current
challenges in global software teams by learning from the
critical success factors found in military teamwork
models. We believe that cooperation is an undeniably
critical dimension of GSD and suggest that a reinforced
sense of teamwork may enable team members to
overcome GSD challenges. Specifically, we seek to
examine how a defined code of conduct and supporting
subculture may allow team members to overcome
problems related to trust, communication, conflict and
cultural differences.

The challenges faced in GSD are not unique from an

organizational perspective. Referring to military models
to build civilian teams has significant historical precedent.
Police, paramedical and fire-fighting units are examples
of civilian organizations that successfully leverage
military techniques in order to build successful teams.
Can GSD teams use these same techniques? Note that we
are not trying to create a platoon of programmers; instead,
we wish to simply adopt the positive traits found in

military teams. In addition, we do not expect that the
same level of discipline found in military environments
would be necessary within the software domain. Finally,
if military teambuilding techniques are successfully
adopted, is there a research opportunity to develop tools
and methodologies to support it? Ultimately, we seek to
identify the characteristics of the exceptional global
software developer. We also strive to determine how to
develop and nurture these same traits in individual
developers in order to build highly effective GSD teams.

5. References

Damian, D. and Zowghi, D. “RE challenges in multi-site
software development organizations”, Requirements
Engineering Journal, 2004.

Feaver, P.D. and Kohn, R.H. “Uncertain Confidence:
Civilian and Military Attitudes About Civil-Military
Relations”, Soldiers and Civilians: The Civil-Military
Gap and American National Security. MIT Press,
Cambridge, 2001.

Herbsleb, J. and Moitra, D. “Global software
development”, IEEE Software, March/April, 16-20, 2001.

Oppenheimer, H. “Project management issues in globally
distributed software development”, Proc. International
Workshop on Global Software Development, 2002.

Paasivaara, M. “Communication Needs, Practices and
Supporting Structures in Global Inter-Organizational
Software Development Projects”, Proc. International
Workshop on Global Software Development, 2003.

[1] “What is the US Army?” GoArmy.com – Army 101.
United States Department of Defense.
http://www.goarmy.com/army101/index.htm. Accessed
Mar 21 2004.

[2] “The Soldier’s Creed”. Our Army At War – Relevant
and Ready. United States Department of Defense.
http://www.army.mil/thewayahead/creed.html. Accessed
Mar 21 2004.

Designing the Inter-Organizational Software Engineering Cooperation:

An Experience Report

Hans W. Nissen
RWTH Aachen, Informatik 5, Ahornstr. 55, 52056 Aachen, Germany

nissen@informatik.rwth-aachen.de

Abstract

This paper reports about experiences in managing the
transformation from internal development and
maintenance of software engineering tools towards an
external one. We describe three different inter-
organizational cooperation forms which differ in the
distribution of development responsibilities between
client and vendor – and which support the distributed
design of three different classes of software products. An
important finding was that even for software engineering
tools which were extremely important for project success
a carefully designed relationship model enables a
successful distributed development.

1. Introduction and Background

This paper reports about experiences in establishing
an inter-organizational cooperation between a world-
leading telecommunication company and Indian IT
service providers. The experiences we report focus on the
selection of cooperation forms and the necessary
organizational changes, but we are not looking at any
financial aspect.

The subject matter of the cooperation was the huge set
of proprietary software engineering tools used and
developed within the telecom company. The cooperation
goals from the customer perspective were to save money,
to keep product quality and delivery precision, and to
start a long-term cooperation with an external service
provider.

Tools. The specific character of the software
engineering tools influenced the selection of the form and
the organizational set-up of the cooperation to a large
extend. Therefore, we give in the following some
background information on this subject matter.

Many products of the telecom company were based on
a proprietary hardware platform and programming
language. As a consequence, all supporting software
engineering tools regarding that platform have been
developed in-house during the last 20 years – all together

the tool suite contained about 200 tools. Based on the
companies strategic plans for software and system
engineering, these tools were classified into three
categories:
- project critical tools which require continuous
development and improvement activities; examples are:
compiler, simulated test environment, build environment.
An erroneous or delayed tool delivery would cause major
problems for the target projects developing
telecommunication software.
- tools which require further development activities, but
the new functionality is not project critical (i.e. the project
could also survive without the development); examples
are: version control system, modelling environment,
traceability tools
- tools which do not need further development activities
but only maintenance activities (i.e. bug fixing to some
extend); examples are: editors, database applications to
coordinate resource usage (e.g. error codes, signal
names), document management system, fault tracking
tools

Processes and Roles. The in-house communication
and development processes were based on a formal client-
vendor model: product managers search for (internal)
project sponsors, collect requirements and develop the
product release strategy. However, the internal tool
development departments acted very flexible and
accepted late and major changes to the original
requirements. In case of faults and improvement
suggestions, a fast and direct communication between
tool users and tool developers was always possible. It was
even seen as an advantage that this short feedback loop
enabled high quality products. Especially for the project
critical tools the direct and informal communication
guaranteed the required quality and delivery precision.

2. Selection of Cooperation Form

The goal with setting-up an inter-organizational
cooperation was to outsource a large part of the software
engineering tool’s development processes to external
vendors under the constraint that neither the quality nor

the delivery precision must suffer.

The literature proposes cooperation models which
differ in the distribution of development activities
between client and vendor site. The outsourcing project
analysed and discussed the following three cooperation
models (cf. figure 1).

Classical contract model: The client delivers a set of
specifications and the vendor implements or updates the
software accordingly.

This model was selected to handle the non-critical
tools without further development activities, i.e. tools
which will go into maintenance mode. In this specific set-
up the client does not deliver requirements for new
functionality but requirements on fault corrections.

Implementation model: The client keeps much
responsibility in-house: He specifies the requirements,
identifies the impacts on the system components and
produces the updated system and component
specifications. The vendor is doing the detailed design on
unit level and does the basic test. The integration test as
well as the acceptance test is again performed by the
client. This model leaves much intellectual work and
responsibility with the client while the tasks of the vendor
are limited more or less to the implementation part. This
model requires good programming skills but less system
management skills at vendor site.

This model was employed for the project critical tools
because the control of these tools should remain within
the company - at least the beginning of an inter-
organizational cooperation.

Product management model: The vendor is taking
over parts of the product management activities while the
ownership stays with the client. The client participates in
requirements specification and performs the acceptance
test; the remaining parts of analysis, design,
implementation and integration test activities are all done
by the vendor. This model pushes most of the
responsibility and work to the vendor and requires a very
good understanding of the software product and the
system environment at vendor site.

This model seemed to be most suitable for the non-
critical tools with further development activities. The
client company reduces the costs as much as possible and
the vendor gets a chance to handle a product from
beginning to end and to prove its competencies.

Figure 1. Three cooperation models

These different cooperation models require also
different kinds of client-vendor relationships. The FORT
framework described in [2,1] was identified to be
valuable to characterise the resulting relationships. The
FORT framework consists of two dimensions relevant for
inter-organizational co-operations. The first dimension
deals with the extent of ownership or control substitution
by a vendor. The second dimension deals with the
strategic impact of the portfolio. The four resulting types
of cooperation relationships are support, alignment,
reliance and alliance (cf. figure 2).

Reliance Alliance

AlignmentSupport

Strategic impact of product portfolio

Ex
te

nt
of

 s
ub

st
itu

tio
n

by
ve

nd
or

Low

Low

High

High

Reliance Alliance

AlignmentSupport

Reliance Alliance

AlignmentSupport

Strategic impact of product portfolio

Ex
te

nt
of

 s
ub

st
itu

tio
n

by
ve

nd
or

Low

Low

High

High

Figure 2. The FORT Framework [2,1]

In the support relationship, both the extent of
substitution and the strategic impact of the outsourced
products was low. The role of the external provider is
therefore very limited. Within the alignment relationship,
the substitution is low but the strategic impact of the
outsourced products is high. This relationship is often
used to obtain a service provider’s specific expertise for a
project. The reliance relationship highly involves the
service provider in the client’s processes. It therefore
requires a high level of commitment from the vendor and
a high level of reliance into the vendor competences from

Analysis Design Implementation
and Test

Acceptance
Test

Integration
Test

Analysis Design Implementation
and Test

Acceptance
Test

Integration
Test

Analysis Design Implementation
and Test

Acceptance
Test

Integration
Test

Classical Contract

Implementation

Product Management

Legend: client vendor

the client. Finally, in the alliance relationship the vendor
takes over a major part of the responsibilities for a
product of high strategic value for the client. The two
parties act as strategic partners with common goals [2,1].

The telecom company applied the product
management model for the products with a medium
strategic impact and included a high extent of
substitution. This technical cooperation model is therefore
best supported by the reliance kind of relationship. The
implementation model on the contrast includes a low
extent of substitution but is employed for products with a
high strategic or risk impact. Therefore, this cooperation
model requires an alignment kind of relationship. Finally,
the classical contract model was designed for products
with a low strategic impact and includes a medium extent
of substitution. It can be located within the support
relationship with a tendency towards the reliance
relationship.

Summarising the selection of cooperation forms, the
- project critical tools were handled in an alignment

relationship using the implementation model for
distributing the responsibilities

- non-critical tools with further development activities
were handled in a reliance relationship with the product
management model

- non-critical tools with no further development activities,
i.e. tools which go into maintenance mode, were
handled in a support relationship with the classical
contract model.

3. Changes in the Organization

The establishment of the cooperation with an external
organization regarding the development of the software
development tools led to some changes – in processes,
roles and attitudes – of which we will mention only a few.

Processes and Attitudes. Within the requirements
engineering process the developed specifications became
more formal and the process itself was followed in a
much stricter way. The habit of including late
requirements into a development project – and sometimes
changing the directions of the project by this completely –
was abandoned. The product management process
includes now as well the definition of formal acceptance
test cases which did not exist before. These test cases and
the requirements form an important part of the contract
for product improvement; late changes would therefore
cause unpleasant re-negotiations – in contrast to the
flexible company-internal handling of such changes.

As new instances, monitoring processes have been
installed. For the classical contract model, a simple
variant in form of measurements on the delivered
products has been chosen. For the two other cooperation
models, a more sophisticated monitoring concept has

been developed. Progress and product quality is measured
during the whole development process, at clients and at
vendor site.

Roles. The roles of product manager and system
manager for the SW development products changed from
operating only internal to acting as interface towards the
vendor. From the vendors perspective the system manager
become the most important role within the
implementation model. He followed the implementation
and answered the questions. At least in the first projects
the goal was to exchange personnel in the way that ain the
early phases employees of the vendor works together with
the system manager at the client site. In later project
phases the system manager will work partly at the vendor
site to support and monitor the implementation activities.

The product manager is a key person for the product
management model since he supervises the requirements
acquisition and specification activities and takes the full
responsibility from the client side.

Technical Environments. All the software
development tools are integrated into a tool suite. This
suite is still produced in-house whereby the integration
test is the most important activity. This test verifies the
programming interfaces, the external procedure calls, the
side effects and the required documentation. The
cooperation with external vendors required the external
availability of the integration test suite such that the
vendor himself is able to verify his tools. Within all
cooperation models, faults reported by the users have o be
forwarded to the maintenance department. The reporting
and tracking environment used so far only in-house had
to be available for external vendors, with the requirement
that internal knowledge and information is really kept
internal.

4. Conclusions and Lessons Learned

The establishment and the operation of the inter-
organizational cooperation was successful regarding the
stated goals, namely to save money by outsourcing the
tool development and maintenance under the condition
that neither the quality nor the delivery precision must
suffer.

For the three different groups of tools three different
cooperation models and relationship types have been
implemented. The changes to some parts of the
organization have been high regarding processes, roles
and attitudes.

The lessons learned in this project can be summarised
as follows:
- The applicable relationship types to the external vendor

and their impacts to the organization must be carefully
studied before a contract is signed or existing internal
departments are discarded.

- There are major changes to the product management
role and the requirements engineering processes and
attitudes when moving from internal software
development towards a global development model.

- An effective and honest change management is essential
to successfully establish an inter-organizational
cooperation which effects on employees.

- The establishment of an inter-organizational cooperation
should be organised as a project with a set of clearly
defined decision points, at least for the set of considered
products, the designated cooperation forms, the
resulting changes and their implementation strategy, the
selected service provider. The management and the
technical experts must be involved in all of these
decision points.

References
[1] R. Kishore, H.R. Rao, K. Nam, S. Rajagopalan, and A.
Chaudhury, “A Relationship Perspective on IT Outsourcing”,
CACM, December 2003, Vol. 46, No. 12, pp. 87-92.
[2] K. Nam, , S. Rajagopalan, H.R. Rao, and A. Chaudhury, “A
two-level Investigation of Information Systems Outsourcing”,
CACM, July 1996, Vol. 39, No. 7, pp.36-44.

Acknowledgments
This experience report was funded in part by the German
Ministry of Education and Research, BMBF, in project
“VSEK” (FKZ 01 IS C65).

Towards a Model of Awareness Support of Software Development in GSD

James Chisan, Daniela Damian
Department of Computer Science

University of Victoria
PO Box 355, Victoria BC V8W 3P6 Canada�

chisan, danielad � @cs.uvic.ca

Abstract

Awareness is a powerful concept that can be used to en-
able developers to quickly and easily grasp the state of the
workspace which they operate within. We begin by explain-
ing one approach to how awareness might be used to sup-
port software development and to enhance developer coop-
eration and communication. However, since this approach
assumes on-going collaboration it is useful to couch the dis-
cussion within a collaborative model. This paper presents
a model of how awareness could support software collab-
oration, by describing typical software collaboration, how
it is deficient and how awareness helps ameliorates those
deficiencies.

Finally, we discuss a variety of issues that become ap-
parent when considering the approach. It is intended that
these issues will stir debate and may help generate insight
that ultimately improves global software development via
awareness support.

1. Introduction

Software development is essentially a collaborative ef-
fort among the stakeholders of a project, especially so
for those directly involved in development. Business ana-
lysts, system analysts, designers, programmers and testers
all work together toward the common goal of producing a
software solution. Furthermore, they do this in a common
workspace comprised by the intermediate artifacts of de-
velopment: requirements document, design, test scenarios,
code, etc. This paper describes a model for how awareness
can support collaboration during software development. In
global software development (GSD) environments physical
separation impairs communication and infringes on the col-
laborative freedom collocated developments enjoy. There-
fore the aim here is to illustrate our vision of how awareness
of the workspace might address deficiencies in software col-
laboration that are exacerbated during GSD.

This paper follows up on work presented last year at
the ICSE 2003 GSD workshop (Damian, Chisan, Allen,
and Corrie, 2003), where we described how [small] co-
located teams benefit from social mechanisms that natu-
rally facilitate work practices and diminish the apparent
need for explicit workspace awareness support. To address
this need, we propose that when changes are made within
the workspace environment particularly to requirements to
which much subsequent development depends, developers
should be selectively notified about the nature of the change
so that changes in requirements are quickly integrated into
their work and the development effort on the whole. Re-
quirements are particularly important since it is here that
important decisions which directs all subsequent develop-
ment is, or should be, recorded.

This work describes the first step to implementing that
proposal. It seeks to illustrate a model that shows how
awareness can support existing collaboration patterns that
are typically exhibited during software development. By
using the model, shortcomings in collaboration practices
that occur during development can be identified. Then, the
means in which awareness can support such practices is
demonstrated and analyzed. Ultimately this serves to con-
tribute to the larger, primary research goal to improve soft-
ware development collaboration.

2. Background

Awareness simply refers to knowledge one has of the
changing environment which one operates within, essen-
tially ‘knowing what is going on’ (Endsley, 1995). In soft-
ware development, this environment is the workspace envi-
ronment composed of all the intermediate products of de-
velopment. In particular, with respect to requirements en-
gineering, document change and contact discovery, both
facets of the workspace, have been identified as a source
of ineffectiveness, confusion and development paralysis
(Herbsleb, Mockus, Finholt, and Grinter, 2000). Further-
more, development is hampered by ‘organizational amne-

sia’ where issues that have already been discussed and re-
solved are repeatedly reopened for no other reason than
their outcomes have been forgotten (Catledge and Potts,
1996). While the current state of the workspace could be as-
certained from the contents of the organizational and project
documents, these documents have been shown to be a poor
communication media (Curtis, Krasner, and Iscoe, 1988;
Al-Rawas and Easterbrook, 1995). Likely, as in the case
of requirements, formal mechanisms (documents) are not
updated quickly enough and, instead, news is propagated
informally (Herbsleb et al., 2000). As developers come to
depend on informality, it is no wonder there is little moti-
vation to record progress in formal documents in a timely
manner.

While there are a variety of tools that implement aware-
ness as an central feature of the system (Jang, Steinfield, and
Pfaff, 2000; Bentley, Horstmann, Sikkel, and Trevor, 1995),
these systems are not tailored directly to software develop-
ment. In some cases, even when such tools are used primar-
ily in development support, awareness refers only to noti-
fication of change to authors of the artifact (Brush, Barg-
eron, Grudin, and Gupta, 2002). Such an approach is not
sufficient where developers rely on documents they do not
author themselves.

In contrast, our proposal is to use the artifacts that exist
in the workspace and from their contents build, [semi-] au-
tomatically, relationships describing document hierarchies
and their authors. This establishes dependence between ar-
tifacts (ie. design x fulfills requirement y) and developer-
artifact relationships (ie. Jim and Bob wrote design x).
Then, when changes in artifacts in the workspace are de-
tected, authors of dependant documents are notified (ie. Jim
and Bob are notified when requirement y changes). This
method serves to leverage existing document structures and
content to selectively deliver awareness to those who need
it.

3. Purpose of the Model

Software development is largely a collaborative task, a
result of many different stakeholders working closely to-
gether to implement a software solution. The purpose of the
model presented in this paper, is to show how awareness fits
in to the broader system of development collaboration. This
is necessary to articulate, in a structured, detailed way how
development practices might be improved with awareness
support.

