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p > 2, with the optimal rate 1√

n
if the funtion we start with belongs toMalliavin Sobolev spae D1,p . For other Lp funtions, the Lp onver-gene rate of the approximation error depends only on their frationalsmoothness, and vie versa.Keywords: Besov spaes, Malliavin Sobolev spaes, stohasti integrals,approximation, Lp onvergeneMathematis Subjet lassi�ation: 60H05, 41A25, 60F251 IntrodutionThe main tasks of this paper are to estimate the disretization error of astohasti integral, i.e.

∫ 1

0

φ(s, Ws)dWs −
n
∑

i=1

φ(ti−1, Wti−1
)(Wti − Wti−1

)
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in the Lp norm with p > 2, where ∫ 1

0
φ(s, Ws)dWs = f(W1) − E ( f(W1) ),and to onnet the onvergene properties of the error to the smoothnessproperties (in the Malliavin sense) of the funtion f .We extend some onvergene results that are known in the L2 ase tofuntions in Lp, p > 2. In appliations suh as stohasti �nane, this kind ofimprovement in integrability leads to better tail estimates, and thus to moreaurate estimates of risk. Mathematially, this step out of orthogonalityis not trivial, and we employ new tehniques. For an introdution to theliterature onerning similar results in L2, see e.g. [8℄.For simpliity, this paper is restrited to stohasti integrals with respetto the Brownian motion. Appliations in option priing require a positiveprie proess, suh as geometri Brownian motion. This work serves as the�rst step towards similar results for suitable prie proesses. In the ur-rent form, these results an be applied to simulations of stohasti integralsretaining the martingale property (for more details, see e.g. [8℄, p. 2).We begin by establishing notation and disussing the results of the paper.1.1 NotationLet (Ω, F,P, (Ft)t∈[0,1]

) be a stohasti basis, and let W = (Wt)t∈[0,1] be astandard Brownian motion, with ontinuous paths and W0 = 0 for all ω ∈ Ω.Assume that (Ft)t∈[0,1] is the augmentation of the �ltration generated by Wand that F = F1. Let f : R→ R be a Borel funtion satisfying f (W1) ∈ L2and de�ne the funtion F : [0, 1] ×R→ R by setting
F (t, x) := E ( f (W1) | Wt = x) = Ef(x + W1−t).Then F ∈ C∞([0, 1[×R) (see e.g. [10, Lemma A.2℄ or [9, p. 4℄) and satis�es
{

∂F
∂t

+ 1
2

∂2F
∂x2 = 0, 0 ≤ t < 1, x ∈ R

F (1, x) = f(x), x ∈ R (1)and by It�'s formula, f(W1) = F (1, W1) = Ef(W1) +
∫ 1

0
∂F
∂x

(s, Ws)dWs a.s.We disretize the integral on the interval [0, t] with t ≤ 1 using a deter-ministi time net τ (n) := (tni )n

i=0 with 0 = tn0 < tn1 < . . . < tnn = 1, and getthe approximation error proess
Ct(f, τ (n)) :=

∫ t

0

∂F

∂x
(s, Ws)dWs −

n
∑

i=1

∂F

∂x
(tni−1, Wtni−1

)
(

Wtni ∧t − Wtni−1∧t

)

.Moreover, we denote the size of the time net τ (n) by
∣

∣

∣

∣τ (n)
∣

∣

∣

∣

∞ := max
1≤i≤n

|tni − tni−1|.2



For onveniene, we denote by τn the equidistant time net of n + 1 timepoints, i.e. τn =
(

i
n

)n

i=0
and ||τn||∞ = 1

n
.Throughout the paper, γ denotes the standard Gaussian measure on thereal line.Furthermore, we use the notation A ∼c B with c > 0 for the two-sidedinequality c−1A ≤ B ≤ cA.1.2 ResultsThe �rst result, Theorem 1.1, laims that if f is smooth enough, i.e. Lp(γ)integrable for some p > 2 and di�erentiable in the Malliavin sense with deriva-tive in Lp(γ), then the Lp norm of the �nal approximation error C1(f, τ) on-verges to zero as the timenets get tighter, with the rate ||τ || 12∞. For equidistanttime nets with n time steps this rate equals 1√

