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Molecular-dynamics study of mechanical properties of copper
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Abstract. – Mechanical properties of copper have been studied using effective-medium theory
and Molecular-Dynamics simulations. At room temperature we calculate the tensile moduli of
systems that are elongated along different crystal orientations. These moduli are in very good
agreement with the experimental values, the difference being less than 6%. The elastic constants
obtained from simulations were also in good agreement with experiments. In addition, the point
of maximum stress is found to be of the same order of magnitude as the experimental value.
Also crack propagation in systems with periodic boundaries has been studied and micro-voids
are seen to generate near the crack tip. Crack propagation is found to be a result of coalescing
micro-voids.

Introduction. – Recently, the dynamics of fracture has received considerable interest. From
the physics point of view fracture in solid materials involves processes on a wide range of
length and time scales. Theoretically different length scales can be treated with macroscopic
Finite-Element models [1], mesoscopic spring models [2] or by using truly microscopic approach
with interatomic potential. Because in the atomistic case a realistic potential can be hard to
find, approximate pair potentials are often used. For example Morse [3], [4], Lennard-Jones
(LJ) [5], [6] or Johnson [3], [7] potentials are quite common. However, when the Morse and LJ
potentials were compared with a more realistic many-body potential [5], pair potentials were
found to yield brittle behaviour, while ductile materials must be described with a many-body
potential. On the other hand, in dynamic fracture simulations large system sizes are necessary,
which is why so far simulations have mostly been done by using a simple pair potential in a
two-dimensional system [6], [7] or in a system with otherwise less degrees of freedom [8]. Till
recently simulations in 3D with a realistic many-body potential for describing the behaviour
of ductile materials, e.g. copper, could be realized only in small systems [9]. However, with
the rapid development of parallel processing large-scale multi-million atom simulations with
many-body potentials have become feasible [10].

Also in this work we study the elastic properties of copper using a realistic many-atom but
now ab initio type potential obtained from the effective-medium theory. Unlike the simulations
by Zhou et al. [10] —done practically at zero temperature— we have studied the system at
room temperature. One of our goals is to study the goodness of the many-atom potential in
giving reliable results for elastic constants in comparison with the experimentally measured
values and how they depend on the system size. In addition, we study the critical stress and
strain of the system for failure condition. We will also study the propagation and growth of
an initial crack under tensile mode I loading condition along various fcc crystal orientations.
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Fig. 1. – Tensile (a) and shear (b) test setups, where atoms on the fixed boundaries (topmost, maxi-
mum y and bottommost, minimum y) are displaced with time-dependent rate in 3 different crystal ori-
entations (cf. text). Atoms in the shaded areas are in contact with the thermostat throughout the test.

Potential model. – In our model the interactions between copper atoms are described by
the effective-medium theory (EMT) [11], which is an approximate method for calculating the
total energy of an arbitrary arrangement of metal atoms from their spatial positions. EMT
has been shown to be a powerful scheme for describing various bulk and surface properties
of metals [12]-[18]. The many-atom nature of metallic cohesion is crucial in most of these
problems, which is the point where EMT has a clear advantage over the classical pair potentials.
Furthermore, EMT provides a useful scheme to understand the metallic cohesion based on ab
initio calculations using the jellium model and density-functional theory with the local-density
approximation [19]. The main contribution to cohesion comes from the embedding energy of an
atom when it feels the background electron density at its lattice site. There are two corrections:
one arises from the one-electron energy spectrum and the other from the imperfections of the
lattice (so-called atomic sphere correction). While the first correction is important only for
clusters or for some processes at surfaces [18] and therefore not included here, the latter is
important to our study since it largely defines the elastic properties of the system. In this
work we extend the atomic interactions over three nearest neighbours of the fcc lattice [12].
This improves molecular-dynamics results for several thermodynamic quantities and defect
energies [12], [14]. For details of the potential see [12].