To improve development practices, any method must
consider the constraints which limit the possible solutions.
In large part, the development habits and processes within
organizations are a severe constraint that any approach must
consider. Thus the model is used first to describe collabo-
ration patterns that capture the nature of current develop-

ment practices as a means to show potential insufficiencies
in these practices. Second, the model serves as a means to
structure where faults occur in collaboration and to analyze
the nature of awareness support that might address these
faults and strengthen the effectiveness of collaboration. By
utilizing this model, we establish a formal descriptive, the-
oretic framework on which to base further research.

4. The Model

To show how failures in software collaboration might be
improved with awareness support, we begin by describing
an idealistic model of collaboration and how it is weakened
in GSD projects. These weaknesses transcend purely GSD
origins, such as impaired communication, lack of informal,
impromptu discussions; they also relate to other pressures
such as time to market, resource constraints or skill short-
age.

To accurately describe typical projects that might involve
GSD, a development effort of sufficiently large magnitude
must be chosen. Therefore, it is assumed that there are a set
of unique stakeholders in the project that include: business
interests of (1) the development company and (2) the cus-
tomer company, (3) end users, (4) system analysts, devel-
opers including (5) designers, (6) programmers, (7) testers
and (8) documenters. For completeness it is useful to briefly
illustrate the roles of these stakeholders.

The business interests of the development company may
include marketing tactics, product strategy, future vision,
stockholder interests, internal efficiency and policy. The
customer company is responsible for the contractual and
financial obligations of the software purchase, thus their
concerns may be primarily more basic focusing on cost,
benefit, product adoption and product support. However,
the goal of software is to improve the efficiency and ef-
fectiveness of the end user whose satisfaction is based on
usability, features, quality and reliability. System analysts
are tasked with the responsibility of determining the char-
acteristics (requirements) of the software solution, typically
from the above mentioned stakeholders, while being con-
strained by the limitations of the following development
stakeholders. Development consists of designers who elab-
orate on system requirements and produce detailed techni-
cal designs to satisfy software solution, programmers use
those designs to produce software that complies with their
design, meanwhile testers use requirements and designs to
develop, and later execute, test cases. Documenters also use
requirements and design to publish user documentation.

As figure 1 illustrates the model shows collaboration
paths as work on the software development occurs in clus-
ters of activity each centered on task types within the de-
velopment. While many interactions occur throughout iter-
ations within the activity (circular), equally important inter-

�

�����	�
���

� �����

���	�������������
���

� �����

�����	�
��������	����
���

�������������

������������ �����

�����	�
���� ���	��

 ������!��#"��$%���

&

' (
)+*-,/.10

Figure 1. Model of collaboration in software development. Bold, dashed arrows show collaboration
paths between development tasks that can be supported with our awareness approach

actions occur between activities. System analysts develop
requirements (“R”) then review requirements and field con-
cerns about requirements from development and incorpo-
rate issues raised by non-development stakeholders, such as
customers, users, management or marketing. The require-
ments activity is concentrated around the task of develop-
ing concise, complete requirement documents. Designers
take requirements and develop technical designs (“D”) then
they refine their designs by raising concerns about ambigu-
ous, conflicting or impossible requirements, and by fielding
concerns of programmers. The design activity is concen-
trated around the task of developing complete, logical de-
signs for programmers. Tests also take requirements (and
may also use designs) to develop test cases and test sce-
narios to validate the software (“T”) then they refine their
tests by raising concerns about questionable requirements
and by coordinating with programmers over the execution
of their testing procedures. The testing activity is concen-
trated around the task of developing tests to validate that
the software product works and fulfills the software require-
ments. Programmers take designs and develop the code that
becomes the software product (“P”) then they progressively

refine their code by raising concerns about the design to de-
signers. The programming activity is concentrated around
the task of developing functional software that satisfies their
designs. In ideal circumstances once the requirements activ-
ity has concluded no further events would affect the nature
of the requirements, design and test could begin, and then at
the conclusion of detailed design, programming could begin
and finally the software would be validated with a minimum
of activity iteration.

Unfortunately, the model fails to capture the difficulties
encountered during real-life software development. In all
development the constraint of time bears down most heavily
on the life-cycle of the development process. Development
that occurs in GSD environments is further handicapped by
a lack of timely, lucid communication between developer
activities.

When time is constrained, development time is com-
pressed by encouraging each activity phase to begin as soon
as possible. In many cases this means that requirements,
design, coding and test all start simultaneously. However,
the consequence of this philosophy is that interactivity com-
munication is increases, both in frequency and importance.

As requirements become available it is crucial that they are
communicated quickly to development and test to minimize
the efforts they spend using out-of-date requirements infor-
mation. (see Figure 1, bold arrows) Likewise, designs need
to be propagated quickly to programmers so that they min-
imize wasted effort. Conversely, issues about requirements
need to be recognized quickly by design so that systems an-
alysts can resolve conflicts and ambiguities. During GSD,
this scenario is further hindered by slow, sometimes asyn-
chronous communication that is unclear and ambiguous.

Software development failures have often been attributed
to requirements error. In particular, captured changes in
requirements are not broadcasted to appropriate develop-
ers who would otherwise adjust their efforts to reflect such
change. In part, this may be attributed to requirements that
are only informally captured and are not formally articu-
lated within requirements documents, which become, and
remain, habitually out-of-date - making them a redundant
waste of effort (Herbsleb et al., 2000).

For example, consider the following frustrating scenario
that many industrial practitioners could probably identify
with: An unavoidable technical constraint discovered by a
programmer causes design to be reworked, designers ne-
gotiate an adjustment in requirements with system analysts
and modify their designs appropriately. Subsequently, this
technical constraint is raised repeatedly by other program-
mers who were not informed of the design changes (or
are using designs that may have been unrelated to the ad-
justed design, but related to the affected requirement). This
chaotic disruption wastes time and effort and causes unnec-
essary aggravation to the development team.

Clearly this scenario could benefit directly from an
awareness of changes in the development workspace that
reflect project decisions made by developers. By effectively
employing awareness for development artifacts, it is possi-
ble to automate some of the communication that occurs be-
tween development activities. (see Figure 1, bold arrows).
By detecting changes within requirements and automati-
cally notifying relevant designers, testers and programmers,
these developer stakeholders can be kept aware of the re-
quirements on which they rely. Furthermore, this promotes
development artifacts as first class documents in which to
record and organize information. Developers are not inter-
ested in wasting their time polling documents for change,
but if notified of changes, they are (further) motivated to
refer to those documents to determine the nature of those
changes. Authors, system analysts in the case of require-
ments, are motivated to articulate their refinements in the
document. Thus, the document itself becomes a medium
of communication and developers can begin to rely on their
timeliness and currency.

Although this approach does not address the effective-
ness of any particular activity, it does suggest that improve-

ments to interdepartmental communication can be realized.
For example, awareness does not help the system analyst to
capture shifts in markets or abrupt changes business strat-
egy. In contrast, awareness helps the system analyst to com-
municate these changes (once identified) via the require-
ments document in a reliable timely fashion to relevant de-
velopers. Only then can development be made dynamic and
responsive to emergent requirements inherent during itera-
tive, time-constrained development.

5. Issues of the Proposed Solution

In using the model to develop possible awareness solu-
tions to improve collaboration and development during soft-
ware development a variety of issues become apparent. The
issues described below are presented for discussion during
the workshop in which this paper is submitted, in the hope
that further insight can be exchanged by attendees.

5.1. Extent of Information Dissemination

Of central concern to providing awareness to participants
of the development process is striking a balance between
providing information germane to their current work re-
sponsibilities and limiting extraneous, redundant informa-
tion that overwhelms developers or desensitizes them to
awareness mechanisms. Rather than a scattershot broad-
cast approach, the analysis of person-artefact relationships
makes it possible to provide information to developers in
context to their responsibilities and contributions to the
workspace.

To maximize the accuracy of notification, person-artifact
relationships can be, in many cases, extracted from existing
information in the workspace - for example authors of a de-
sign could be extracted from the design itself. While this
may establish sufficient relationship between developer and
artifact additional questions still remain about the extent of
awareness required to keep developers up to date.

5.2. Privacy

Software organizations interact in increasingly complex
arrangements of acquired, partner and/or outsourcing com-
panies. Data that is [automatically] collected from interme-
diate artifacts created during GSD can span physical and
organizational boundaries. If this information is used for
awareness purposes, then this represents a potential for in-
formation flow across boundaries, in such cases questions
of privacy may arise. For example, an outsource com-
pany may want to limit what information is be collected
and disseminated to its client (an intimate stakeholder in
the project). Even within a single company, some devel-
opers may oppose the collection of information that could

reflect on their progress and productivity. This issue can
be most closely related to that of personal privacy prob-
lems that have been considered with respect to video confer-
encing (Boyle and Greenberg, 2000) and presence aware-
ness (Godefroid, Herbsleb, Jagadeesany, and Li, 2000),
where control over data fidelity is used to maintain pres-
ence awareness while preserving personal privacy. This is-
sue differs because it transcends personal privacy to include
organizational privacy, and is with respect to the virtual
workspace rather than a mere reflection of physical space.

5.3. Delivery

Ideally awareness of the workspace should be as natural
as awareness of night and day. The challenge is to minimize
the effort and distraction required of developers to keep up-
to-date with the goings-on within the workspace. In other
words, to provide awareness information as tacitly as possi-
ble. Delivery of awareness can vary widely although a few
obvious choices include the provision of awareness infor-
mation in a textual or semi-textual/visual manner via email,
the web, instant messenger, or with the use of some spe-
cialized application. Management overhead, more stuff to
read

5.4. Visualization of Artifact Relationships

Providing awareness requires the establishment of re-
lationships among artifacts and between artifacts and the
stakeholders involved in the development. Once this infor-
mation has been collected it may have significant value on
its own as a resource for developers and analysts. Further-
more, these relationships may dramatically enrich aware-
ness events delivered to developers, providing context for
the event. The inherent value of this information suggests
that it needs to be intuitively accessible to developers. Nat-
urally, we wish to consider how these relationships could
be visualized by determining what information developers
need to extract and what sorts of questions they may find
themselves asking about relationships among artifacts.

6. Future Work

The model presented above is only an intermediate step
on the way to achieving the larger research goal of improv-
ing software development by providing better support to
collaboration in global software teams. This model is a first
version based primarily from reports reviewed in available
literature, however validation of this model is required. To
validate the model we intend to present the model to an in-
dustrial partner and survey a sample breadth of stakehold-
ers to critique the model based on their experience. With

this input the model will be adjusted to capture those ex-
periences and through this validation process the develop-
ment of the model will continue to evolve, becoming more
refined and more accurately capturing the true nature of
collaboration during software development. In the longer
run, the model will be used to develop technological or
process-based solutions that are specifically designed to de-
liver awareness to enhance collaboration in GSD. Short-
comings of that solution will also serve to reflect insuffi-
ciencies of the model so that the model can be improved.

7. Conclusion

Awareness is a collaborative response to the problem
of improving software development practices in GSD. The
model described herein serves to show how awareness could
be used to improve the naturally collaborative process of
software development. Not only could awareness help ame-
liorate GSD-specific issues, but such solutions also promise
to be highly beneficial to co-located development too.

References

A. Al-Rawas and S. Easterbrook. “Communication prob-
lems in requirements engineering: A field study.” In
First Westminster Conference on Professional Awareness
in Software Engineering. London, 1995.

R. Bentley, T. Horstmann, K. Sikkel, and J. Trevor.
“Supporting collaborative information sharing with the
WWW: The BSCW shared workspace system.” In Pro-
ceedings of the Fourth International WWW Conference.
Boston, MA, 1995.

M. Boyle and S. Greenberg. “Balancing awareness and pri-
vacy in a video media space using distortion filtation.” In
Proceedings of the Western Computer Graphics Sumpo-
sium. 2000.

A. J. B. Brush, D. Bargeron, J. Grudin, and A. Gupta. “No-
tification for shared annotation of digital documents.” In
Proceedings of the SIGCHI conference on Human factors
in computing systems. ACM Press, 2002.

L. Catledge and C. Potts. “Collaboration during conceptual
design.” In Proceedings of the 2nd International Confer-
ence on Requirements Engineering. 1996.

B. Curtis, H. Krasner, and N. Iscoe. “A field study of the
software design process for large systems.” Communica-
tions of the ACM, 31(11) 1988, pp. 1268–1287.

D. Damian, J. Chisan, P. Allen, and B. Corrie. “Aware-
ness meets requirements management: awareness needs

in global software development.” In International Work-
shop on Global Software Development (colocated with
ICSE ’03). Portland, OR, 2003.

M. Endsley. “Toward a theory of situation awareness in
dynamic systems.” Human Factors, 37(1) 1995, pp. 65–
84.

P. Godefroid, J. D. Herbsleb, L. J. Jagadeesany, and D. Li.
“Ensuring privacy in presence awareness: an automated
verification approach.” In Proceedings of the 2000 ACM
conference on Computer supported cooperative work.
ACM Press, 2000.

J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter.
“Distance, dependencies, and delay in a global collab-
oration.” In Proceedings of the 2000 ACM conference
on Computer supported cooperative work. ACM Press,
2000.

C. Y. Jang, C. Steinfield, and B. Pfaff. “Supporting aware-
ness among virtual teams in a web-based collaborative
system: the teamscope system.” SIGGROUP Bulletin,
21(3) 2000, pp. 28–34.

Peer-to-Peer Remote Conferencing

Fabio Calefato, Filippo Lanubile, Teresa Mallardo
Dipartimento di Informatica,

University of Bari
{calefato | lanubile | mallardo}@di.uniba.it

Abstract

Global software development (GSD) is nowadays
pervasive among large enterprise organizations. Physical
separation in GSD has raised many issues, mainly due to
cross-sites communication and coordination problems,
which have made software development an even more
challenging task. Hence, distributed workgroups need
tools to support a load of activities that usually take place
through the direct interaction among people. This paper
presents a tool, called P2PConference, to conduct
conferences over a distance. The tool provides basic
features for simple brainstorming sessions as well as
more sophisticated features to accommodate the needs of
other types of meetings, such as presentations and panels.
P2PConference adopts a decentralized architecture and
it is implemented upon a peer-to-peer infrastructure
platform, called JXTA.

1. Introduction

Over the last few years, large enterprise organizations
have embraced global software development distributed
over multiple geographical sites [9]. Communication is
the core function of cooperation that allows information
to be exchanged between team members. Distance has a
negative effect for communication-intensive tasks, such
as software design, and on spontaneous conversation [8],
where people informally communicate valuable pieces of
information.

Distance is usually offset by Internet-based
technologies: globally distributed workgroups typically
rely on centralized systems, mostly built on top of web-
based development platforms, to support collaboration
across time and space. However, peer-to-peer (P2P)
applications, based on a decentralized architecture, are
increasingly becoming popular to exchange instant
messages, share common information and applications,
and jointly review/edit documents. Collaborative P2P
applications exhibit the following advantages with respect
to client-server counterparts:

• Autonomy. In a P2P system every peer is an equal
participant while being a final authority over its local
resources. In this way everyone can share
information but, at the same time, can pose
restrictions on confidential data through access rights
management and data encryption. When enterprise
data are distributed on many places and on different
devices, P2P systems can provide an easier and
cheaper alternative to enforcing a convergence into a
centrally managed data repository.

• Intermittency. P2P systems are designed by giving
for grant that any peer can disappear at any time
because of network disconnections, either deliberate
or accidental. P2P collaborative systems use resource
replication and different synchronization
mechanisms, based on proxies for sending/receiving
messages in the network on behalf of the
disconnected sender/receiver. In this way, users can
work to shared content even when offline and
automatically propagate changes at the first
reconnection.

• Immediacy. P2P applications have shown themselves
able to support direct exchanges between peers, as in
the case of instant messaging. P2P collaboration
systems, based on near real-time communication
mechanisms and synchronous presence of the peers,
can provide immediate responses by participants to
enable effective person-to-person interaction.

• Cost lowering and compartment. P2P systems are
valuable means to lower infrastructure cost by using
existing infrastructure and distributing the
maintenance costs. Centralized systems that serve
many clients typically bear the majority of the cost of
the system. When the cost becomes too large, a P2P
architecture can help spread it over all the peers.

Under these conditions, a P2P collaborative

infrastructure can complement or even replace client-
server platforms for the creation of ad-hoc or small
workgroups, drastically reducing the cost of infrastructure
setup and ownership. Due to P2P own features, it is
possible to quickly establish dynamic collaborative

groups, composed of people from different organizations
accessing shared resources and interacting in a near real-
time manner.

This paper presents P2PConference, a P2P remote

conferencing tool which has been developed at the
University of Bari. In the next sections, we first introduce
the underlying platform and then describe how the tool
works. In the last section, we show how the tool is
evolving.

2. JXTA

P2PConference has been developed using the Java
implementation of JXTA [10], a network programming
and computing platform for P2P systems. Project JXTA
was originally conceived by Sun Microsystems and
designed with the participation of a small number of
experts from academic institutions and industry. The
platform was released as an open source project early in
the 2001 to become the standard foundation for P2P
systems.

The project had to address some issues that were set as
objectives [7]:

• Interoperability. Nowadays there are several P2P

systems that, though offering the same services (e.g.
file sharing), are incompatible because of the lack of
a common infrastructure. This issue is referred to as
danger of fragmentation [14]. JXTA aims at
becoming the missing standard and, hence, it has
been proposed to IETF [12].

• Platform independence. No target platform (as both
programming language and operative system) has
been chosen to develop JXTA, thus to embrace a
larger base of developers and final users.

• Ubiquity. JXTA has been designed to be
implemented on a wide range of digital devices, from
cell phones to servers.