n
, whih is optimal as long asthere are no onstants a, b ∈ R suh that f(W1) = a+ bW1 a.s. (whih wouldlead to zero error with any time net); see [9℄ and the referenes therein forgeometri Brownian motion - the same applies to the Brownian motion. SeeDe�nition 2.4 for the exat de�nition of D1,p(γ).Theorem 1.1. Let 2 < p < ∞. If f ∈ D1,p(γ), then there exists a onstant

c(1.1) > 0 depending only on p and f suh that
||C1(f, τ)||Lp

≤ c(1.1) ||τ ||
1
2
∞for any time net τ = (ti)

n
i=0.The ase p = 2 is inluded in [8℄ and [12℄ and will be used in the proof ofTheorem 1.1.The seond result, Theorem 1.2, reveals a lose onnetion betweensmoothness of f and the onvergene rate of the Lp norm of the �nal error:the rate ( 1√

n

)θ, where 0 < θ < 1, is ahieved if and only if the funtion f hasits frational smoothness index equal to θ. Frational smoothness is mea-sured by interpolating between �smooth� (Malliavin di�erentiable D1,p(γ))funtions (index 1) and all Lp(γ) funtions (index 0), see De�nitions 2.4 and2.11.Theorem 1.2. Let 2 ≤ p < ∞ and 0 < θ < 1. Then
||f ||θ,∞ ∼c(1.2)

sup
n

{

n
θ
2 ||C1(f, τn)||Lp

}

+ ||f ||Lp(γ)for some onstant c(1.2) > 0 depending only on p and θ, where ||f ||θ,∞ denotesthe norm of f in the interpolation spae (Lp(γ),D1,p(γ))
θ,∞.3



The proof of Theorem 1.2 is independent of Theorem 1.1. The ase p = 2in Theorem 1.2 has already been studied in [8℄ and [12℄ but with a di�erentproof. Here it is treated along with the general ase.It is not known to the author whether the onverse of Theorem 1.1 is truefor p > 2. However, Theorem 1.2 shows that Theorem 1.1 is nearly sharp:Corollary 1.3. Let 2 ≤ p < ∞. If
||C1(f, τn)||Lp

≤ c

(

1

n

)
1
2for all n = 1, 2, . . . and for some c > 0 not depending on n, then

f ∈
⋂

0<θ<1

(Lp(γ),D1,p(γ))
θ,∞ .For the proof of the orollary, notie that the ondition C1(f, τ1) ∈ Lpimplies that f ∈ Lp(γ).One more result, Theorem 5.3 is presented in Setion 5, showing how theonvergene rate 1√

n
is possible also when f is not smooth, provided we takespeial non-equidistant time nets instead of equidistant ones. This diretionis open for more development (see Setion 6).Setion 2 ontains de�nitions and basi results that will be needed lateron. Some of these results are proven in the appendix.Setion 3 is dediated to the smooth ase: Theorem 1.1 is proved byinterpolation using earlier results onerning L2 approximation.The ore of the paper is Setion 4, where we disuss the proof of The-orem 1.2. Frational smoothness is �rst onneted to the growth rate ofthe �rst and seond derivatives before approahing the original question ofapproximation rates.In Setion 5 we apply the results to some usual examples, and make anobservation about how we an improve the onvergene rate by using non-equidistant time nets.Setion 6 onludes the paper with remarks on further extensions andideas.2 PreliminariesReall that the Minkowski inequality implies that
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∣

∣
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∣
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∣

∣

(
∫ b

a

X2
s ds

)

1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤
(
∫ b

a

||Xs||2Lp
ds

)

1
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for any 2 ≤ p < ∞, 0 ≤ a < b ≤ 1 whenever X = (Xt)t∈[0,1] is a progressivelymeasurable proess. We will use this inequality without referene.When f ∈ Lp(γ) for some 2 ≤ p < ∞, it is known that ∣∣∣∣∂F
∂x

(t, Wt)
∣

∣

∣

∣

Lp
<

∞ and ∣∣
∣

∣

∣

∣

∂2F
∂x2 (t, Wt)

∣

∣

∣

∣

∣

∣

Lp

< ∞ for all 0 ≤ t < 1 (see e.g. [13, Lemma 3.1℄).Thus It�'s formula and (1) imply that
(

∂F

∂x
(t, Wt)

)

0≤t<1

and (∂2F

∂x2
(t, Wt)

)

0≤t<1

are Lp integrable martingales.(2)2.1 The derivativeDe�nition 2.1 (Hermite polynomials). The family of (normalized) Hermitepolynomials hk : R→ R, k = 0, 1, 2, . . . is de�ned by
hk(x) :=

1√
k!