Simulation method. – With the above potential model we simulated both tensile and shear
experiments (fig. 1) using the Molecular Dynamics (MD) [20] method. In MD the Newtonian
equations of motion are numerically solved using the velocity Verlet algorithm as the time
integrator [20]. Initially the atoms were placed to the sites of the fcc lattice by adding small
Gaussian random deviation to the coordinates and their velocities were selected from the
finite-temperature (T = 293 K) Maxwell distribution. The system was thermalized with a
Nosé-Hoover chain (NHC) [21] thermostat of length (M = 50) for approximately 6 ps (≈ 700
time steps).

In the tensile test the fixed boundaries were moved apart vertically and in shear test
horizontally (fig. 1). These boundary atoms were displaced from their initial positions using
the time-dependent strain rate ε̇σ(t, t0, α). Here ε̇ = 113%/ns is the maximum strain rate and
σ(t, t0, α) is a sigmoid-function (smooth step) with σ(t, t0, α) = (1 + eα(t−t0))−1, where t is
time and α determines the maximum acceleration. These parameters were selected such that
t0 was the time in which an elastic wave from the fixed boundary can propagate back and forth
the system, and α < 0 was selected such that the boundaries reached 99% of the maximum
velocity in 2t0.

During test only half of the system (atoms near fixed boundaries, see fig. 1) was in contact
with the NHC [21] thermostat (M = 50) at room temperature to mimic heat transfer from
the system to the load. This is because we wanted to minimize the possible disturbance of
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the thermostat on crack dynamics. Three different crystal orientations were studied with
orthogonal x, y, z directions being ([100],[010],[001]), ([011̄],[011],[100]) or ([1̄1̄2],[111],[11̄0]).

Elastic constants. – From the simulation (fig. 1) we determined the tensile and shear
modulus of the system. At room temperature the dependence of these moduli on the system
size was studied in the range of 104–(2.8× 105) atoms. The modulus was obtained for small
values of strain (i.e. Yd,m = ∂σ

∂ε

∣∣
ε=0

) from the second-degree polynomial that was fitted to the
stress-strain data. Here the stress is the force needed for the deformation divided by the area
it acts on. The subsripts d,m denote the crystal orientation of straining, d, and the mode of
the test, m = ‖ for tensile test and m =⊥ for shear test. For relatively large systems (> 105

atoms ≈ 106 Å) the moduli turned out to be independent of the system size (fig. 2).

When the system has periodic boundaries in both x- and z-directions, we may assume
that straining results in a displacement field u(r) = s0εr · h0 − u0. Here ε is the amount
of tensile/shear strain, h0 is the unit vector in y-direction, s0 is the unit vector of straining
(s0 = h0 in tensile test) and u0 is a constant defined by the displacement of the bottom
boundary. Then the strain field is constant and the elastic energy of the system is given by
W = 1

2V Yd,mε
2, where V is the volume of the system and by definition the modulus Y equals

the modulus given in the previous paragraph. For the above displacement field the moduli
Yd,m in terms of the elastic constants cij are [22]{

Y[010],‖ = c11, Y[011],‖ = 1
2c11 + 1

2c12 + c44, Y[111],‖ = 1
3c11 + 2

3c12 + 4
3c44,

Y[010],⊥ = c44, Y[011],⊥ = 1
2c11 −

1
2c12, Y[111],⊥ = 1

3c11 −
1
3c12 + 1

3c44,
(1)

From table I it is seen that the difference in the tensile moduli ranges from 2 to 6% and thus
the agreement is very good. However, in case of the shear moduli the difference is somewhat
larger ranging from 3 to 15%. In the fitted moduli the error bars (≈ two standard deviations)
were of the order 1.5% except for Y[011],⊥, where it was 3%.