At the highest abstraction level, JXTA is a set of six

protocols, each defined by XML-based message
exchange:

• Peer Discovery Protocol (PDP)
• Peer Revolver Protocol (PRP)
• Peer Information Protocol (PIP)
• Peer Membership Protocol (PMP)
• Pipe Binding Protocol (PBP)
• Endpoint Routing Protocol (ERP)

JXTA technology is designed to provide a layer on top

of which other services and applications are built (see

Figure 1). Typical P2P software stacks break down into
three layers. The lowest level (referred to as JXTA core)
deals with peer establishment, communication
management, such as routing. In the middle (JXTA
services) the layer provides higher level services, such as
indexing, searching and file sharing, built upon the low-
level features of the core. At the top is the layer of
applications (JXTA applications): any P2P system built
using the services beneath.

Any peer on the extended Web

Security

Peer
Commands

Peer
Shell

JXTA community

applications
Sun
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Peer Groups Peer Pipes Peer Monitoring

Sun
JXTA
applications

JXTA
applications

JXTA
services

JXTA
core

P2PConference

Any peer on the extended Web

Security

Peer
Commands

Peer
Shell

JXTA community

applications
Sun
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Peer Groups Peer Pipes Peer Monitoring

Sun
JXTA
applications

JXTA
applications

JXTA
services

JXTA
core

Any peer on the extended Web

Security

Peer
Commands

Peer
Shell

JXTA community

applications
Sun
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Peer Groups Peer Pipes Peer Monitoring

Sun
JXTA
applications

JXTA
applications

JXTA
services

JXTA
core

Any peer on the extended Web

Security

Peer
Commands

Peer
Shell

JXTA community

applications
Sun
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Peer Groups Peer Pipes Peer Monitoring

Sun
JXTA
applications

Any peer on the extended Web

Security

Peer
Commands

Peer
Shell

JXTA community

applications
Sun
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Peer Groups Peer Pipes Peer Monitoring

Any peer on the extended Web

Security

Peer
Commands

Peer
Shell

JXTA community

applications
Sun
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Any peer on the extended Web

Security

Peer
Commands

Peer
Shell

JXTA community

applications
Sun
JXTA
applications

Any peer on the extended Web

Security

Peer
Commands

Peer
Shell

JXTA community

applications
Sun
JXTA
applications

Any peer on the extended Web

Security

Peer
Commands

Peer
Shell

JXTA community

applications
Sun
JXTA
applications

Any peer on the extended Web

Security

Any peer on the extended WebAny peer on the extended Web

Security

Peer
Commands

Peer
Shell

JXTA community

applications
Sun
JXTA
applications

JXTA community services
• Indexing
• Searching
• File Sharing

Sun JXTA
services

Peer Groups Peer Pipes Peer MonitoringPeer Groups Peer Pipes Peer Monitoring

Sun
JXTA
applications

JXTA
applications

JXTA
services

JXTA
core

JXTA
applications

JXTA
services

JXTA
core

JXTA
services

JXTA
core

P2PConference

Figure 1. The layered architecture of JXTA

3. P2PConference

P2PConference was inspired by the eWorkshop tool
[1] from CeBASE [5]. eWorkshop is a simple web-based
collaboration tool to organize and conduct remote, text-
based meetings with the aim of gathering and
synthesizing knowledge from a group of invited experts.
However, P2Pconference is not a mere porting of
eWorkshop onto the JXTA platform. Other than
replicating the basic features of eWorkshop, we have
added new capabilities to run different types of remote
conferences, and allow organizers to exercise more
control on the participants.

The primary functionality provided by the
P2PConference is a closed group chat with agenda,
whiteboarding and typing awareness capabilities. The tool
allows participants to communicate by typing statements
that will appear on all participants’ message boards. By
responding to statements on the message board, they can
carry on a discussion on-line. Around this basic feature,
we built other features to help organizers control
discussion.

The organization of a remote conference (or simply

conference, hereafter) follows a strict protocol which
mandates the organizers to choose the main discussion
topic, schedule the meeting and decide whether or not to
run training sessions (to let participants try out the tool),
and, finally, send invitations to participants by e-mail.

Most participants in a conference are experts in their
respective domain. Organizing a new conference implies
to set up a support team, which consists of the following
roles: moderator, director and scribe.

The director is the actual conference organizer, since
he/she is supposed to choose the main discussion topic
and the items that it is composed of, schedule the
conference and send invitation e-mails, which contain an
user id and password to join the discussion.
The moderator is responsible for monitoring and focusing
the discussion (e.g. proposing items on which to vote)
and maintaining the agenda. Among the support team
members, only the moderator is an active participant in
the sense that he contributes actual responses during the
meeting. He/she is also responsible for assessing and
setting the pace of the discussion, that is, he/she decides
when it is time to redirect the discussion onto another
item.
As the discussion moves from one item to another, the
scribe captures and organizes the results displayed on the
whiteboard area of the screen. When the participants have
reached a consensus on a particular item through a vote,
the scribe summarizes and updates the whiteboard to
reflect the outcome. The content of the whiteboard
becomes the first draft of the meeting minutes.

The tool screen has five main areas: agenda, input
panel, message board, whiteboard, and presence panel
(see Figure 2).

The agenda is managed by the moderator and
indicates the status of the meeting (“started”, “stopped”)
as well as the current item under discussion.
The input panel enables participants to type and send
statements during the discussion.
The message board is the area where the meeting
discussion takes place. Statements are displayed
sequentially, tagged with the time of when they were sent
and the sender’s name.
The whiteboard is used to synthesize a summary of the
discussion and is controlled by the scribe. In order to
realize the goal of measuring the level of consensus
among the participants, all of the items added to the
whiteboard are subject to voting announced by the
moderator. When participants do not agree with how the
statements on the whiteboard were formulated,
negotiations initiate in order to come up with a more
accurate description of the results of the discussion.
The presence panel shows participants currently logged
in and the played role.

Figure 2. P2PConference screenshot

All of these features can also be found in the

eWorkshop tool. We further enhanced support for remote
conferencing by adding the following features:

• Control. Conference organizers need more control

power over participants. Hence, we also added
freezing − moderator can freeze those experts who
disturb, forbidding them to type and ensuring the
discussion to flow smoothly (see Figure 3a) − and
hand raising, that is participants must ask the
moderator the right to talk or ask questions.

• File sharing. A collaborative tool cannot be such
without file sharing capability (see Figure 3b).

• Protection. A conference is said to be “protected” if it
does not allow users to access the drafts (i.e. the
discussion log and the whiteboard content) saved by
the peer into HTML files. The only participant
allowed is the director. This option ensures the
organizers that no one else can carry on a conference
analysis.

Indeed, the presence of the moderator only prevents

the discussion to become unconstrained, ensuring that all
of the items in the conference agenda are discussed. This
kind of remote meeting is apt for brainstorming sessions
with limited or no control over the participants for the
organizers. We did not want to bind the organizers to run
only brainstorms and, hence, we identified three different
types of existing conferences to model and implement in
P2PConference:

• Meeting. It ensures a limited control power since the

moderator can only “freeze” disturbing participants
(i.e., the moderator may forbid them to type and send
statements). This conference type models simple,
remote brainstorms.

• Presentation. This is a more complex kind of
conference: one special invited expert, the speaker,
delivers his own speech and the other invited experts
(i.e., the audience) can ask him/her questions, after
“raising their hands”. The moderator manages the
queue of the asked questions (see Figure 4a).

• Panel. It is a generalization of presentation: there is
more than one speaker, the so-called panelists, and,
since any of them can deliver a speech, they have to
request the right to speak by “raising their hands”
(see Figure 4b). Moreover, the experts who want to
ask a question are to pick the panelist(s) and raise
their hands too. Hence, the moderator manages two
separate queues, one for the panelists and one for the
experts

a. b.

Figure 3. The presence panel with freezing menu (a)
and the search panel (b)

a.

b.

Figure 4. Hand raising panels for question requests (a)
and speaking requests (b)

5. Conclusions and Further Work

In the field of collaborative software development
(CSD) environments P2P technology and decentralization
have begun to being introduced [2, 3].

In this paper we have described P2PConference, a tool
for running remote conferences. The tool is also an open-
source software hosted at the Project JXTA site [11].
Currently, one of the authors has the role of project
owner, two fifth-year computer science students act as
developers (committers), and thirteen people are
contributors (mainly for issue reporting and bug fixing).

Much of the tool functionality has been implemented
in the first release. Also, we plugged P2Pconference into
IBIS [13], a tool developed at the University of Bari to
support software inspections for geographically dispersed
teams. Using Java Web Start [15], inspectors can launch
P2PConference and run a kickoff meeting to provide
background information on the inspection process or the
product being inspected.

Current work is aimed to make deployment easier, by
automating the initial peer configuration, and add support
for presentation sharing and co-browsing. As further
work, we are planning to develop a remote-conferencing
plugin to integrate our tool in an extensible IDE, such as
the Eclipse Platform [6].

6. References

[1] V. Basili et al., “Building an Experience Base for
Software Engineering: A report on the first CeBASE
eWorkshop”, Proc. of International Conference on
Product Focused Software Process Improvement
(PROFES 2001), Kaiserslautern, Germany, September
2001, pp 110-125.
[2] bitkeeper.com, BitKeeper Source Management,
http://www.bitkeeper.com/Products.BK_Pro.html
[3] S. Bowen, and F. Maurer, “Using peer-to-peer
technology to support global software development –
some initial thoughts”, Proc. of the Int. Workshop on
Global Software Development (ICSE 2002), Orlando, FL,
USA, May 2002.
[4] G. Canfora, F. Lanubile, and T. Mallardo, “Can
Collaborative Software Development Benefit from
Synchronous Groupware Functions?”, Proc. of the 2nd
Workshop on Cooperative Supports for Distributed
Software Engineering Processes (CSSE 2003),
Benevento, Italy, March 2003.
[5] CeBASE Web Site, http://www.cebase.org
[6] eclipse.org, Eclipse Foundation website,
http://www.eclipse.org

[7] L. Gong, “JXTA: A network programming
environment”. IEEE Internet Computing, 5(3):88--95,
May-June 2001.
[8] J. D. Herbsleb and R. E. Grinter, “Architecture,
Coordination, and Distance: Conway’s Law and
Beyond”, IEEE Software, Vol. 16, No. 5,
September/October 2001, pp. 16-20, pp.63-70.
[9] J. D. Herbsleb and D. Moitra, Global Software
Development, IEEE Software, Vol. 18, No. 2,
March/April 2001, pp. 16-20. Software Engineering,
IEEE Software, Vol. 19, No. 3, May/June 2002, pp. 26-
38.
[10] jxta.org, Project JXTA Home Page,

http://www.jxta.org
[11] jxta.org, P2PConference Home Page,
http://p2pconference.jxta.org
[12] jxta.org, IETF standardization effort,
http://www.jxta.org/IETFStandard.html
[13] F. Lanubile, and T. Mallardo, “Tool Support for
Distributed Inspection”, Proc. of International Computer
Software and Applications Conference (COMPSAC
2002), Oxford, UK, 2002.
[14] D.S. Milojicic et al. “Peer-to-Peer Computing”, HP
Laboratories Palo Alto, March 2002
[15] sun.com, Java Web Start Technology,
http://java.sun.com/products/javawebstart

Test-Driven Global Software Development

Bikram Sengupta Vibha Sinha Satish Chandra
IBM India Research Laboratory,

Block 1, Indian Institute of Technology, New Delhi 110016, India

Sharath Sampath K. Guru Prasad
IBM Global Services India Pvt. Ltd.,

Embassy Golf Links Level-3, Bangalore 560071, India
{bsengupt,vibha.sinha,satishchandra,ssampath,guruprasad}@in.ibm.com

Abstract

In a global software development project, distributed
teams need to have a consistent view of the system even in
the face of frequently changing requirements. Thus how pre-
cisely requirements and changes therein are communicated
to remote developers becomes a critical issue. In this po-
sition paper, we hypothesize that a test-driven methodology
may help keep development across multiple sites consistent
with changing requirements and with each other.

1 Introduction

According to the iterative model of software develop-
ment, a project cycle commences with requirements gather-
ing, followed by design, coding and testing; then the next
cycle begins. An underlying assumption of this view is
that once requirements are collected, they are generally sta-
ble through the rest of the cycle. However, the real-world
scenario differs considerably. Business cycles are shrink-
ing so rapidly these days that the boundaries between the
phases are getting blurred. Very often, by the time de-
velopers begin coding, customer requirements are already
changing. However, constantly having to change code to
meet new requirements is only one half of the problem; in
a large project spread across several development teams, a
greater challenge lies in ensuring that even as requirements
change, a consistent view of the system is maintained across
all the teams. Consider for example, a major enhancement
request that potentially affects the behavior of many mod-
ules; developers then need to clearly understand not only
what changes to make in their own module, but also how
the behavior of surrounding modules may change. In some
cases, the interface agreements may need to be modified; in

more subtle cases, there can be behavioral changes in those
modules, without any externally visible syntactic changes.
Unless there is a shared understanding about these changes,
the system may easily slip into an inconsistent state.

In a single-site project, developers usually rely on exten-
sive interactions to clarify doubts regarding requirements
and their impact on the behavior of various modules. When
the development environment becomes distributed how-
ever, face-to-face meetings, if any at all, are few and far
in between. There are e-mails, tele-conferences etc. no
doubt, but there is a practical limit to their efficacy when
it comes to developing a common understanding of the im-
precise, ever-changing textual documents that ususally con-
vey requirements. The physical distance and the differ-
ences in time-zones make multi-site operation inherently
disconnected in nature. Add to this the differences in cul-
tures, languages etc., and it is easy to see why semantic
information often do not get across uniformly to remote
sites. The resulting discrepancies in understanding intro-
duces delay [5] and may necessitate substantial re-work
during integration. Hence there is a need to complement
the usual forms of cross-site communication, with practi-
cal methodologies that can convey information (in require-
ments/interface agreements etc.) easily and precisely.

In this position paper, we propose a test-driven method-
ology to address some of the above challenges in global
software development. The basic idea is to create test suites
of the different modules prior to development, share them
across all the sites and use them as a medium of communi-
cation between development teams. For example, changes
in these test suites may be used to reflect changes in require-
ments or in module behavior. The shared understanding that
would result from this should help preserve overall consis-
tency.

2 Background

In this section, we (i) briefly discuss some existing ap-
proaches to precise behavioral descriptions and (ii) review
the notion of test driven development (TDD). We then de-
scribe how TDD can be viewed as another precise, although
incomplete, form of behavioral specification.

Precise Behavioral Specifications: The software indus-
try has long felt the need for unambiguous specification
techniques that developers can use. A number of formal
notations have thus been proposed over the years to bring
clarity and rigor to software development. These range from
mathematical formulations given as algebraic axioms [8] to
illustrate the behavior of class methods, to more accessible
languages like Eiffel [2], Java Modeling Language (JML)
[4], Object Constraint Language (OCL) [6] etc. that are
based on the Design By Contract paradigm [1], and use
method pre-conditions, post-conditions and class invariants
to succintly represent behavior. However, the acceptance of
these approaches in the industry has been low in general.
Developers are usually unwilling to learn one language for
implementation, and another for specification. The com-
plexity associated with these methods may also serve to dis-
courage users and moreover, their technical rigor is often
considered an overkill. Finally, they usually do not scale
up, and their application in industry-sized projects may be
simply infeasible. This points to the need for lightweight
but precise specification methodologies that may be used to
convey semantic information to developers, and which may
be easily integrated with their existing practices.

Test Driven Development: The idea behind Test Driven
Development [7] or TDD is simple: before implementing a
new functionality, first write executable unit test cases for
it. Once you have written enough test cases to thoroughly
check the new feature, write the actual code to pass these
test cases. The test cases thus become a mini-specification
of the functionality that was implemented. This then goes
on iteratively as more and more functionalities are added.
At the end, one not only has the complete implementation,
but also an efficient regression test bed capturing all the new
functionalities that were added, and which can be used to
identify if subsequent changes break anything in the exist-
ing system.

Test Suites as Behavioral Specification: In effect, TDD
is a novel approach of creating incomplete but precise spec-
ifications on-the-fly during development. Developers have
an implicit understanding of what a program is supposed
to do, and although they may not be able to specify this be-
havior formally (e.g. with JML like pre- and post conditions

or algebraic axioms), their understanding reflects in the test
suites they design. The test suites written prior to develop-
ment may thus be looked upon as a lightweight specification
that guides subsequent implementation. They are obviously
incomplete in a formal sense with respect to the full speci-
fication, but have several practical advantages: creating test
cases requires no new skills from developers, and the spec-
ification may be incrementally enriched by adding new test
cases as needed. Finally, test suites are unambiguous; from
the prespective of global development, this means that a test
suite should be interpreted in the same way by different re-
mote development teams.

3 Test-Driven Global Development

We now propose an approach whereby test suites are
used as a knowledge sharing medium between remote sites
in a distributed development environment. The idea is in-
spired by the TDD paradigm described above; just as unit
test cases written prior to development specify the function-
ality to be implemented, we believe that early availabilityof
module-wise test suites can serve as a precise documenta-
tion of requirements and of module behavior.

Early Test Suites In a typical software development en-
deavor, once requirements are formulated, some interme-
diate steps (e.g. use-case diagrams or scenarios) lead to a
high level design (modules, interfaces etc.). In a multi-site
environment, the modules (e.g. clusters of classes) are then
distributed across the remote sites for implementation. The
high-level design may be followed by a more detailed de-
sign at the remote sites, followed by implementation. Then
testing begins, starting with unit testing, to class and mod-
ule testing, to module integration testing, and finally system
level testing.

To adopt TDD in the multi-site context, we propose a
simple change to the process outlined above, by suggesting
that the end-products of high-level design should not only
be modules and interfaces, but also some module-wise test
suites jointly created by the system architects and the test-
ing team. These test suites can include unit test cases that
illustrate both the normal and exceptional behavior of the
public methods, as also functional test cases (e.g. sequences
of method calls) that can capture the way a client may use
a module. The test cases are associated with the interface,
and as such become a first class entity in the design space.
At the same time, the interface, usually only syntactic in
nature, becomes enriched semantically.