(−1)ke
x2

2 Dke−
x2

2 , k = 0, 1, 2, . . .where 0! := 1 and Dk denotes the kth derivative.For more information on Hermite polynomials and their properties, seee.g. [20, page 4℄ or [1, Chapter 22℄.The Hermite polynomials form a omplete orthonormal system in L2(γ),so that for any f ∈ L2(γ) there is a unique expansion
f =

∞
∑

k=0

αkhk,where the limit is onsidered in L2(γ) and αk ∈ R, k = 0, 1, 2, . . . The normsatis�es
||f ||L2(γ) =

( ∞
∑

k=0

α2
k

)
1
2

.The Malliavin Sobolev spae D1,2, whih we also denote by D1,2(γ) toemphasize the Gaussian weight on the real line, an be de�ned using thisexpansion:De�nition 2.2 (Sobolev spae D1,2(γ)). The Sobolev spae D1,2(γ) is thespae of those funtions
f =

∞
∑

k=0

αkhk ∈ L2(γ)5



for whih the norm
||f ||D1,2

:=

( ∞
∑

k=0

(k + 1)α2
k

)
1
2is �nite.For all f ∈ D1,2(γ) we de�ne the (weak) derivative by

f ′ :=

∞
∑

k=1

√
kαkhk−1, (3)where the limit is onsidered in L2(γ). Notie that the lassial derivative of

hk is D1hk =
√

khk−1, and that D1,2 is a Banah spae.Throughout this paper, the term �derivative� and the notation f ′ refer tothe above formulation. When onsidering the limit of di�erene quotients, wespeak about the �lassial derivative� and use the notation Dk as in De�nition2.1. Under some regularity onditions, these two onepts oinide. We willformulate this as a remark for future use.Remark 2.3. Let f ∈ L2(γ) be ontinuous. Assume that there exist points
x1, . . . , xn ∈ R suh that f is ontinuously di�erentiable on ]xi, xi+1[ for eah
i = 1, . . . , n − 1, on ]−∞, x1[ and on ]xn,∞[. De�ne the funtion f ′

cl bysetting
f ′

cl(x) :=

{

limh→0
f(x+h)−f(x)

h
, x ∈ R \ {x1, . . . , xn}

0, x ∈ {x1, . . . , xn} .If f ′
cl ∈ L2(γ), then(i) f ∈ D1,2(γ), and(ii) f ′ = f ′

cl a.s.Proof. Let m < x1 ≤ xn < M and notie that
[D1hk](x) − xhk(x) = −

√
k + 1hk+1(x).Integration by parts on eah interval yields, for any k = 0, 1, 2, . . .,

∫ M

m

f ′
cl(x)hk(x)dγ(x)

=
/M

m
f(x)hk(x)e−

x2

2
1√
2π

+

∫ M

m

f(x)
√

k + 1hk+1(x)dγ(x). (4)6



Sine eah hk, f and f ′
cl are in L2(γ), we know by Hölder's inequality that
∫R |g(x)hk(x)| dγ(x) < ∞ (5)for all k = 0, 1, 2, . . . and g = f, f ′

cl. Therefore, both integrals in (4) onvergeas M → ∞, and the limit limx→∞ f(x)hk(x)e−
x2

2
1√
2π

has to be �nite. A limit
c 6= 0 would require that for some xc ∈ R, |f(x)hk(x)| > c

2
e

x2

2 for all x > xc,whih leads to a ontradition with (5). Similar observation on m ensuresthat
∫R f ′

cl(x)hk(x)dγ(x) =
√

k + 1

∫R f(x)hk+1(x)dγ(x).Considering L2(γ) a Hilbert spae with 〈g1, g2〉 =
∫R g1(x)g2(x)dγ(x), we seethat