Due to the fcc structure of the system, eqs. (1) are not independent, and the following
relations for the moduli are obtained:

Y[111],‖ = 4
3Y[011],‖ −

1
3Y[010],‖ , Y[111],⊥ = 2

3Y[011],⊥ + 1
3Y[010],⊥ . (2)

Let the moduli calculated from eq. (2) be denoted by ∗. Then within the error bars the
values of Y[111],‖/Y[111],‖

∗ − 1 and Y[111],⊥/Y[111],⊥
∗ − 1 range between 1.4–6.1% and 7.5–14%,

respectively. Thus the relations in eq. (2) do not hold within the error bars. However, the
difference is not large (less than 11%) as seen from table I. This difference could be due to
distortions in the fcc structure as a result of straining and finite temperature. In addition, the

40 60 80 100 120 140

160

180

200

220

240

260

System size (Å)

T
en

si
le

 m
od

ul
us

 (
G

N
m-2

) 70

60

50

40

30

20

S
hear m

odulus (G
N

m -2)

Small Large

Fig. 2. – Tensile and shear moduli obtained from simulations. The size of the cubic system is indicated
by the side length of the cube. The crystal orientation from bottom to top boundary is denoted
by ◦ [010], × [011] and + [111]. The solid line stands for tensile moduli and the dotted line for
shear moduli.
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Table I. – Tensile modulus, Yd,‖, and shear modulus,Yd,⊥ (GNm−2) as obtained from simulation tests
along different crystal orientations d. The experimental moduli were calculated from eq. (2) by using
the experimental values for cij . The elastic constants (MD) were calculated with the same equation
using the moduli obtained from simulations. For other quantities see text.

Y[010],‖ Y[011],‖ Y[111],‖ Y[010],⊥ Y[011],⊥ Y[111],⊥

Experimental 168.4 220.3 237.6 75.4 23.5 40.8

MD 178.2 224.3 248.6 73.2 20.0 41.8

c11 c12 c44
Y[111],‖

Y ∗
[111],‖

− 1
Y[111],⊥

Y ∗
[111],⊥

− 1 c12+c44
c11

Experimental 168.4 121.4 75.4 1.169

MD 176.9 132.8 73.7 3.7% 10.8% 1.167

structure of copper is not ideal fcc near the boundaries [16], which can be important for small
system sizes.

The elastic constants cij were solved from the simulated moduli by using eqs. (1) and the
least-squares method. These results are given in table I, where the difference ranges between
2% and 10%. It is known that the Cauchy relation c12 = c44 holds for pair potential models [23],
but this has not been observed to be the case for metals. For example in case of copper we get
a ratio c12/c44 = 1.81, while the experimental value is 1.61. However, table I shows that also
copper obeys the approximate relation for cubic crystals [11], i.e. (c12 + c44)/c11 ≈ 1. From
these comparisons we conclude that EMT describes surprisingly well the elastic properties
of copper.

System strength. – When the system is strained much beyond the linear elastic region it
fails at some point. However, when some of the boundaries were free, fracture was not observed
at that point, only a sharp drop in the stress vs. strain curve occurred. It is well known [24]
that in fcc crystals plastic deformation often takes place as slip, and the resulting slip plane
is a {111}-plane. In the simulations with y = [011] and z = [100] this process was seen in the
system with free boundaries. Also the resulting strength was very small (cf. table II). The
same slip planes were also seen for y = [010]. However, when the boundaries of the system
were set periodic, slips could not occur in tensile loading tests. Therefore it is understandable
that such systems appear strongest.

Brenner [25] has studied the strength (maximum stress) of copper whiskers —which are
very small, chemically very pure and almost dislocation-free pieces of copper— to find the
dependence of strength on the system size. In his study different size whiskers were elongated in
the [111] crystal orientation and the strength was found to increase with decreasing system size
and to decrease with increasing disorder. In large systems, however, the strength also depends
strongly on defects in the bulk and on free surfaces [26]. Brenner found the strength of the
smallest system to be 2.9 G Nm−2, while our simulations gave a value of about 10 GNm−2 in
the same crystal orientation (table II) but in an extremely small and completely dislocation-free
system. In addition, from table II it is evident that boundary effects are very significant. In
his studies, Doyama [9] applied tensile strain in the [001] orientation to a considerably smaller
system, 4338 atoms, with free boundaries and embedded atom potential, and found a failure
strain of 10%, which is close to our 8.5%. From all these it seems that EMT describes well the
strength of the system without defects.