These test cases need not necessarily be fully executable
code, but should be precise enough to document the impor-
tant details e.g. the various input events, corresponding out-
puts, error-conditions etc. in a proper format. Such artifacts
arise naturally as part of testing activities, and executable

test cases can subsequently be derived out of them. It may
be noted here that, in practice, testing activities sometimes
do start before development e.g. test plan documents are
often created at the end of high-level design. These activ-
ities generally proceed in parallel to development, without
contributing to the development effort as such, till the test-
ing phase begins. We feel, however, that test cases may
also be looked upon as detailed specification entities, and if
these are created upfront and made available to developers,
then we can fill a gap between higher level requirements
and code. In a sense, test cases are the most precise form of
requirements, and their usefulness to developers in deriv-
ing requirements understanding has been noted by several
practitioners e.g. [3]. Developers work at the code and test
case level, so higher level requirements make more sense to
a developer if communicated through a medium he/she is
familiar with. Hence we also propose mapping the higher-
level requirements to these test cases, before coding starts.

Communication through Test Suites To keep dis-
tributed development teams in sync with requirements, we
next propose that requirements cannot be updated without
updates to the associated test cases. Thus for example:

• If a new requirement is added, create test cases for it,
and map the requirement to the test cases

• If a requirement is deleted, remove the test cases that
have become obsolete

• If a requirement is modified, modify related test cases
to clearly reflect this change

These actions have to take placebeforeany modification is
made to the code. In essence, we change the usual traceabil-
ity graph originating from the requirements and proceeding
through code towards test cases, by having test cases pre-
cede source code files instead of following them. Thus, dur-
ing impact analysis following a requirements change, the
test suites have to be updated first. Then these modifica-
tions in the test suites guide the developers in changing the
source code files.

Another advantage of early module-wise test suites may
be in illustrating the behavior of a module, sayM , to re-
mote developers who need to useM ’s functionality. In a
distributed environment, the development of the different
modules proceeds simultaneously and tillM becomes avail-
able, a remote developer who needs to useM would write
a dummy functionality based onM ’s interface. Interfaces
are primarily syntactic in nature, and are not a rich source
of information for someone who wants to use the associ-
ated module. However, if we have interfaces enriched with
test cases, then a developer, looking at the interface of a re-
mote class, would get a much more clear idea of its behavior
and how to use it. This may enable better simulation ofM

at a remote site, and thus smoothen subsequent integration
testing. Moreover, whenM ’s behavior needs to be mod-
ified in response to changing requirements, this may once
again be conveyed to developers of related modules through
changes in the interface test suite. Since test suites are much
more precise than text documents, and since they may be
made available through a central repository, the need for ex-
tensive cross-site communication should decrease, allowing
the sites to operate in a relatively disconnected manner.

Our proposal does not, in any way, seek to reduce the
importance of conventional post-development testing activ-
ities. These should be performed following well-established
testing principles, as always. Rigorous testing would defi-
nitely require more test cases than can be made available
in an early test suite, We believe, however, that if we use
test cases only for post-development testing at each site,
we make use of their power to validate an implementation,
but do not utilize their expressive power. By creating some
early test suites, we can not only use them during subse-
quent post-development testing, but also to convey precise
semantic information during actual development.

4 Future Work

We are currently investigating what kind of tool support
would be necessary to adopt some of the ideas described
above in practice. For future work, we would like to define
appropriate metrics to empirically determine the effective-
ness of our method in improving multi-site software devel-
opment.

References

[1] B.Meyer. Design by contract.Advances in Object-Oriented
Software Engineering, 1991.

[2] B.Meyer. Eiffel: The language. 1991.
[3] E.M.Maximilien and L.Williams. Assessing test-drivende-

velopment at IBM. 25th International Conference on Soft-
ware Engineering, pages 564–569, 2003.

[4] G.T.Leavens, A.L.Baker, and C.Ruby. Jml: A notation for
detailed design.Behaviroal Specifications of Businesses and
Systems, pages Chapter 12, 175 – 188, 1991.

[5] J.D.Herbsleb, A.Mockus, T.A.Finholt, and R.E.Grinter. Dis-
tance, dependencies and delay in a global collaboration.ACM
Conference on Computer Supported Collaborative Work,
pages 319–328, 2000.

[6] J.Warmer and A.Kleppe. The object constraint language,pre-
cise modeling with UML. 1999.

[7] K.Beck. Test driven development: By example. 2002.
[8] R.Doong and P.Frankl. The astoot approach to testing object-

oriented programs.ACM Transactions on Software Engineer-
ing and Methodologies, 1994.

Using Iterative and Incremental Processes in Global Software Development

Maria Paasivaara and Casper Lassenius
Helsinki University of Technology

Software Business and Engineering Institute
POB 9210, FIN-02015 HUT, FINLAND

Maria.Paasivaara@hut.fi, Casper.Lassenius@hut.fi

Abstract

Iterative and incremental development seems to be
a viable approach providing several benefits in inter-
organizational distributed software development. This pa-
per presents initial results from an interview study on the
usage of iterative and incremental development in inter-
organizational distributed software development projects.
We describe identified practices, such as delivery synchro-
nization, design and code reviews, communication empha-
sis, feature-based development, behavioral patterns, and
frequent deliveries. We also present the benefits that the
use of these practices brought, such as transparency of
progress, increased developer motivation due to rapid feed-
back, flexibility regarding changes, the possibility to involve
subcontractors early, ensuring joint understanding of re-
quirements, and the avoidance of “big bang” integration. It
seems that the advantages of using the practices overweigh
the extra communication and coordination cost they incur.

1. Introduction

Global inter-organizational software development, in-
cluding outsourcing, subcontracting and partnerships, is be-
coming increasingly common. Projects developing gen-
uinely novel products are often faced with uncertainty re-
garding, e.g., requirements and implementation technolo-
gies. However, subcontractors or partners often need to be
involved long before these uncertainties can be resolved. In
such projects, the parties cannot receive clear requirement
specifications at the beginning. Instead, close cooperation
and communication between the parties is required during
the whole project, as the project both builds a product and
tries to understand what to build at the same time. In these
kinds of projects, problems often arise, since practices and
processes needed for collaborating across distances and or-
ganizations are neither well understood in theory, nor typi-
cally established in practice [9].

For software development facing uncertainties and un-
predictable changes, literature suggest the use of iterative
and incremental development (IID) as a process model,
since it enables fast reaction to changes [6]. IID means
that the system is grown via iterations, incrementally adding
new features [6]. Global software development literature
contains some reports of good experiences of using IID also
in distributed settings (e.g. [1, 2]). However, these studies
do not report in detail how IID should be implemented and
used successfully in distributed projects nor what benefits
and drawbacks its use brings.

In our interview study concentrating on collaboration
practices in globally distributed projects, we noticed that
IID was used in many of the projects studied and that these
projects had gained several advantages from its usage [9]. It
seems that IID suits distributed development extremely well
and helps reduce problems caused by distribution. How-
ever, IID also requires close collaboration and communica-
tion, which can be hard to achieve in distributed develop-
ment.

In this paper we report experiences of using IID in five
globally distributed inter-organizational software develop-
ment projects. We present some interesting findings of how
companies are using IID in their distributed projects and
what kind of benefits they have gained. Since our larger
study concentrated on all collaboration practices used in
these projects, we could not yet go very deep into IID re-
lated practices. The purpose of this paper is therefore to
give an overview of our findings related to the usage of IID
in distributed development, as well as to motivate further
research into its use, benefits and drawbacks.

The rest of this paper is structured in the following way:
The next section briefly presents related literature. After
that we describe the research methodology and introduce
the case companies and projects studied. In the results sec-
tion we present the experiences we collected from our case
projects. Finally, we present a short discussion of the results
and their managerial implications, as well as give ideas for
future work.

2. Related Work

Global software development literature lists many chal-
lenges related to distributed development, e.g., interdepen-
dencies among work items that are distributed, difficulties
of coordination, difficulties of dividing the work into mod-
ules that could be assigned to different locations, conflict-
ing implicit assumptions that are not noticed as fast as in
collocated work, and communication challenges [8]. Lit-
erature suggests dividing the work into separate modules
that can then be distributed to different sites to be developed
[4]. These modules should be so independent that commu-
nication between sites can be minimized [4]. The authors
emphasize that it is possible to split only well-understood
products where architecture and plans are likely to be sta-
ble. However, in a development environment with a lot of
uncertainties, dividing the software into modules and spec-
ifying the modules in detail up front is often impossible.
Moreover, first specifying and dividing work and subse-
quently integrating all in “a big bang” is challenging, since
integration can cause huge unexpected problems. As a so-
lution Battin et al. [1] suggest an incremental integration
plan, which is based on clusters and shared incremental
milestones to avoid “big bang” integration. This strategy
was used successfully at Motorola. Ebert and De Neve
[2] provide similar experiences on the usage of incremen-
tal development at Alcatel, where they developed each in-
crement within one dedicated team and based their progress
tracking on successfully integrated and tested customer re-
quirements. The authors report that a stable build proved
to be one of the key success factors and that the globally
applied continuous build improved the project’s cycle time.
Neither Alcatel nor Motorola report their integration inter-
vals, but it seems that they did not use very frequent reg-
ular build cycles, such as daily or weekly builds. How-
ever, even very frequent builds are possible in distributed
development. Karlsson et al. [5] report using daily builds
and feature-based development successfully in distributed
projects at Ericsson.

IID is a core practice in agile methodologies for col-
located projects [6, 7], but its use in distributed develop-
ment has not yet received much attention. Fowler [3] and
Simons [11] recently reported their experiences on using
agile methods in offshore software development projects.
According to Simons [11], an iterative model seems to
work well in distributed projects and can eliminate some
of the problems that distribution brings. Continuous inte-
gration and build verification tests solve integration prob-
lems in small steps and avoid large integration problems
at the end of the project. Moreover, IID provides in-
creased visibility into project status, which makes it eas-
ier for project managers and customers to follow project
progress [11]. Fowler [3] discusses the suitable iteration

lengths for offshore projects and concludes that iterations
cannot be shorter than two weeks, because of the commu-
nication overheads of distributed development, and two to
three month iterations can already be too long.

This short literature review shows that IID seems to be a
viable process model for distributed software development
projects, providing several advantages. However, the re-
ported experiences of its use in distributed environment are
still quite limited. We believe that collecting more real-life
experiences of the usage of IID and the gained advantages
would be helpful to managers designing their distributed
projects. In this paper we report our initial research results,
discuss the benefits of IID in distributed inter-organizational
development, and outline ideas for future research topics.

2.1. Research Methodology

The research presented in this paper follows the case-
study approach [12] and is a part of a larger multiple case
study [9]. The aim of the larger study was to collect success-
ful collaboration practices from inter-organizational soft-
ware development projects. We used purposeful sampling
[10] and selected ten projects from eight companies that we
knew used software subcontractors and that we expected
to be experienced in inter-organizational software develop-
ment. We selected projects that demanded constant col-
laboration and lots of communication between the parties,
e.g., due to a high degree of uncertainty, dependencies and
changing requirements.

One of the successful practices we found in the larger
study was the use of iterative and incremental development.
From the ten projects we studied, five used an IID model.
In this paper we report experiences collected from those
five projects. In these five projects we performed 29 semi-
structured interviews, each lasting 2–3 hours.

After our first interview round and data analysis we no-
ticed that IID was a central theme in these five projects. We
also noticed that project A was the most interesting project
in this sample regarding IID. Therefore we chose to do one
extra interview with a manager from that project concen-
trating only on experiences of IID. We had interviewed this
person also during our first interview round and wanted to
ask more detailed questions on IID. Basic information about
the projects and the number of interviewees is shown in Ta-
ble 1. The next paragraphs provide short descriptions of the
studied projects.

Project Awas a new product development project with
lots of uncertainty concerning requirements and technology.
The German office of a Finnish customer company did this
project with the help of two new subcontractors, one from
Germany and one from Ireland.

Project Bwas from the same Finnish customer company
as project A. This project also contained a lot of uncertainty

Table 1. Case project interviews
Case projects A B C D E

#
of

in
te

rv
ie

w
s

Partnership
manager

1 2 1 - 1

Process
developer

1 1 - - 1

Project
manager

1 2 3 2 3

Team
member

- - 2 - 1

Sub-
contractors

- 1 5 - 1

All 4 5 11 2 7

Industry
Tele-
com

Tele-
com

Fi-
nance

Inter-
net
SW

Be-
spoke
SW

Distribution
(# of sites)

Eu-
rope
(3)

Eu-
rope
(4) &
North
Amer-

ica
(1)

Eu-
rope
(3)

Eu-
rope
(1) &
Asia
(2)

Eu-
rope
(6)

regarding requirements and technology. Projects A and B
were both subprojects of larger product programs. Project
B used a Finnish subcontractor with sites in Finland and
Hungary. The customer company had sites involved both in
Finland and in the US.

Project Cwas a a large new product development project
done by a Finnish company. Additional resources were as-
signed from its newly acquired subsidiaries in Denmark and
Switzerland.

Project Dwas a development project for a customer spe-
cific system carried out by a small Finnish company, which
had its sales and project management in Finland. All devel-
opment work was performed in a partly owned subsidiary
in India.

Project E developed a well-defined customer specific
system and was distributed to six sites. In addition to the
Finnish customer company’s three own sites, also a sub-
sidiary in Estonia and a subcontractor with two sites in Fin-
land were involved.

3. Results

In this section we first introduce our findings on how
companies were using IID in distributed settings. The com-
panies used practices such as synchronization of deliver-
ies, design and code reviews, emphasis on communica-
tion, feature-based development, behavioral patterns, and
frequent deliveries. Then, we present some of the benefits
of using IID, such as transparency of progress, increased
developer motivation due to instant feedback, flexibility to
do changes and start early with subcontractors, ensuring un-
derstanding of requirements, and the avoidance of big bang

integration. To summarize, our results seem to indicate that
IID is a suitable approach for distributed projects and that
more detailed studies on the methods and practices of using
it are needed.

3.1. Identified Practices

Delivery synchronization In an inter-organizationally
distributed project different partners might have different
delivery and integration cycles, but our case studies show
that synchronizing the delivery and integration cycles be-
tween participants is beneficial.

In project A the original plan was to use the waterfall
model, but after some quality and schedule problems the
customer company and the Irish subcontractor started to use
an iterative development model with weekly builds. How-
ever, getting used to this new weekly rhythm was not easy.
Especially coordinating the work between different teams
and specifying the work well enough required learning. The
customer tested each build once a week for one day and af-
ter that everybody got this tested build as a new baseline.
During the early phases of iterative development the teams
learned that it was better to develop only small additions at
a time to avoid problems. The German subcontractor de-
livered in longer intervals, only once in 1-3 months. This
caused additional work in the integration phase, because the
amount of new code was large and not always compatible
with the baseline. Finding bugs from 1–3 months worth
of work was not easy. In this project the baseline was avail-
able to everyone through a common repository or its replica.
This made it possible for all partners to test their new code
against the baseline before integration.

Project B faced problems with delivery cycles of differ-
ent length, since two sites used one-week iterations, and one
site had a two-month cycle. This led to problems for the
subcontrator, since it ended up waiting up to two months
for fixes from the customer site using long iterations.

Our interviewees from projects A and B emphasized that
when using IID it is important that all participants synchro-
nize the iteration cycles, i.e., use the same length for itera-
tion cycles and deliveries. If this is not done, problems will
occur.

The iteration and delivery cycles used varied between
projects and also between project phases, e.g., in the begin-
ning they could be longer and in later intensive phases they
were shorter. In project B, early phases used three month
increments, and the late phases weekly deliveries.

Design and code reviews Design and code reviews
seemed to be useful in distributed projects with distant sites
or subcontractors. These reviews are early checks that the
distributed teams have understood the requirements cor-
rectly and are doing what they are supposed to do. In later

stages, the deliveries of code fulfill this need. The dis-
tributed sites also felt that these reviews were very useful
since they got immediate feedback on their work.

In project C iterations were used only with the com-
pany’s Swiss subsidiary. Their work consisted of three
months work with two planned iterations. This project was
the first collaboration effort after the Swiss subsidiary had
been bought, therefore starting the project required similar
efforts as with subcontractors. Before the coding became
intensive the customer’s Finnish contact person visited the
Swiss team twice, first having a design review and then a
code review. After that the implementation could safely
start and everybody knew that the work was on the right
track.

Also in project E code reviews were used in the early
phases of the project with the subcontractor and the for-
eign subsidiary. These reviews were very much appreciated
since developers got immediate feedback on their work.

Emphasis on communication Communication require-
ments in distributed projects using IID and therefore col-
laborating closely are very high. Especially the projects that
had weekly integration cycles, A and B, found communica-
tion as a very important prerequisite to be able to work that
fast.

Project A had weekly integration meetings, where in-
tegration related problems were discussed. These meet-
ings made it possible to learn from mistakes already in
the early phases of development. Project progress mon-
itoring also took place during these meetings: only tasks
that had passed the tests and been integrated into the build
were regarded as ready. Subcontractors could not partici-
pate in these meetings, because of security issues concern-
ing this totally new product, but the customer had project
managers that represented each of the subcontractors in the
meetings and delivered information to the subcontractors.
In this project only the Irish subcontractor participated in
the weekly cycle. Frequent communication with this sub-
contractor was ensured by having their staff sitting at the
customer’s premises. Ad-hoc communication and meetings
were encouraged in this project. Also the “behavioral pat-
terns” used in project A, and described later on, are closely
related to emphasizing fast communication and getting an-
swers quickly.

Project B had a normal weekly face-to-face meeting in
all its teams. The following day project managers both from
the customer company and the subcontractor had a weekly
teleconference. The subcontractor’s team leaders could also
participate in this meeting if they deemed it necessary; oth-
erwise they could read the meeting memos.