〈f ′
cl, hk〉 =

√
k + 1〈f, hk+1〉 =

√
k + 1αk+1for all k = 0, 1, 2, . . ., where αk = 〈f, hk〉 as in De�nition 2.1. Sine f ′

cl ∈
L2(γ), this means that

∞
∑

k=0

(k + 1)α2
k+1 < ∞,whih proves (i). Also, it implies that f ′

cl = f ′ in L2(γ) and thus almostsurely (wrt. both γ and the Lebesgue measure).De�nition 2.4 (Sobolev spae D1,p(γ)). Let 2 < p < ∞. The Sobolev spaeD1,p(γ) is the spae of those f ∈ D1,2(γ) for whih both f and its derivative
f ′ are in Lp(γ), that is, the norm

||f ||D1,p
:=
(

||f ||p
Lp(γ) + ||f ′||pLp(γ)

)
1
pis �nite.We assume a priori that a funtion in D1,p(γ) is in D1,2(γ) and henehas a well de�ned derivative. We do not onsider the Lp onvergene of thein�nite sum in (3); the sum does not neessarily onverge, sine Hermitepolynomials do not form a basis in Lp(γ) when p > 2. The spae D1,p(γ) isa Banah spae when p > 2 as well:Proposition 2.5. Let 2 < p < ∞. Then(i) D1,p(γ) is a Banah spae, and(ii) if f ∈ D1,2(γ) and f ′ ∈ Lp(γ), then f ∈ D1,p(γ).7



Proof. Notie that by (3), ||f ||D1,2
=
(

||f ||2L2(γ) + ||f ′||2L2(γ)

)
1
2 for all f ∈D1,2(γ).To prove (i), assume that (fn)∞n=1 is a Cauhy sequene in D1,p(γ). Thismeans that the sequene is Cauhy also in D1,2(γ), and we �nd a funtion

f ∈ D1,2(γ) suh that fn
−→
L2

f and f ′
n

−→
L2

f ′ as n → ∞. Sine (fn)∞n=1 and
(f ′

n)∞n=1 are Cauhy sequenes in Lp(γ), there exist funtions g ∈ Lp(γ) and
h ∈ Lp(γ) suh that fn

−→
Lp

g and f ′
n

−→
Lp

h. But then fn
−→
L2

g and f ′
n

−→
L2

hso that g = f and h = f ′ in L2(γ) and thus almost surely.For (ii), we need to prove that f ∈ Lp(γ). In preparation, we establishsome formulae that are valid for all funtions in D1,2(γ), and the ondition
f ′ ∈ Lp(γ) will be only used at the very end of the proof.By It�'s formula, (1), and the Burkholder-Davis-Gundy inequality,

||f ||Lp(γ) = ||f(W1)||Lp

=

∣

∣

∣

∣

∣

∣

∣

∣

E ( f(W1) ) +

∫ 1

0

∂F

∂x
(t, Wt)dWt

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ |E ( f(W1) ) | + cp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∫ 1

0

[

∂F

∂x
(t, Wt)

]2

dt

)
1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

.The �rst term is �nite. To estimate the seond one, we need to prove that
∂F

∂x
(t, Wt) = E ( f ′(W1) | Ft) a.s. (6)for any f ∈ D1,2(γ) and t ∈ ]0, 1[. It follows from [17℄, Setion 4.3 (see also[11℄) that, for all f ∈ L2(γ),

∂F

∂x
(t, x) = E(f(x + W1−t)

W1−t

1 − t

) (7)for all x ∈ R and t ∈ ]0, 1[, and it remains to show thatE( f(x + W1−t)
W1−t

1 − t

)

= E ( f ′(x + W1−t) ) (8)for all x ∈ R and t ∈ ]0, 1[ whenever f ∈ D1,2(γ).We begin by observing that, for any x ∈ R and any t ∈ ]0, 1[,
0 < e

− (y−x)2

2(1−t)
+ y2

2 ≤ e
x2

2t for all y ∈ R. (9)8



Integration by parts thus implies, for any polynomial h, thatE(h(x + W1−t)
W1−t

1 − t

)

=

∫R h(x + z)
z

1 − t
e
− z2

2(1−t)
1

√

2π (1 − t)
dz

=

∫R[D1h](x + z)e−
z2

2(1−t)
1

√

2π (1 − t)
dz

−
/∞
−∞ h(y)e−

(y−x)2

2(1−t)
1

√

2π (1 − t)