Crack propagation. – In the simulations of the system with free boundaries crack propaga-
tion was not seen. However, when a system with periodic boundaries failed, crack initiation
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Table II. – Maximum tensile stress (σf , GNm−2) and strain (εf , %) along different crystal orienta-
tions and with various boundary conditions. The size of the system is (70 Å)3 ≈ 3× 104 atoms.

Free x and z Free x, periodic z Periodic x and z

σf εf σf εf σf εf

[010] 6.3 8.5 6.6 8.0 15.1 15.5

[011] 4.4 4.5 11.7 9.5 14.3 12.0

[111] 9.8 6.5 11.2 7.0 15.6 10.5

was seen, because plastic Poisson-type contraction cannot occur. When a crack initiated, a
free surface (that of the crack) was generated into the system. As the energy of the system
depends on its electron density and the initial density is energetically favourable, the crack
becomes larger, thus resulting in crack propagation.

In order to study how such a mode I crack propagates, we made a small initial void to the
centre of the system to serve as a crack seed. With the crystal orientations given above, the
system was elongated in the y-direction while in the other directions periodic boundaries were
imposed. The crack seed (4×4 atoms wide tube in the periodic z-direction) was introduced to
the centre of the system. When the system was elongated in [010] orientation, the crack grew
such that its speed in the x-direction was roughly twice the speed in the y-direction. Later,
however, the crack grew mainly into the [1̄1̄0]-orientation (see fig. 3 (a)). When the elongation
was in [011] orientation, the crack propagated fairly easily in the x-([011̄])-direction. However,
in the z-([100])-direction the crack propagation was observed much later. Thus the crack
formed a tube to the system in the x-direction, but the rest of the system forming a “neck” in
that direction could still carry load, see fig. 3 (b). There it was also seen that crack propagation
in this case was a result of micro-void coalescence. In both cases the crack seemed to favour
the 〈110〉 crystal orientation.
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Fig. 3. – System with initial crack seed elongated in the vertical y-direction, being [010] in (a) and
[011] in (b), while the respective horizontal x-directions are [100] and [011̄]. The z-coordinate is shown
as shading of the atoms. The total strain is 25.4% in (a) and 16.6% in (b). The system is divided into
four layers in the z-direction such that (i) is furthest away and (iv) nearest. Periodic boundaries are
used in both the x- and z-direction. The system consists of 15 atomic layers in the z-direction and
the number of atoms is ≈ 2× 104. Crack propagation in the 〈110〉 orientation is seen in both systems.
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Summary. – Mechanical properties of copper were studied using effective-medium theory
and Molecular Dynamics method. At room temperature the elastic constants were found to
be in agreement with experimental values. The strength in terms of maximum tensile stress of
the system was also found to be in agreement with experimental findings. In the study of crack
propagation micro-voids were seen to generate near the crack tip and the crack propagation
was a result of coalescing micro-voids. In addition the crack seemed to favour the 〈110〉 crystal
orientation, in which it grew faster than in other orientations.

Based on this high level of agreement with experimental data we conclude that EMT
molecular-dynamics simulations can serve as reliable and realistic tool for studying such com-
plicated mechanical processes in metals as fracture in a sample containing grain boundaries,
voids or impurities. In future studies these issues will be addressed.
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[12] Häkkinen H. and Manninen M., J. Phys. Condens. Matter, 1 (1989) 9765.
[13] Stoltze P., Jacobsen K. W. and Nørskov J. K., Phys. Rev. B, 36 (1987) 5035.
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