Both projects A and B had higher-level monthly meet-
ings. In project A they were called R&D meetings. In
Project B they were project steering group meetings, which

were organized every time at different project sites to en-
able both managers and developers from the different sites
to meet face-to-face.

Project C, having only two iterations, also found frequent
communication to be an important factor for the project’s
success. The Finnish customer company had one person re-
sponsible for all communication with its Swiss subsidiary.
This person felt that his task was to answer all questions as
soon as possible. These fast answers were very much appre-
ciated by the Swiss developers. Moreover, this contact per-
son had three collocated stays with the team in Switzerland,
each lasting about one week. This, of course, facilitated
communication and built trust, which was also regarded im-
portant.

Project D delivered a customer specific system using
IID. The main contractor was a Finnish company that used
its partly owned Indian subcontractor as a development re-
source. The Finnish office negotiated the requirements with
the customer, made a requirements specification document
and delivered it to India. The subcontractor’s project man-
ager commented on the requirements by email and asked
detailed questions. The Finnish project manager answered
the questions by email and discussed difficult issues through
chat. The aim was not to create a perfect specification, since
the project’s customer could not provide that. Instead, the
project was specified to such a level of detail that the Indian
subcontractor could develop an initial version of the system.
After the delivery of this initial version the Finnish main
contractor commented on it. And then, after some improve-
ments, also the Finnish customer commented on the system.
The project had several of these comment-improvement
rounds. During the whole development, the Indian develop-
ers were encouraged to ask questions through chat from the
Finnish main contractor’s project manager. The customer
was also able to monitor project progress by reviewing the
code that the Indian developers checked in to a repository
located in Finland several times a day. This well function-
ing communication process was used in all projects between
this main contractor and its Indian subcontractors.

Feature-based development Project A had clearly sepa-
rate sub-areas that could be given to each of the subcontrac-
tors. Because builds were weekly and the customer wanted
to do functionality testing, the work had to be coordinated
quite tightly so that all code affecting certain functionality
would be ready at the same time. This feature-based devel-
opment meant that small increments done in different mod-
ules had to be evolving in good synchronicity, in order to
enable proper testing and to avoid difficult merging of code
later on. In Project A, the customer’s project manager made
a monthly plan of the tasks to be performed, and the sub-
contractors’ project managers made weekly plans of their
internal tasks.

Behavioral patterns Project A had noticed that using an
IID model in distributed development did not automatically
bring all necessary practices needed for successful coop-
eration. This project developed additional practices they
called “behavioral patterns” to complement the develop-
ment model. These practices cannot easily be described in
process descriptions but are very essential to IID according
to our interviewee from project A. He ensured that in co-
operation with subcontractors and partners these practices
have been equally valid and important as in internal devel-
opment. According to him, project A had 16 behavioral
patterns, that were developed during the project concerning,
e.g., management, personal behavior, and the use of tools
and work processes. Our interviewee presented three ex-
amples of the practices that, based on his experience, were
important for the success of their very short-cycled IID pro-
cess.

A practice called “immediate escalation of issues”,
means that problems have to be brought up right away. The
“project manager always available” practice is closely re-
lated to the previous one, meaning that when a developer
gets stuck he can immediately ask for help from the project
manager who has to be available. “Immediate decisions”
means that decisions have to be made fast and not left to
later meetings, so that work can continue. This last practice
was felt to be more difficult to use across distances when
people making decisions might never have met face-to-face
and this can easily lengthen decision-making.

Frequent deliveries Project E used frequent deliveries
when designing and implementing a large customer spe-
cific system. The requirements were quite stable and well-
known. The customer company divided the work into small
tasks and specified, e.g., all windows and services in de-
tail. These well-specified tasks were then given to subcon-
tractors and internal sites for implementation. Specification
work and coding took place at the same time. Both a sub-
contractor company and an own subsidiary received tasks
for 2–3 weeks at the time. When the tasks were done, a
delivery was made, and new tasks were assigned. The prob-
lem with this way of working was that these delivered ser-
vices and windows had dependencies to other services or
windows, and the customer company could test them only
after all related functionality was ready. Therefore, getting
test results could sometimes take as long as half a year af-
ter code delivery. Clearly, this project would have benefited
from better synchronization of deliveries.

3.2. Benefits gained

Transparency of progress Frequent delivery cycles and
integration brought transparency of work progress to all
partners. When both the customer and the subcontractor

used IID, the subcontractor regularly delivered functioning
code during the development phase, e.g., monthly or even
weekly. Our interviewees told that when deliveries were in-
tegrated and tested right away this gave a very good picture
of how the project was progressing. They had noted that fre-
quent deliveries made it easier for the customer to monitor
the real progress of the subcontractor’s work.

Instant feedback Integration and testing reports gave dis-
tributed developers instant feedback on their work, which
they felt was very motivating. Moreover, when the customer
saw that the subcontractor was doing a good work, the cus-
tomer’s personnel started to trust and respect the subcon-
tractor and its developers’ know-how, which made further
collaboration easier.

Flexibility From the customer’s point of view IID brings
additional flexibility, when the customer can do changes
also during the development phase without time consum-
ing negotiations with subcontractors. Of course, a suitable
type of contracting has to be chosen. IID also enables the
customer company to take subcontractors into the project
already in the early phases of development, when require-
ments cannot yet be specified in detail. With this kind of
development process it is no longer necessary to specify all
requirements before subcontractors are involved; instead,
since requirements are allowed to change during the project,
work can start despite technological or goal-related uncer-
tainties. However, this requires all parties to have “an ex-
perimental mindset” and fast and open communication with
each others.

Ensuring joint understanding of requirements In IID
frequent integration and testing ensured that the subcontrac-
tor had understood the requirements correctly. This is a typ-
ical uncertainty in distributed development, especially when
companies have not worked together before and have dif-
ferent cultures. Frequent integration and testing gives fast
feedback and any misinterpretations become visible early.
Thus, possible misunderstandings have less damaging con-
sequences. Moreover, learning from mistakes is fast and
happens early, preventing problems from accumulating and
creating situations that are harder to resolve.

Avoiding “big bang” integration IID,as used in our case
companies, prevented different sites and partners from do-
ing too long periods of independent development, which
could have led to modules that would be hard or impossible
to integrate, i.e., they avoided possible problems that would
come from “a big bang integration”.

4. Discussion and Conclusions

Frequent communication is a central prerequisite for suc-
cessful implementation of IID in a distributed environment.
This way of development requires much more communica-
tion between parties during the whole collaboration com-
pared to development where work products can be clearly
separated into independently developed modules. Espe-
cially uncertainties in the form of changing requirements
demand communication and problem solving. In uncer-
tain environments short iteration cycles are needed to re-
veal problems as early as possible. The shorter the cycle the
more communication is needed to coordinate the work and
to quickly solve the problems during development. When
the cycles are longer the communication need is more con-
centrated to the integration phase. This communication
overhead is clearly an issue that requires careful planning
when implementing IID in a distributed environment.

Defining an iteration length that is suitable for distributed
development is an interesting topic. In our study both
projects A and B, used one week integration cycles suc-
cessfully also with subcontractors. Fowler [3] reported that
iteration cycles should not be shorter than two weeks in off-
shore projects due to communication overhead. One expla-
nation to this difference could be that in our study all par-
ties that participated in weekly iterations were from Europe
and therefore the time-zone difference was quite minimal.
Moreover, the subcontractor in project A had on-site per-
sonnel at the customer company, which facilitated commu-
nication. Fowler, however, worked with projects distributed
between India and Europe or North America, where time
differences are noteworthy.

4.1. Limitations

Our initial results presented in this paper are based only
on a few case projects, which limits our possibility to draw
far reaching conclusions. Moreover, when doing our first
interview round we did not concentrate on studying IID, but
asked about many other practices too. This means that we
could not collect as deep a knowledge on IID and related
practices that a more focused study could have provided.
The selection of our case projects did not concentrate on
finding interesting cases just from the point of view of IID.

4.2. Managerial Implications

We think that our results have several implications for
managers working with distributed development. First of
all, it seems that short increments are suitable for distributed
development, especially when the project faces high de-
grees of uncertainty. However, when using increments, it
is important that all partners use the same iteration length.

To enable reasonable testing of functionality, feature-
based development using tight control can be used. Also the
use of design and code reviews in the beginning especially
with new subcontractors helps to ensure that they have un-
derstood the coding standards and requirements correctly.
The feedback also motivates them. Finally, frequent com-
munication and problem solving is essential in distributed
IID. Efficient communication requires both planned com-
munication practices and assigned resources.

4.3. Future Research

In the future we plan to study additional case projects
using IID in distributed environments. We think that it is
important to get deeper insights on how these challeng-
ing projects really work, what kind of practices are used,
what the major problems are, for what kinds of projects this
model of working is suitable. Another interesting future re-
search topic is tool support for this kind of projects.

References

[1] R. Battin, R. Crocker, J. Kreidler, and K. Subramanian.
Leveraging resources in global software development.IEEE
Software, pages 70–77, March/April 2001.

[2] C. Ebert and P. De Neve. Surviving global software devel-
opment.IEEE Software, 18(2):62–69, 2001.

[3] M. Fowler. Using agile software proces with offshore de-
velopment.http://www.martinfowler.com/articles /agileOff-
shore.html, 7.1. 2004.

[4] J. Herbsleb and R. Grinter. Architectures, coordination,
and distance: Conway’s law and beyond.IEEE Software,
16(5):63–70, 1999.

[5] E. Karlsson, L. Andersson, and P. Leion. Daily build and
feature development in large distributed projects. InICSE-
2000, pages 649–658. IEEE Computer Society Press, 2000.

[6] C. Larman.Agile and Iterative Development: A Manager’s
Guide. Addison-Wesley, Reading, MA, 2003.

[7] C. Larman and V. Basili. Iterative and incremental develop-
ment: A brief history. IEEE Computer, pages 47–56, June
2003.

[8] A. Mockus and J. Herbsleb. Challenges of global software
development. In7th International Software Metrics Sympo-
sium, pages 182–184. IEEE Computer Society, 2001.

[9] M. Paasivaara. Communication needs, practices and sup-
porting structures in global inter-organizational software
development projects. InICSE International Workshop
on Global Software Development, Portland, Oregon, 2003.
IEEE Computer Society.

[10] M. Q. Patton.Qualitative evaluation and research methods.
Sage Publications, Newbury Park, Calif., 2nd edition, 1990.

[11] M. Simons. Internationally agile.InformIT, 15.3. 2002.
[12] R. K. Yin. Case Study Research: Design and Methods.

SAGE Publications, Thousand Oaks, CA, USA, 2nd edition,
1994.

Communication Problems in Global Software Development: Spotlight on a New

Field of Investigation

Sébastien Cherry, Pierre N. Robillard
Software Engineering Research Laboratory, École Polytechnique de Montréal

{sebastien.cherry, pierre-n.robillard } @ polymtl.ca

Abstract

While it is widely recognized that communication
plays a critical role in software development, it has been
observed that problems of coordination may be generated
when teammates in the field are working at a distance
from one another.

This paper presents an ongoing empirical study on ad
hoc collaborative activities which occur in an industrial
software engineering environment. We believe that a
better understanding of these types of activities and their
content will pave the way to further solutions designed to
enhance communication, and thus improve both
collaboration and coordination in virtual software
development settings.

We include details of our motivations for the study,
followed by some methodological considerations, and,
finally, some preliminary results which demonstrate not
only the significance of our data, but also the relevance of
our approach.

1. Introduction

Communication is undoubtedly an essential element
which plays a critical role in a software engineering
process in the gathering and crystallization [15] of all
relevant information in quality software which fulfills the
user needs on time and within budget [2], [3], [13], [14],
[16]. Moreover, several studies have stressed the fact that
informal communications seem to be fairly important in
terms of the time spent on a software project. Perry,
Staudenmayer and Votta (1994) found during a case
study that informal communications take up an average of
75 minutes per day per software developer [12], and
Robillard and Robillard established in another case study
that ad hoc collaborative activities can occupy up to 41%
of the developer’s time [14]. Seaman (1996) [16] also
supports the need for this type of communication if
developers are to carry out their tasks adequately.

However, in the global software development setting,
which has become a more common practice for many
business reasons, some researchers have observed that
communications, specifically informal ones, face

significant challenges by virtue of distance, both
geographical and temporal [6], [7], [8], [9]. They note
that the consequence of this is a potential for problems of
coordination to occur.

This short paper presents an ongoing empirical study
being carried out within the framework of a case study in
the industry which explores the ad hoc collaborative
activities that take place in a software engineering setting.
By ad hoc collaboration, we mean all informal and
spontaneous activities performed by two or more
developers who are working on a particular task of the
project. These activities can take many forms, such as in
informal peer-to-peer conversations, also referred to in
the literature as “water-cooler-talk” [6], as well as
electronic mail exchanges and phone calls.

We believe that a better understanding of such
activities and their content will pave the way for further
solutions with the aim of enhancing communication and
thus improving both collaboration and coordination in
virtual software development settings. Our general
approach is to observe and understand the informal and
spontaneous collaboration activities that take place in a
classical single-site software development environment
where developers have as much freedom and opportunity
to communicate as they wish, and to measure their
positive and negative impacts on the rest of the software
project. Depending on the results of our investigation,
two avenues of action can be envisaged. The first might
be to infer and formalize from our observations some
state-of-the-art rules or practices applicable in global
software development contexts which will be better
adapted to the empirical reality and make collaboration
between teammates working apart more efficient. The
second might be to use this comprehension to give us
some insight into the tools needed to support
communications in a distributed software development
environment with the intention of creating what some call
the “virtual 30 meters” [9].

In this paper, we explain our research methodology in
broad strokes and present some preliminary results which
demonstrate not only the significance of our data, but also
the relevance of our approach.

2. Research Methodology

Empirical studies have been becoming more and more
popular in the past few years in software engineering, in
parallel with the growing popularity of people-centered
researches. Indeed, researchers must innovate in order to
study this new topic of interest, namely people, by
borrowing certain techniques used in the social sciences,
such as psychology and sociology. Our research
methodology has been inspired by several papers [4],
[11], [18], [19] as well as aforementioned studies which
have examined the human aspects of software
engineering, but has been to some extent adapted to the
field investigated in this study. Below, we give a general
description of our research methodology.

2.1. Research Objectives

As stated above, good communication is the sine qua

non of software development processes in obtaining
quality products which meet user needs on time and
within budget [2], [3], [13], [14], [16]. Research has
shown the non-negligible importance of informal
communications [12], [14], [16], while some has
specifically highlighted the fact that distance in global
software development is a challenge to informal
communications which can generate problems of
coordination [6], [7], [8], [9]. However, no research has
described the content of this type of communication.
These elements led us to define the following research
objectives:
 To design a model of the ad hoc collaborative

activities found in an industrial software engineering
setting and characterize them, as well as to identify
and describe the content of the communications that
ensue.
 To generate a series of hypotheses emerging

from the results of this research which could later be
validated by confirmatory research.

2.2. General Approach

These objectives will be achieved by means of

participant observation. This technique is suitable in
exploratory research like ours where the goal is to
inductively generate theories from direct observations,
also called grounded theory, rather than to empirically
verify a hypothesis formulated in advance [1], [10], [17].

2.3. Target-setting

The target is a team of eight individuals which

develops software for commercial purposes in a large
international company which has been in operation for

several years and which has a well-established software
development process. It should be noted that, even though
the observations are made in a large company, this last
contains attributes of small or medium-sized
organizations since the work is divided among small
teams like the one that is participating in our research.
Also, the members of this team are highly representative
of developers in the industry, in terms of the wide variety
of their ages, software development experience, schooling
and length of service in the company.

2.4. Data Collection

The data collection phase, which lasted 8 weeks, is

done. The methods used during this phase were selected
following an earlier ethnography period of several
months. The data collected during this period includes:
 185 hours of audio-video recordings of working

sessions
 2496 electronic mails exchanged by the 8

teammates
 A daily backup of the source code and other

artifacts found in the field
Audio-video recordings were preferred over field

notes because they offer the enormous advantage that
they can be consulted many times over. This is very
important in exploratory research like ours where we do
not necessarily know in advance what to observe. E-mails
were automatically captured by triggers defined in the
messaging software used in the company, and include
both those received and those sent to allow cross-
validation. Finally, a backup was made of the source code
and artifacts found to allow further content analysis.

2.5. Data Analysis

The principal method used to analyze the large amount

of data, mainly in the form of the audio-video recordings,
was the Exploratory Sequential Data Analysis (ESDA)
[5]. This method was chosen because it is particularly
well-suited to exploratory research like ours, where
theories have to be induced from empirical data, and,
more importantly, where the sequential information of the
data must be preserved.

Briefly, the ESDA process is iterative. It involves the
definition, sometimes intuitive, of concepts arising from
the ESDA tradition of taking the point of view of the
researcher, subsequently providing a guide as to what to
observe in the raw data and how to manipulate it to derive
data on which theories will be founded. This process is
done iteratively because it is often necessary to step back
in order to add, remove or revise some concept
definitions [5].

Of the eight different ways to manipulate data
proposed by ESDA, encoding is certainly the most

important. This consists of labeling each data sequence
with a code formed from an exhaustive, exclusive and
limited list of categories. This allows qualitative data to
be transformed into quantitative data, which in turn
makes it possible to further manipulate the data, by
performing statistical calculations, for example [5], [17].

3. Preliminary Results

The following results are based on observations made
on the activities of four of the eight developers on the
team over a period of 8 hours each. It does not take into
account e-mail exchanges. Also, the four individuals
observed were chosen because they have been seen to
collaborate more with their teammates than the others.
This choice is justified because our purpose is to study
the content of the ad hoc collaborative activities that
occurred, so that these particular individuals were simply
more likely to give us more data to analyze.