= E ( [D1h](x + W1−t)
)

, (10)where D1 denotes the lassial derivative. Applying (9) again we see thatE ( f(x + W1−t) )2 =

∫R f(x + z)2e
− z2

2(1−t)
1

√

2π (1 − t)
dz

=

∫R f(y)2e−
y2

2
1√
2π

e
− (y−x)2

2(1−t)
+ y2

2
1√

1 − t
dy

≤ ||f ||2L2(γ) e
x2

2t
1√

1 − t
< ∞ (11)for any x ∈ R and any 0 < t < 1 sine f ∈ L2(γ). The same is true for thederivative, so that E |f ′(x + W1−t)| < ∞and, by Hölder's inequality,E ∣∣∣

∣

f(x + W1−t)
W1−t

1 − t

∣

∣

∣

∣

≤
(E ( f(x + W1−t) )2E(W1−t

1 − t

)2
)

1
2

< ∞.We ontinue by realling that sine f ∈ D1,2(γ), we have f and f ′ as the
L2 limits of polynomials, i.e.

fN :=

N
∑

k=0

αkhk
−→
L2

∞
∑

k=0

αkhk =
L2

fand
D1fN =

N
∑

k=0

αkD
1hk

−→
L2

∞
∑

k=1

αkD
1hk =

L2

f ′.For these polynomials, (10) yieldsE( f(x + W1−t)
W1−t

1 − t

) 9



= E( [f(x + W1−t) − fN(x + W1−t)]
W1−t

1 − t

)

+E( fN (x + W1−t)
W1−t

1 − t

)

= E( [f(x + W1−t) − fN(x + W1−t)]
W1−t

1 − t

)

+E ( [D1fN ](x + W1−t)
)

= E( [f(x + W1−t) − fN(x + W1−t)]
W1−t

1 − t

)

+E ( [[D1fN ](x + W1−t) − f ′(x + W1−t)
] ) (12)

+E ( f ′(x + W1−t) ) .As before, we obtainE ∣∣∣
∣

[f(x + W1−t) − fN(x + W1−t)]
W1−t

1 − t

∣

∣

∣

∣

≤
(E ( f(x + W1−t) − fN (x + W1−t) )2E(W1−t

1 − t

)2
)

1
2

≤ ||f − fN ||L2(γ)

(

e
x2

2t
1√

1 − t

)
1
2 1

1 − t
||W1−t||L2

,whih onverges to zero as N → ∞, as well as the seond term (12). Thisproves (8).Now we employ the ondition f ′ ∈ Lp(γ) and omplete the proof of (ii)with the estimate
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∫ 1

0

[

∂F

∂x
(t, Wt)

]2

dt

)
1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤
(

∫ 1

0

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣

2

Lp

dt

)
1
2

=

(∫

]0,1[

||E ( f ′(W1) | Ft)||2Lp
dt

)
1
2

≤
(
∫

]0,1[

||f ′(W1)||2Lp
dt

)
1
2

= ||f ′(W1)||Lp
,where we have used the ondition 2 ≤ p < ∞ and equation (6).2.2 BMO spaesDe�nition 2.6 (BMO). Let M = (Mt)0≤t≤1 be a ontinuous square inte-grable martingale on (Ω, F,P, (Ft)t∈[0,1]

) with M0 = 0 a.s. We say that M is10



of bounded mean osillation, M ∈ BMO, if
||M ||BMO := sup

0≤t≤1

∣

∣

∣

∣E ( (M1 − Mt)
2 | Ft

)∣

∣

∣

∣

1
2

L∞

< ∞.We identify the martingale with its last element, at time 1, and saythat the random variable X has bounded mean osillation if the martingale
(E (X | Ft))t∈[0,1] has that property.De�nition 2.6 di�ers from the usual de�nitions of the BMO2 spaes foundin the literature. However, we see in Remark 2.7 that in our setting, it leadsto the same onept as de�ned in [11℄ (with weight φ ≡ 1), as well as, forinstane, in [5℄ or in [7℄ for disrete time. Notie that in our setting (seeSetion 1.1), all martingales have a ontinuous modi�ation.Remark 2.7. Let M = (Mt)0≤t≤1 be a ontinuous square integrable martin-gale on (Ω, F,P, (Ft)t∈[0,1]