51%

49%

Ad hoc collaborative activities
Other types of activities

Figure 1. Distribution of time spent in ad hoc
collaborative activities in comparison with other

types of activities

As Figure 1 illustrates, 51% of the time spent on the

project by the observed developers is occupied on ad hoc
collaborative activities, in contrast with other types of
activities. This is a surprising result which seems to
strongly confirm the importance of the phenomenon
observed in the target setting, but which needs to be
validated by further analysis on a much larger scale.

47

55

54

48

42 44 46 48 50 52 54 56

Percentage of time spent on ad hoc
collaborative activities

MS1

MS2

MS3

MS4O
bs

er
ve

d
su

bj
ec

t

Figure 2. Percentage of time spent on ad hoc
collaborative activities by observed subject

Figure 2 shows the time spent on ad hoc collaborative

activities per observed subject. It can be noted that the
percentages associated with subjects MS2 and MS3 are
slightly higher than the others. This difference can
possibly be explained by the nature of the work
performed by these subjects since MS2 is the team’s
project manager and MS3 is in charge of the
infrastructure for the software built and often the
problem-solver on the team. An interesting thing to note
is that, in 78% of the interactions in which MS2 is
involved, his interlocutors initiated the interactions.
However, it has been noted in the field that, most of the
time, MS2 shares information by broadcasting a message
to his team via e-mail instead of in peer-to-peer
conversations. Thus, it will be interesting to analyze these
e-mail exchanges. By the way, in each of the 82
interactions observed, an average of 2.3 stakeholders took
part, and their average duration was 6:31 minutes.

As for the ad hoc collaboration activities observed, a
preliminary outline has emerged from the raw data
containing six categories, as follows: “cognitive
synchronization” exists when two or more developers
exchange information to ensure that they share the same
knowledge or the same representation of the object in
question; “problem resolution” occurs when two or more
developers are aware of the existence of a problem and
attempt by various means to solve the problem or to
mitigate it; “development” occurs when two or more
developers contribute to the development of a new feature
or component of the software; “management” is the result
of two or more developers coordinating and planning
activities such as meetings, common working sessions or
scheduling; and “conflict resolution” is the process of two
or more developers taking part in discussions to resolve a
difference of opinion. Ad hoc collaborative activities in
the “not relevant” category, group together all the
interactions that do not concern the project or the
software built.

0%

12%
8%

11%

15%

54%

Cognitive
synchronization
Problem
resoluton
Development

Management

Conflict
resolution
Not relevant

Figure 3. Distribution in number of occurrences
of ad hoc collaborative activities identified

25%

0% 7%
8%

3%

57%

Cognitive
synchronization
Problem
resoluton
Development

Management

Conflict
resolution
Not relevant

Figure 4. Distribution in terms of time spent on
ad hoc collaborative activities identified

Figure 3 shows that, in a little over half the times when

these interactions occur, they do so in the form of
cognitive synchronization, and this tendency is supported
by the data in Figure 4 which show the distribution in
time spent. This is not a surprising finding, since it is well
established that the sharing of information and knowledge
is a crucial element in software development.

Moreover, it can be noted that problem resolution
activities represent only 13% of the occurrences, but that,
in terms of time spent, the percentage rises to 25%. This
suggests that, when they occur, problem resolution
activities take much longer than the others. This is
supported by the statistics of time spent by sequence as
function of ad hoc collaborative activities, which shows
that a mean of 9:48 minutes is spent on problem
resolution.

Finally, another interesting finding is that management
activities, unlike problem resolution, represent 13% of the
occurrences, but only 3% in terms of time spent. In other
words, they are quite numerous relative to the small
percentage of time spent on them. This result probably
tends to support the theory of some researchers to the
effect that informal communications are important in
order that teammates can coordinate their activities
efficiently [6], [7], [8], [9].

4. Conclusion

It is widely held that communication is a crucial

element in software engineering, but, unfortunately, it is
an aspect which seems to be lacking in global software
development and one which must be addressed.

This paper presents an ongoing empirical study on ad
hoc collaborative activities in an industrial software
engineering setting. The general objective of this research
is to gain a better understanding of these kinds of
activities and their content in order to be able,
subsequently, to propose software process enhancements
with the aim of rendering collaboration between
teammates more effective on the one hand, and, on the
other, to obtain some insight into the tools needed to
support communications in a distributed software
development context.

We think that this kind of research is needed, first of
all, because the importance of communication in
distributed environments is poorly understood, but also to
expose any wrong assumptions there may be that are
often mistaken for the truth in software engineering.

Even if further analysis are to be done, the few
preliminary results that were partially presented in this
contribution tend to demonstrate that a data model and
certain patterns are emerging from the vast quantity of
data amassed turning the spotlight on a new facet of the
empirical reality of software engineering which until
today was completely hidden.

5. Acknowledgments

This research would not have been possible without

the agreement of the company in which it was conducted,
and without the generous participation and patience of the
software development team members from whom the data
was collected. To all these people, we extend our grateful
thanks.

6. References

[1] Babbie, E., The Practice of Social Research, 9th
edition, International Thomson Publishing Company,
2001.

[2] P. D’Astous, and P.N. Robillard, “Empirical Study of
Exchange Patterns during Software Peer Review
Meetings”, Information and Software Technology, 44,
2002, pp. 639-648.

[3] P. D’Astous, P.N. Robillard, F. Détienne and W.
Visser, “Quantitative Measurements of the Influence of
Participant Roles during Peer Review Meetings”,
Empirical Software Engineering, 6, 2001, pp. 143-159.

[4] Fenton, N.E. and S.L. Pfleeger, Software Metrics - A
Rigorous & Practical Approach, PWS Publishing
Company, 1997.

[5] C. Fisher and P. Sanderson, “Exploratory Sequential
Data Analysis: Exploring Continuous Observational
Data”, Interactions, 3:2, Mar. 1996, pp. 25-34.

[6] R.E. Grinter, J.D. Herbsleb, and D.E. Perry, “The
geography of coordination: Dealing with distance in R&D
work”, GROUP'99: International Conference on
Supporting Group Work, Coordination and Negotiation,
1999, p. 306-315.

[7] J.D. Herbsleb and R.E. Grinter, “Splitting the
Organization and Integrating the Code: Conway’s Law
Revisited”, Proceedings, International Conference on
Software Engineering, Los Angeles, CA, 1999, pp. 85-95.

[8] J.D. Herbsleb and D. Moitra, “Guest Editors'
introduction: Global software development”, IEEE
Software, 18:2, March/April 2001, pp. 16-20.

[9] J.D. Herbsleb and A. Mockus, “An empirical study of
speed and communication in globally-distributed software
development”, IEEE Transactions on Software
Engineering, 29:6, June 2003, pp. 481-494.

[10] D.L. Jorgensen, Participant Observation A
Methodology for Human Studies, Applied Social
Research Methods Series; v.15, Sage Publications, 1989.

[11] B. Kitchenham and al., “Preliminary guidelines for
empirical research in software engineering”, IEEE
Transactions on Software Engineering, 28:8, 2002, pp.
721–734.

[12] D.E. Perry, N. Staudenmayer and L.G. Votta,
“People, Organizations, and Process Improvement”, IEEE
Software, July 1994.

[13] P.N. Robillard, “The Role of Knowledge in
Software”, Communications of the ACM, 42:1, 1999, pp.
87-92.

[14] P.N. Robillard, and M.P. Robillard, “Types of
Collaborative Work in Software Engineering”, The
Journal of System and Software, 53, 2000, pp. 219-224.

[15] P. N. Robillard, P. Kruchten and P. D’Astous,
Software Engineering Process with the UPEDU, Addison
Wesley, Pearson Education, 2002.

[16] C. Seaman, Organizational Issues in Software
Development: An Empirical Study of Communication,
Ph.D. Thesis, Computer Science Department, University
of Maryland, Technical Report CS-TR-3726, UMIACS
Technical Report UMIACS-TR-96-94, 1996.

[17] C. Seaman. “Qualitative methods in empirical studies
of software engineering”, IEEE Transactions on Software
Engineering, 25:4, 1999, pp. 557–572.

[18] W. Tichy, “Should computer scientists experiment
more?”, Computer, 31:5, 1998, pp. 32–40.

[19] R.J. Walker, L.C. Briand, D. Notkin, C.B. Seaman,
W.F. Tichy, Panel: “Empirical Validation-What, Why,
When, and How”, Proceedings, International Conference
on Software Engineering, Portland, Oregon, 2003, pp.
721-722.

An empirical study on Global Software Development:
Offshore Insourcing of IT Projects

Rafael Prikladnicki, Jorge L. N. Audy, Roberto Evaristo
School of Computer Science, PUCRS, Porto Alegre, Brazil; University of Illinois, Chicago, USA

rafael@inf.pucrs.br, audy@pucrs.br, evaristo@uic.edu

Abstract

The objective of this paper is to present lessons learned
from a case study conducted in a Brazilian software
development unit owned by a multinational organization. The
focus of this study is to understand the factors that enable
multinationals and virtual corporations to operate successfully
across geographic and cultural boundaries. Since the number
of organizations distributing their software development
processes worldwide keeps increasing, this change is having a
profound impact not only on marketing and distribution but
also on the way products are conceived, designed, constructed,
tested, and delivered to customers. Our results show empirical
results towards the identification of problems the
organizations involved in offshore insourcing of IT projects
have faced when going global.

1. Introduction

Software has become a vital component of almost
every business. Success increasingly depends on using
software as a competitive advantage [1]. More than a
decade ago, many organizations began to experiment with
remotely located software development facilities (also
called Distributed Software Development - DSD) seeking
lower costs and access to skilled resources. Economic
forces are relentlessly turning national markets into global
markets and spawning new forms of competition and
cooperation that reach across national boundaries [2].

This change is having a profound impact not only on
marketing and distribution but also on the way products
are conceived, designed, constructed, tested, and
delivered to customers. For these reasons, DSD has
attracted a large research effort in software engineering
(i.e., [1]; [2]; [3]; [4]; [5]; [6]). The search for such
competitive advantage forces organizations to search for
external solutions in other countries, and foster the Global
Software Development (offshore sourcing). This
epitomizes the traditional problems and the existing
challenges.

The two main options currently under use include
offshore outsourcing (contracting services with an
external organization located in another country) as well
as offshore insourcing (contracting with a wholly owned
subsidiary also located in another country). The first has
become fairly common, but difficulties abound in trying to
develop a relationship with an unknown foreign partner
that is time and geographically distant. Such issues have
led select organizations to create their own software
development centers in countries like India, Russia,
Brazil, Ireland, etc. Although offshore insourcing
bypasses some of the tough contracting difficulties found
in organizations that are involved with traditional offshore
outsourcing, a whole different set of issues is created. And
this is what we are trying to address in this paper.

This paper focus on problems that organizations
(specifically those involved in offshore insourcing) have
faced when going global in software development and
how these problems have been addressed. The research
question can be defined as: What are the main issues
related to the performance of IT projects when developed
in an offshore insourcing environment, and how each
issue can be addressed?

In order to answer the research question, a case study
was conducted identifying some of the difficulties, and
solutions involved. This research has as purpose to
explore the main issues found in the case study, looking
for improvements in projects being developed in this
environment. The results are analyzed and the existing
challenges identified. Our contributions are the lessons
learned from the case study.

This paper has the following structure: section 2
presents the theoretical base; section 3 describes the
research method; section 4 describes the case study;
section 5 discuss the results found in the case study and
presents the lessons learned; section 6 presents the
conclusions, future studies and the research limitations.

2. Theoretical Base

2.1. Global Software Development (GSD)

As said by Pressman [7], software process is defined
by a set of activities, methods, practices and technologies
that people and companies use to develop and to keep
related software and products. The interest in the software
process is based on the following premises:

- The software quality is strongly dependent on the
quality of the process used in its preparation;

- The software process can be defined, managed,
measured and improved.

However, even using a well-defined development
process it is not a simple task to develop software. As part
of the globalization efforts currently pervading society,
software project teams have also become geographically
distributed on a worldwide scale. This characterizes
Global Software Development (GSD).

Organizations search for competitive advantages in
terms of cost, quality and flexibility in the area of software
development [8], looking for productivity increases as
well as risk dilution [9]. Many times the search for these
competitive advantages forces organizations to search for
external solutions in other countries (offshore sourcing).
This epitomizes the traditional problems and the existing
challenges in GSD.

GSD causes a profound impact on the way the products
are conceived, designed, constructed, tested, and
delivered to customers [1]. Thus, the structure needed to
support this kind of development is different from the one
used in collocated environments. Different characteristics
and technologies are needed, increasing the necessity of
considering some details not perceived before. GSD has
diverse effects on many levels, including strategic issues,
cultural issues, knowledge management and technical
issues.

Tools and technological environments have been
developed over the last few years to help in the control
and coordination of the development teams working in
distributed environments. Many of these tools are focused
in supporting procedures of formal communication such
as automated document elaboration, processes and other
non-interactive communication channels.

Nowadays, some studies can be found in the literature,
proposing some models for global software development.
These studies consider both technical and non-technical
factors.

2.2. Offshore Sourcing

Offshore sourcing of IT work is increasingly occupying

the attention of IT managers in U.S.-based firms. The term
“offshore sourcing” includes both offshore outsourcing to

a third-party provider as well as offshore insourcing to an
internal group within a global corporation [10].
Organizations that avail themselves of outsourcing
services can concentrate in its core businesses, potentially
reducing the software development team. The
combination of these factors results in a significant
reduction in time and cost of software development.
Insourcing organizations have as advantages the domestic
accountability, since they utilize their own resources from
the organization software development centers.

IT managers are being pressured to contain costs in
addition to ramping up projects quickly, finding
experienced staff in fast-moving technologies, and
innovating constantly with IT. To acquire the IT
competencies that address these challenges, IT managers
can choose one of two strategies: either outsource to a
domestic supplier or go offshore. The foreign sourcing of
IT work is growing based on some reasons:

- Technologies for managing and coordinating work
across geographic distances have matured
considerably;

- Offshore organizations (both internal and third-
party) have improved their software development
and project management capabilities.

In the study conducted by Carmel and Agarwal [10], it
was identified that the offshore IT sourcing is maturation
process and have some stages. The authors proposed four
stages in a model called SITO (Sourcing of IT Work
Offshore). Each stage in this model is characterized by a
set of strategic imperatives and internal firm dynamics.

In the study, the authors understand that technology
companies that are in the stage four have different
organizational structures and mechanisms than the other
companies. The first idea was that these firms have
accumulated considerably more experience in offshore IT
sourcing, but they usually preferred to own their IT units,
and this can lead to many difficulties in terms of software
development.

3. Research Method

This research is exploratory in nature based on case
study [11]. The case study was developed in a software
development unit owned by a multinational organization
with worldwide units. The organization works with
computer manufacturing and support and is recognized as
SW-CMM1 level 2. It has software development units
responsible for internal client demand worldwide. Its
headquarters are located in the U.S.

The data collection was constituted of primary sources
(interviews) and secondary sources (document reviews

1 SW-CMM is one of the CMM models used for software

engineering organizations (http://www.sei.cmu.edu).

and software development process). Considering the
respondents, we interviewed 11 people – located in Brazil
– from two projects. They represented project team
members, development managers, quality assurance team
members, software process improvement responsible and
individuals representing the organization strategic level.
We developed two questionnaires, each considering a
specific dimension to be explored: organizational
dimension, containing information about the organization
as a whole and the strategies involving GSD, and the
project dimension, containing information related to the
projects selected to be part of this study.

4. Case Study

The case study was developed in the software
development unit located in Porto Alegre, south of Brazil.
This center aims to perform worldwide technological
development for the organization. Almost all projects are
distributed, mainly global, since customers and users are
located in offices around the world. It has 120
collaborators working in software development and all
clients are internal to the organization. The software
development process is based on the MSF (Microsoft
Solutions Framework), and also on known methodologies,
like RUP (Rational Unified Process), PMI (Project
Management Institute). The unit studied is recognized as
SW-CMM level 2 since January of 2003.

Considering the reasons to invest in global software
development, the individual representing the strategic
level of the organization pointed out the following items:

- Cost reduction;
- Expanding strategy to global markets;
- Consolidate the organization trademark outside

the U.S.;
- Global standard of software development.

The interviews were conducted considering two global

projects each one from one department in the
organization. For both projects we considered the
interaction among (inter-group) project team, users and
customers and the interaction inside (intra-group) each
group.

5. Case Study Results

5.1. Difficulties found

According to the interviews conducted in the
organization, the GSD difficulties are related to the
requirements engineering, lack of standards of the
activities between distributed teams, the difficulty of share
information and the lack of a well-defined software
development process. Besides that, corroborated by

Carmel [2], and Evaristo [6], there were difficulties
concerning language barriers and communication, cultural
differences, context sharing and trust acquisition between
teams (Table 1).

Table 1. GSD difficulties found

GSD difficulties
Requirements engineering

Software development process
Standards

Communication and language
Culture and context sharing

Trust

Requirements engineering was considered as a

continuous difficulty, involving requirements elicitation,
analysis, specification, validation, and management. Some
individuals interviewed mentioned that since the project is
distributed in multiple sites, there is a necessity of having
as detailed a set of requirements as possible.

The software development process itself was
considered a large difficulty since sometime distributed
teams are not using the same process. In addition,
software configuration is a critical issue, being the source
of many problems related to the development (artefacts
with different versions and content in each site).

Communication and language problems were
motivated by the cultural differences between both the
dispersed individuals and the sites. Finally, trust was also
a problem, mainly the necessity of a distributed trust
acquisition.

5.2. Solutions

Although there are many possible solutions for each
difficulty identified, the organizations focused their
solutions mainly on the need for work standardization,
investment in planning, and process engagement. It was
also mentioned the integration and ways to increase trust
between global teams, and continuous training, also
mentioned by [6]. (Table 2):

Table 2. Solutions implemented

Solutions
Planning
Training

Standardization
Requirements Engineering

Trust and integration

The initial planning was a necessity identified to select

the projects to be distributed, evaluating its characteristics
and the unit availability to receive it. Moreover, it was

perceived that the process engagement plays an important
role to start the interaction between distributed teams.

Another solution implemented was training in soft
skills (non-technical factors). Topics explored included
leadership, communication, culture, context sharing,
project management, and technical training.
Standardization was adopted when the distributed teams
were not using the same process. Three strategies were
considered: forcing standardization; blending
methodological components from the various sites into
one “new” methodology; and imposing high-level
guidelines.

The organization is investing in face-to-face
requirements elicitation. But this depends on the project
characteristics and travel limitations. There was a big
effort in having formal approvals for artefacts in every
project. Finally, integration activities are being conducted,
aiming at trust acquisition. Some of these activities are
developed virtually, but most of them occur when teams
(or part of it) meet each other face-to-face.

5.3. Critical Success Factors

The critical success factors identified are directly
related to the organizational “modus operandi”. For the
same activity we can have different factors, each one
related to the strategy adopted by each organization.
Consolidating the results of this study, we identified the
following critical success factors (Table 3):

Table 3. Critical Success Factors

Critical Success Factors
Software Development Process

Training
Planning and Engagement

Infra-Structure
Team integration

Communication and Feedback

The software development process was considered one

of the most important success factors for distributed
projects. A large investment in training resulted in an
improving relationship. The initial planning was important
to evaluate distributed projects correctly and to select the
proper unit to receive each project. The process
engagement was considered a success factor because it
was the first contact between the teams in some projects.
Likewise, integration activities were also a success factor
because it improved individuals’ soft skills, increasing
trust and minimizing cultural differences. Finally,
integration improved the communication and feedback.

6. Lessons Learned

The study conducted in the organization shows many
characteristics of GSD (section 4). These characteristics
were identified based on the difficulties, solutions and
critical success factor found and listed previously.

In spite of being an offshore insourcing software
development center that has been recently set up (two
years), when we examine how the head office and its
Brazilian branch conceived and conducted the offshore
project development, we can infer a series of lessons.

In this section we will present some of the lessons
learned based on the empirical results found.

Table 4. Lessons Learned

No. Lesson
#1 The existence of a global and well-defined software

development process is very important in distributed
projects

#2 Requirements engineering is the main challenge for
the software development process point of view

#3 The planning phase is important to organize and
manage the distributed projects properly

#4 The project management, and in particular risk
management need additional effort and steps

#5 The investment in recruiting and training global
teams can minimize the difficulties related to the
non-technical dimension

Lesson 1: The existence of a global and well-defined

software development process is very important in
distributed projects

According to Pressman [7], a well-defined process is a
process that has a good documentation, detailing what is
being done (product), when (steps), for whom (actors), the
artefacts used (input) and the developed artefacts
(output/results). Moreover, a life cycle must be selected as
the starting point for any project.

The study showed that all projects without a well-
defined process had many difficulties, some of them
related to the process (requirements, configuration
management, testing, etc.), and others inherited, as
communication, synchronization and trust. Thus, a single
and well-defined process in accordance with the project
environment can be the solution for many difficulties in
global development.

Lesson 2: Requirements engineering is the main

challenge for the software development process point
of view

Requirements engineering plays an important role in
the software development. A requirement is the condition
or capacity that a system that is being developed must

satisfy [12]. Therefore, the compliance with requirements
determines the project success or failure. Requirements
are identified, registered, organized and verified during
the project development, and are essential to keep the
agreements among project team, users and customers.

The problems related with requirements engineering
are one of the main reasons for software projects failures
[12]. Research has identified [12] that 70% of the
requirements were difficult to identify and 54% were not
clear and well organized. Therefore, it is not difficult to
find errors in requirement specifications with a resulting
large impact in the project costs. It is clear that the earlier
a problem is detected and solved (especially during the
requirements phase) the earlier other problems are
minimized in the following phases [12].

Almost all project managers and technical leaders
interviewed pointed out difficulties related to
requirements engineering activities. One project had the
requirements instability as the main problem, mainly
because the distance between teams, compromising
understanding and agreement between parties. In all
projects the requirements were identified as a challenge,
involving activities like meetings, requirements
documentation as soon as defined, traceability,
requirements control and management.

Lesson 3: The planning phase is important to

organize and manage the distributed projects properly
To define strategies of an organization in the

information systems area based on a formal planning
process is a challenge [13]. The lack of a formal planning
phase can be one of the main problems before the
software development process. According to [14], the lack
of a formal planning phase causes a great number of
problems in the next phases.

In the study, it was identified the initial planning as a
formal and basic phase to decide if a project has
characteristics to be distributed and to plan its
development. Thus, the planning basically involves the
definition of the strategies, which will lead the
development of the whole process. Based on the case
study, it is possible to consider the planning phase as a
former cycle of many projects cycles derived from the
planning process.

Lesson 4: The project management, and in

particular risk management need additional effort and
steps

According to the Project Management Body of
Knowledge [15], project management is the application of
knowledge, abilities and techniques to plan activities that
can reach the needs and expectations of all stakeholders
involved in a project. Bad project management can mean
the loss of the project and the resources involved.
Therefore, risk management is one of the most important

activities in a project, involving the identification;
treatment and elimination of risk sources before it become
a concrete threat for the project. Risks can also be treated
in different levels.

In the study, all activities involving project
management and risk management have a huge
importance for distributed projects and the managers
interviewed said that in distributed projects these activities
take longer than in traditional projects (collocated),
requiring a larger effort and some additional steps in the
traditional models. Additionally, all risks concerning the
decision of sending a project to be developed offshore
were considered in the project risk management.

Lesson 5: The investment in recruiting and training

global teams can minimize the difficulties related to
the non-technical dimension

In global development, project managers have to
organize and manage projects with a team composed by
individuals from different cultures, with different customs.
According to Kiel [16], the technical barriers are
diminishing rapidly. On the other hand, the human factors
are less studied. Therefore, when distribution ultimately
fails, it can be a web of social, cultural, linguistic and
political factors, rather than use or misuse of specific tools
or techniques [16]. There are other factors that can be
added to this list (communication, context, interpersonal
relationship), but this study brought a very important
conclusion. The lack of investment in the recruiting and
training of project teams to be global teams can lead to
unexpected problems in the project development.

Organization’s policy included investing in team
training, focusing communication, cultural differences,
trust, and context sharing. As a result of this initiative, the
interactions between distributed teams (including
customers, users and project team), were easier. Problems
identified before the training started to occur less
frequently, showing that the management of distributed
teams is a key to the project success.

7. Conclusions

Any software professional knows that even collocated
software development is fraught with difficulties. The
entire field of software development, or software
engineering, is still maturing. It is becoming harder to
justify completing a software development project inside
company walls.

As the software community appreciates the economy of
merging diverse development skills and domain expertise,
and as communication media become more sophisticated,
the cost and technology pushes more companies toward
global software development. It is becoming less and less

cost-effective or competitive to develop a software
product in the same building, company, or even country.

Improvements in tools and methods over the last
several decades are allowing groups from different
locations and backgrounds to come together as a global
software development team. Moreover, GSD is leading
the researchers to acquire new knowledge and to be more
interdisciplinary.

This paper advances the knowledge in the GSD area by
identifying important characteristics of this recent and
growing field, focusing on the offshore insourcing of IT
projects. We discussed lessons learned based on a case
study in a software development unit from a multinational
organization. These sets of results give us indication that
the search for greater formalism and the selective
utilization of international patterns will provide full
conditions to overcome the problems originating from the
dispersion specifically in the case of wholly-owned
subsidiaries. Planned follow up studies in this topic will
continue to analyze the organizations difficulties and
solutions and will going deep in the study of specific
factors found in this work, like requirements engineering,
risk management, and project allocation, despite of
analyzing how other organizations in similar situations are
dealing with all these problems.

Finally, this project is not only a landmark study in the
area of offshore insourcing, something until recently not
been researched, but also has strong implications to the
more traditional offshore outsourcing. The key reason is
that most of the work currently being done in offshore
outsourcing is seen under the perspective of contracting;
although obviously very relevant, eventually such studies
will need to go further past that issue – which is exactly
what we are proposing to do in the near future.

8. References

[1] Herbsleb, J. D., and Moitra, D. “Global Software

Development”, IEEE Software, March/April, USA,
2001, p. 16-20.

[2] Carmel, E. “Global Software Teams – Collaborating
Across Borders and Time-Zones”. Prentice Hall,
USA, 1999, 269p.

[3] Karolak, D. W. “Global Software Development –
Managing Virtual Teams and Environments”. Los
Alamitos, IEEE Computer Society, USA, 1998, 159p.

[4] Damian, D. “The study of requirements engineering
in global software development: as challenging as
important”, Proceedings of International Workshop

on Global Software Development at ICSE, Florida,
USA, 2002.

[5] Prikladnicki, R.; Audy, J. L. N.; Evaristo, R.
“Distributed Software Development: Toward an
understanding of the relationship between project
team, users and customers”. Proceedings of ICEIS,
Angers, France, 2003.

[6] Evaristo, J. R., Scudder, R., Desouza, K. and Sato, O.
"A Dimensional Analysis of Geographically
Distributed Project Teams: A Case Study,"
forthcoming in the Journal of Engineering
Technology and Management, 2003.

[7] Pressman, R. S. “Software Engineering: A
Practitioner’s Approach”. Fifth Edit, USA, 2001.

[8] Prikladnicki, R., Peres, F., Audy, J., Móra, M. C., and
Perdigoto, A. “Requirements specification model in a
software development process inside a physically
distributed environment”, Proceedings of ICEIS,
Ciudad Real, Spain, 2002.

[9] McConnel, S. “Rapid Development”. Microsoft
Press, Canada, 1996.

[10] Carmel, E.; Agarwal, R. “The Maturation of Offshore
Sourcing of Information Technology Work”, MIS
Quarterly Executive, Vol. 1, No. 2, June 2002, 65-77.

[11] Yin, R. K “Case study research: design and methods”,
Sage, USA, 1994.

[12] Oberg, R., Probasco, L., and Ericsson, M. “Applying
Requirements Management with Use Cases”,
Rational Software White Paper, Cupertino, CA, USA,
2000.

[13] Audy, J. L. N. “Strategic Planning Model of
Information Systems: contributions of decision
process and organizational learning (in Portuguese)”.
Ph. D. Tesis, PPGA – UFRGS, Brazil, 2001.

[14] Martin, J. “Information Engineering (in Portuguese)”.
Rio de Janeiro, Campus, 1991.

[15] A guide to the project management body of
knowledge (PMBOK guide). Project Management
Institute, USA, 2000. 216p.

[16] Kiel, L. “Experiences in Distributed Development: A
Case Study”, Proceedings of International Workshop
on Global Software Development at ICSE, Oregon,
USA, 2003, 4p.

Analyzing Intercultural Factors Affecting
Global Software Development – A Position Paper

Philippe Kruchten
University of British Columbia

Vancouver, Canada
pbk@ece.ubc.ca

Abstract
This position paper presents the efforts we have

undertaken to study the impact of intercultural factors on
global software development projects. A bottom-up
approach looks at the effect of individual intercultural
factors on software practices, while a top-down approach
strives to identify positive or negative organizational and
behavioral patterns.

1. Introduction

Global software development projects may succeed or
fail for reasons that have nothing to do with the
technology, with the time differences, the (tele-)
communications mechanisms used, or the product being
built, but because of subtle intercultural factors. The
issues at stake are not superficial matters of ways of
dressing, working, speaking, in small daily behaviors, but
are founded in the fundamental differences in the systems
of values that govern our lives. A first step that global
organizations have taken in the last 15 years was to raise
the level of awareness of their employees world-wide on
the cultural differences, through various programs of
intercultural or diversity training. But cultural awareness
is not sufficient to overcome many of the obstacles that
cultural differences bring in the way of global project
success. We have started two efforts: first, to take a more
systematic look on how intercultural factors affect
positively or negatively the outcomes of software
development practices. Second, to identify patterns and
anti-patterns (i.e., patterns with negative effects) of
organizational behavior that impact the outcome of
outsourcing or off-shoring of software development
projects.

2. Global software development

A lot of attention has been drawn on the outsourcing
or off-shoring phenomenon, in particular with the
successes of Indian software companies. An estimated
half a million jobs would have “fled” from North
America to India by 2015 [17]. This is not just pure

tabloid hype: I have friends in Vancouver who have lost
their software development jobs to … some other friends
in Bangalore. IT projects are the second largest class of
outsourced activities after call centers.

Most of this attention has been on the economic
aspects, on the labor issues, and as well as on the
communication mechanisms and tools [4], less on the
processes [6], little on culture [16, 18]. A great deal has
been published on how to behave or not to behave when
doing business in this or that country. While useful and
accurate, they often completely lack any depth and
analysis of the fundamental mechanisms at play.

Only recently have a few researchers started to look at
the specific issues of intercultural factors on technical
professions and global projects: Laroche [14], Carmel [4],
Karolak [13], Schneider and Barsoux [20]. Most of the
work published today keeps referring to Hofstede [10], a
study on a large population, indeed, but now almost 40
years old, and performed inside one single company,
IBM.

3. Overall approach

The first part of the study is to identify the impacts of
intercultural factors on software development practices.
The overall approach for this study is as follows:
1. Identify and sort out intercultural factors
2. Identify and sort out a set of practices, representative

of software engineering
3. Identify interesting cultural groups and their profile

on the selected set of intercultural factors
4. Using expert advice, literature studies, and possibly

surveys, make a first attempt at identifying pairs
[practice + intercultural factor] that are significantly
affected.

5. Then, for some elements of this “hot” list of affected
practices, set up experiments to validate and quantify
the effect.

6. Or use post-mortem analysis of real-life projects to
identify occurrences of affected practices
In parallel, proceed with some case studies of

outsourced or global projects, looking at outcomes,

lessons learned and doing a root cause analysis. It could
also provide the basis for point 6 above

The second part of the study is to identify behavioral
patterns that enhance or hinder the outcome of global
projects.

The method used will combine ethnographic studies,
with content analyses, surveys, experiments, trying to
avoid ethnocentrism in the study itself [23], and not to
lose of the specific “emics” elements of a culture.

4. Intercultural factors, or variables

As the primary source of intercultural factors or
variables, we are using the classic works of Edward T.
Hall [9], Geert Hofstede [10, 11], Alan Fiske [6, 7], and
Fons Trompenaars & Charles Hampden-Turner [25].

4.1 Edward Hall: Beyond Culture

One of the pioneers of this field, Edward T. Hall has
looked at communications, and discriminates cultures on
high context and low context communication. Hall also
looked at the way cultures handle time—monochronic
cultures (M-time) versus polychronic cultures (P-time).
Hall also has plenty of other interesting observations on
situational dialects, actions frames, and education.
 Low-high context
 M-time and P-time

Other ideas of Hall about physical distance between
individuals, what he calls proxemics, may not be too
useful in the context of global development.

4.2 Hofstede: Groupthink

Although Hall’s work is based on his own
observations—he had lived with several tribes in the US
Southwest (Hopi, Navajo), and in several countries in
Asia—the Dutchman Geert Hofstede took a completely
different approach. He was given access to a vast amount
of data, uniformly collected across tens of thousands of
employees of a large multinational company (IBM) in the
late 1960s and 1970s, and he used sophisticated (at the
time) multivariate analysis to extract and then interpret
major discriminating factors across cultures, crudely
defined by country.

Here are the five views he came up with, and
compared two by two:
 Power distance
 Collectivism versus individualism (see also [24])
 Femininity versus masculinity
 Uncertainty avoidance
 Long-term versus short term orientation

4.3 Trompenaars & Hampden-Turner:
Reconciling the opposites

Similarly to Hofstede, these two researchers have
defined a slightly different set of discriminating factors,
based on the studies they’ve done as part of a consulting
practice for large multinational companies. They too
distinguish several “views”:
 Universalism vs. particularism
 Individualism vs. communitarianism
 Neutral vs. emotional
 Specific vs. diffuse
 Achievement vs. ascription (attitude toward titles,

degrees,…)
And a few secondary ones, such as:
 Attitude to time
 Attitude to the environment (i.e., nature)
 Gender, race, class, religion

Less known than Hofstede’s, their factors may prove
more usable to analyze a business situation.

4.4 Fiske: Four elementary forms of sociality

 CS: communal sharing: do people treat all members
of a category as equivalent.

 AR: authority ranking: do people attend to their
positions in a linear ordering.

 EM - equality matching: how people keep track of the
imbalances among them.

 MP: market pricing, how people orient to ratio values.

This is a large number of factors. To reduce the

spectrum of possibilities offered by a wide range of
intercultural factors, we may be able to exploit the
concept of synthetic culture profiles introduced by Gert
Jan Hostede (Geert Hofstede’s own son) in [12]. This
would also avoid polarizing on anecdotes and stereotypes
(“Japanese vs. American”, “Brits vs. Greeks”).

5. Software practices

The software engineering practices that are likely to
be affected are not so much the ones fully supported by
machines, automated, or the repetitive, human-intensive
ones, or the ones close to the code or to the bits. The
practices affected are the ones that involve human to
human communication, either at the time they are
performed, or later, in their consequences. Some would
say: “this is covering most of what we do in software”.
Not quite. If we looks at the systematic “CMM level 3”
type of software processes used in global outsourcing
projects, a lot of the nitty-gritty daily work is specified
there, and does not involves too much human interaction.
We can certainly look at how these processes are

themselves tainted by the cultural backgrounds of their
authors (and I am looking at the Rational Unified Process
[15] with that critical eye).

5.1 Agile practices

To find more likely candidates we may look at the
agile set of methods and practices [2], which precisely
have come to rely much more on direct person-to-person
interaction and less on “follow the plan”, “fill the
template”, and “check the boxes” approaches.

The twelve XP practices [3] constitute a good
representative set:
 Collective ownership
 Planning game
 Pair programming
 Customer interaction
 Whole team. Etc.

We should add the practice of:
 Scrum [21].

Unfortunately these practices are often confined within a
single, co-located (and therefore often culturally
homogeneous) team and they are not visible at the hinges
between two cultures in global projects. One exception
however is the interaction with the customer (see §6.2)

5.2 Other practices

 Reviews, inspections and walkthrough
 Retrospectives and post-mortem, process

improvement process
 Wideband Delphi, and other approaches using expert

knowledge
 Planning and estimation, especially scheduling
 Management milestone and other “critical” decision-

making meetings (Project Review Authority, Change
Control Board, etc.)

 Performance reviews, and other HR processes
 Organizational structure, and communication

The matrix of [factors x practice] is quite large. Some
clustering maybe necessary, identifying groups of
practices that are affected in similar ways, and maybe
using one of them at the canonical representative.

6. Examples

To illustrate the approach, here are two [factor,
affected practice] pairs and one pattern.

6.1 Reviews and chronicity

Several impacts have been identified, for example by
Laroche [14]. One such impact he calls:
“time is up: M-time people tend to end the meeting or

conversation at the scheduled end-time, P-time people

tend to end when the conversation runs out of steam
and rarely at the scheduled end time. When they work
together, polychromic people may think that the
meeting ends abruptly, before they have a chance to say
their whole piece. In contrast, M-time people may
consider that polychronic meetings go on past the point
of effectiveness.”

Laroche identifies several other issues: agenda (implicit
or explicit), etc.

Example of occurrence: Quebecers working with
Ontarians, or Spaniards with Germans. Note that none of
the party would either deny the benefits of a review, or
challenge the process, and the mishaps are independent of
the actual technical issues raised.

6.2 Requirement management and power
distance

Thanasankit and Corbitt have studied the factors of
power distance and uncertainty in Thai culture [22].
These factors contribute towards hierarchical forms of
communication and decision making processes in
Thailand, especially during Requirements Engineering.
Their research shows that the decision making process in
Thailand tends to take a much longer time, as every stage
during Requirements Engineering needs to be reported to
management for final decisions. The tall structure of Thai
organizations also contributes to a bureaucratic, elongated
decision-making process during information systems
development. In eliciting/validating/prioritizing require-
ments, often who said what and where that person seem
to appear in the hierarchy is more important than the
needs or the technical issues.

6.3 The proxy pattern

More efficient than across the board intercultural
training, hoping that all will behave in a harmonized and
cultureless fashion, some organizations have found ways
to exploit the talent of very rare individuals, which are
used as proxies. Their life story has made them “bi-
coded” as a colleague calls them: able to operate equally
at ease in two different cultures.

For example, a typical proxy was born and raised in
Asia, came to North America to study, stayed some 6 to 8
years, returned to his country, had a quick and rather
successful career, and then returned to North America to
man a “beachhead” of outsourcing. The proxy operates
relative to his company as a true full-fledge citizen, but
he also has internalized the values and associated
behaviors of North American high tech culture, and
actually spends most of his or her time doing some
“impedance adaptation” between the two cultures.

There is a related “anti-pattern.” Not everybody can
play the role of the proxy. If an individual has not
assimilated completely the 2 cultures, and is for example
promoted from Asia to a position of proxy in North
America merely as a perk, as an award for good
performance at home, that person may effect more
damage in the relationships between supplier and
purchaser of outsourcing.

7. Conclusion and Future Work

There is not much to conclude, this early in our study.
My hope is that a systematic look at impacts and at
patterns will give us insights on how to describe, express,
configure and enact software engineering processes for
global software development, in ways that respect the
specific cultures of all nations and groups involved, or
that even take advantage of the strength of certain groups.

Thanks to Mackie Chase and Leah McFaddyen of

UBC’s Center for Intercultural Communications for
pointing me to useful things to read.

References

[1] N. J. Adler, International Dimensions of Organi-
zational Behavior, 3rd ed. Cincinatti, OH: South
Western College Publ., 1997.

[2] Agile Alliance, Manifesto for Agile Software
Development, 2001. http://agilemanifesto.org/

[3] K. Beck, Extreme Programming Explained:
Embrace Change. Boston: Addison-Wesley, 2000.

[4] E. Carmel, Global Software Teams: Collaborating
Across Borders and Time Zones. Upper Saddle
River, NJ: Prentice Hall, 1999.

[5] E. Carmel, "Tactical Approaches for Alleviating
Distance in Global Software Development," IEEE
Software, pp. 22-29, 2001.

[6] A. P. Fiske, Structures of Social Life: The Four
Elementary Forms of Human Relations. New York:
Free Press (Macmillan), 1991.

[7] A. P. Fiske, "The Four Elementary Forms of
Sociality: Framework for a Unified Theory of Social
Relations," Psychological Review, vol. 99, pp. 689-
723, 1992.

 [8] A. Gopal, T. Mukhopadhyay, and M. S. Krishnan,
"The role of software processes and communication
in offshore software development," Commun. ACM,
vol. 45, pp. 193-200, 2002.

[9] E. T. Hall, Beyond culture. New York: Anchor
Books/Doubleday, 1976.

[10] G. Hofstede, Culture's consequences. Beverly Hills,
CA: Sage, 1980.

[11] G. Hofstede, Culture and organizations--Software
of the mind. McGraw-Hill, 1997.

[12] G. J. Hofstede, P. B. Pedersen, and G. Hofstede,
Exploring culture; exercises, stories and synthetic
cultures. Yarmouth, Maine, USA: Intercultural
Press, 2002.

[13] D. Karolak, Global Software Development :
Managing Virtual Teams and Environments. NY:
Wiley, 1998.

[14] L. Laroche, Managing Cultural Diversity in
Technical Professions. Butterworth-Heinemann,
2002.

[15] P. B. Kruchten, The Rational Unified Process: An
Introduction, 3 ed. Boston: Addison-Wesley, 2004.

[16] J. S. Olson and G. M. Olson, "Culture Surprises in
Remote Software Development Teams," ACM
Queue, vol. 1, pp. 52-59, 2004.

[17] D. H. Pink, "The new face of the silicon age," in
Wired Magazine, Feb. 2004, pp. 94-103, 138.

[18] M.M. Sathyarnarayan, Offshore Development—
Proven Strategies and Tactics for Success,
Cupertino, CA: GlobalDev Publ., 2003

[19] E. H. Schein, Organizational culture and
leadership, 2 ed. San Francisco: Jossey-Bass, 1992.

[20] .S. C. Schneider and J.-L. Barsoux, Managing
Across Cultures. Prentice-Hall, 2003.

[21] K. Schwaber and M. Beedle, Agile Software
Development with SCRUM. Upper Saddle River,
NJ: Prentice-Hall, 2002.

[22] T. Thanasankit and B. J. Corbitt, "Thai Culture and
Communication of Decision Making Processes in
Requirements Engineering," Proceeding of
CATAC’00 Cultural Attitudes Towards Technology
and Communication, Perth, 2000.

[23] H. C. Triandis, Culture and Social Behavior. New
York: McGraw-Hill, 1994.

[24] H. C. Triandis, Individualism and collectivism.
Boulder, CO: Westview Press, 1995.

[25] F. Trompenaars and C. Hampden-Turner, Riding
The Waves of Culture, 2 ed. New York: McGraw-
Hill Trade, 1997.

The Benefits and Limitations of Knowledge Management in Global Software
Development

Torgeir Dingsøyr1, Knut-Helge Rolland2, M. Letizia Jaccheri2,
1SINTEF ICT, 2Dept. of Computer and Information Science NTNU,

torgeir.dingsoyr@sintef.no, {knutrr|letizia}@idi.ntnu.no

Abstract

The role of knowledge management practices and

tools in global software development will be explored
by empirical investigations. These investigations will
look at global software development processes by
taking into special account multicultural factors and
will rely on both quantitative methods for project
selection and qualitative methods for in depth study of
the single project contexts.

1. Introduction

Software development work is becoming global in
the sense that development work is increasingly carried
out in teams that are geographically separated across
national boundaries and cultures. This trend is captured
in commercial software production where parts of the
development activities often are outsourced to low-cost
countries, as well as in ‘open source software’ projects
where development sometimes is global in scope.

The problem we want to discuss in this position
paper are the fact that while software development
becomes increasingly distributed and global in nature,
much of the techniques and tools for improvement still
assume that individuals are co-located. For example,
the principle of pair-programming in the XP approach
was established to improve learning and knowledge-
exchange among programmers [2] and traditional code
inspection methods often assume face-to-face
interaction in terms of more or less formal meetings.

Software development conducted in a distributed
fashion is often referred to as ‘Global Software Work’
(GSW). More accurately, Sahay defines GSW as
“software work undertaken at geographically separated
locations across national boundaries in a coordinated
fashion involving real time and asynchronous
interaction” [9]. Given these characteristics, it becomes
clear that GSW involves different kinds of
complexities compared to traditional software
development where members of the project are more or
less co-located and are therefore able to share their
experiences through face-to-face communication.

Drawing from past experience reported in the
literature on global software development, we can

single out some factors that are of profound relevance.
Previous studies have shown how cultural issues are
directly related to and influence how software is
developed and managed. It has been shown that teams
from different cultures tend to prefer dissimilar
approaches to architectural design. For example, there
are differences in how abstractions are chosen and
what architectural patterns are used [3]. Clearly, an
understanding of these issues would be of profound
importance for managing global software projects
successfully. Moreover, recent research has
underscored the challenge of adopting common and
standardized practices and tools in global software
work and the need for developing a specific
competence to do global product development [8].

However, while the above literature points at some
practices and competencies for successfully conducting
global software development, little is said about how
such competencies can be learned and adopted in other
organizations and domains. Considering the limited
capability of learning in many software development
projects and organizations [6], it is then important to
investigate how organizations and individuals can
facilitate learning both within specific global software
development initiatives and between different projects.

In this position paper we will outline a research
design for studying the limits and benefits of
Knowledge Management (KM) practices and tools for
improving organizations’ capabilities of continuous
learning in global software development projects.

2. Arenas to learn from

Global software development has existed in some
forms since the early eighties in both volunteer
contexts and commercial ones, such as banking
applications. One example of an environment that does
global software development is the Open Source
community [5]. The Open Source community consists
of a myriad of projects, which vary in number of
developers and their organization roles, kind and size
of developed software, degree of involvement of
commercial actors, popularity, vitality, degree of
success, and duration of the project. The slogan “the
success of open sources projects” seems to stem from
the big success of projects such as Linux and Apache
[7].

The software research community has devoted a lot
of attention to the open source world, as can be
deduced for example from the series of open source
workshops in the ICSE context. Many are the questions
which are of interest of the software community when
looking at the open source world. Which are the
successful projects and how do we define this notion of
success in a not profit world? Is success a function of
project vitality? Is success a function of the impact the
open source software has on the commercial market,
such as for example the Linux operating system?

Given that successful open source project are the
focus of our interest, how and what do we want to learn
from them and how do we want to transfer the learned
knowledge into commercial contexts or even into
educational ones? One possibility is that of making
hypotheses about the reasons or causes for success of
open source projects, and then trying to describe these
reasons in order to disseminate them. How does Open
source project implement knowledge management? Is
it the software process model of open source project
which is the cause of success? If we regard a process
model as descriptions of tasks, practices,
responsibilities, tools, and document types, which of
these elements is of most importance for project
success?

3. Knowledge Management: Benefits and
limitations

Learning in the context of software development

has often been limited to different kinds of information
technology support for learning and knowledge-
exchange [4]. For example, there has been much focus
on reusing life-cycle experience, processes, and
products for software development in terms of having
an ‘Experience Factory’ [1]. Likewise, the information
systems literature has emphasized introduction of
‘Knowledge Management Systems’ in order to support
organisation-wide knowledge-exchange and learning.
Arguably, these technologies and knowledge-sharing
practices can play important roles in facilitating
learning in software organizations. However, as there
exists a wide range of different KM practices and tools,
there is thus a growing need for investigating
empirically what kind of KM that is relevant for global
software development. A salient point related to global
software development is also that systematic practices
and tools for KM are perhaps even more relevant for
software development in (globally) distributed settings
there lack of more informal face-to-face interaction
must be substituted with other ways of coordinating
work and ways for facilitating mutual learning between
distributed development teams. On the other hand,
establishing KM practices and tools across different
cultural settings might also be especially challenging
due to cultural differences in how knowledge is
formed, structured and utilized in different countries
[10].

Thus, the literature seems to suggest that there are
both potential benefits and limits for improving
learning through KM in global software development.

Research should be conducted in order to illuminate
these benefits and limits in more detail, and for
increasing the understanding of global software
development in general.

4. Research design

In order to study the new landscape of software
development, it is relevant to draw from different
research disciplines and perspectives in a cross
disciplinary and multi-perspective approach. On the
research method side, we will be open to both the
empirical software engineering community and the
community of research that focuses on explaining
software development in relation to a broader social,
organisational, and economical context.

Our investigations will look at global software
development processes by taking into special account
multicultural factors. On the one hand, there is a need
to use descriptive statistics to get an orienteering map
in the complex world of global software development.
If we look at open source projects for example, it is of
great help to classify them by evaluation parameters,
like number of active users, lines of code, age, vitality,
number of represented countries which help us to
compare them and to choose those which we want to
study in depth.

In this way, we will select a couple of case studies
to capture and describe learning practises and networks
in real-world settings, how tools, techniques, or
concepts are employed. One case will involve Open
Source development, and one will involve global
software development in a commercial setting. We will
select cases involving software development
environments in at least three countries, and projects
that run over a period of at least two years.

Data from the case studies will be collected
according to the following two principles:

• Multiple sources of evidence. We will collect

data from several sources, such as
documentation, archival records, interviews,
direct observations, participant-observation,
and physical artefacts. Analysis will be
assisted by using the qualitative data analysis
tool Nvivo.

• Case study database. We will document the
data collected in the case studies in terms of
notes, documents, tabular materials,
narratives, photographs, and video, and
organise it in a case study database. For this
purpose we will use the facilities offered by
eRoom, which provides a shared, secure
workplace on the Web for the project team.

5. Conclusion

In this position paper, we have argued that software
development is increasingly global, which makes the
complexity of software development larger due to
changing technologies, methods, geographical location
and multicultural arrangements. Knowledge

management tools have the objective to reduce the
problems of complexity in global software
development. Through investigations of practices in
organizational learning, we seek to reach a better
understanding of how knowledge management tools
and learning issues in general function in global
software work. Such an understanding can give the
software engineering community better abilities to see
what kind of knowledge management practices and
tools that are suitable for global development, as well
as new insights on key practices from the open source
community.
8. References
[1] V. R. Basili, Caldiera, G and

Rombach, H.D., "The Experience
Factory," in Encyclopedia of Software
Engineering, vol. 1, J. J. Marciniak,
Ed.: John Wiley, 1994, pp. 469-476.

[2] K. Beck, Extreme Programming
Explained: Addison-Wesley, 190 pp.,
2000.

[3] G. Borchers, "The Software
Engineering Impacts of Cultural
Factors on Multi-cultural Software
Development Teams," presented at
25th International Conference on
Software Engineering (ICSE'03),
2003.

[4] T. Dingsøyr and R. Conradi, "A
Survey of Case Studies of the Use of
Knowledge Management in Software
Engineering," International Journal of
Software Engineering and Knowledge
Engineering, vol. 12, num. 4, pp. 391
– 414, 2002.

[5] J. Feller and B. Fitzgerald,
Understanding Open Source Software

Development: Addison Wesley, 211
pp., 2002.

[6] K. Lyytinen and D. Robey, "Learning
Failure in information systems
development," Information Systems
Journal, vol. 9, pp. 85-101, 1999.

[7] A. Mockus, R. T. Fielding, and J. D.
Herbsleb, "Two case studies of open
source software development: Apache
and Mozilla," ACM Transactions on
Software Engineering and
Methodology (TOSEM), vol. 11, num.
2, pp. 309-346, 2002.

[8] W. J. Orlikowski, "Knowing in
Practice: Enacting a Collective
Capability in Distributed Organizing,"
Organization Science, vol. 13, num. 3,
pp. 249-273, 2002.

[9] S. Sahay, "Global software alliances:
the challenge of ‘standardization’,"
Scandinavian Journal of Information
Systems, vol. 15,, pp. 3-21, 2003.

[10] G. Walsham, "Knowledge
Management: The Benefits and
Limitations of Computer Systems,"
European Management Journal, vol.
19, num. 6, pp. 599-608, 2001.

	Yan.pdf
	Efficient Maintenance Support in Offshore Software Development: a Case Study on a Global E-Commerce Project

	page3: 1
	page4: 2
	page5: 3
	page6: 4
	page7: 5
	page8: 6
	page9: 7
	page10: 8
	page11: 9
	page12: 10
	page13: 11
	page14: 12
	page15: 13
	page16: 14
	page17: 15
	page18: 16
	page19: 17
	page20: 18
	page21: 19
	page22: 20
	page23: 21
	page24: 22
	page25: 23
	page26: 24
	page27: 25
	page28: 26
	page29: 27
	page30: 28
	page31: 29
	page32: 30
	page33: 31
	page34: 32
	page35: 33
	page36: 34
	page37: 35
	page38: 36
	page39: 37
	page40: 38
	page41: 39
	page42: 40
	page43: 41
	page44: 42
	page45: 43
	page46: 44
	page47: 45
	page48: 46
	page49: 47
	page50: 48
	page51: 49
	page52: 50
	page53: 51
	page54: 52
	page55: 53
	page56: 54
	page57: 55
	page58: 56
	page59: 57
	page60: 58
	page61: 59
	page62: 60
	page63: 61
	page64: 62
	page65: 63
	page66: 64
	page67: 65