) with M0 = 0 a.s. Then
||M ||BMO = sup

σ

∣

∣

∣

∣E ( (M1 − Mσ−)2 | Fσ

)∣

∣

∣

∣

1
2

L∞

,where the supremum extends over all stopping times σ : Ω → [0, 1] and
Mσ− := limn→∞ M

(σ− 1
n)

+.Proof. By ontinuity, Mσ− = Mσ a.s. and one inequality is lear. For theother one, assume that M ∈ BMO and c = ||M ||BMO for some c > 0. Thisimplies that, for any t ∈ [0, 1],E (M2
1 | Ft

)

− M2
t ≤ c2 a.s.The proess on the left-hand side is ontinuous beause of the Brownian�ltration, so that E (M2

1 | Ft

)

− M2
t ≤ c2for all t ∈ [0, 1] and all ω ∈ Ω0 ⊂ Ω with P (Ω0) = 1. This ensures thatthe same is true for any stopping time and any ω ∈ Ω0, and the optionalstopping theorem thus implies that

c2 ≥ E (M2
1 | Fσ

)

− M2
σ

= E (M2
1 | Fσ

)

− 2MσE (M1 | Fσ) + M2
σ

= E ( (M1 − Mσ)2 | Fσ

)

,almost surely, and the proof is omplete.11



Theorem 2.8. There exists a onstant c(2.8) > 0 suh that, for all f ∈D1,2(γ),
||C1(f, τ)||BMO ≤ c(2.8) ||τ ||

1
2
∞ sup

0<t<1
x∈R

∣

∣

∣

∣

∂F

∂x
(t, x)

∣

∣

∣

∣for any time net τ .The above result for Lipshitz funtions f , geometri Brownian motion,and weighted BMO spae is a part of Theorem 7 of [11℄. For the onvenieneof the reader, the proof of Theorem 2.8 is inluded in the Appendix. Notiethat for Lipshitz funtions, the right-hand side is �nite.2.3 InterpolationWe now take a brief look at interpolation spaes; for more information oninterpolation, see e.g. [3℄ or [4℄.De�nition 2.9 (Compatible ouple). A pair (X0, X1) of Banah spaes X0and X1 is alled a ompatible ouple if there is a Hausdor� topologial vetorspae in whih eah of X0 and X1 is ontinuously embedded.The notation f ∈ X0+X1 means that we have a representation f = f0+f1with some f0 ∈ X0 and f1 ∈ X1.De�nition 2.10 (K-funtional). The K-funtional of the ompatible ouple
(X0, X1) for an element f ∈ X0 + X1 at t > 0 is de�ned by

K(f, t; X0, X1) := inf
f=f0+f1

{||f0||X0
+ t ||f1||X1

},where the in�mum extends over all representations f = f0 + f1 of f with
f0 ∈ X0 and f1 ∈ X1.When there is no danger of misunderstanding, the spaes are omitted inthe notation: K(f, t; X0, X1) = K(f, t). The interpolation method using theK-funtional is alled real interpolation:De�nition 2.11 (Intermediate spaes). Let (X0, X1) be a ompatible oupleand suppose 0 < θ < 1 and 1 ≤ q ≤ ∞. The spae (X0, X1)θ,q onsists of allfuntions f ∈ X0 + X1 for whih the funtional

||f ||θ,q =

{

[∫∞
0

(

t−θK(f, t)
)q dt

t

]
1
q , 1 ≤ q < ∞

supt>0 t−θK(f, t), q = ∞is �nite. 12



Notie that De�nition 2.11 is symmetri with respet to θ:
(X0, X1)θ,q = (X1, X0)1−θ,qfor all 0 < θ < 1 and 1 ≤ q ≤ ∞, sine K(f, t; X0, X1) = tK(f, 1

t
; X1, X0) forall t > 0. Also, there is some monotoniity: if Yi ⊂ Xi with ||y||Xi
≤ ci ||y||Yifor some ci > 0 and for all y ∈ Yi, i = 0, 1, then

(Y0, Y1)θ,q ⊂ (X0, X1)θ,q (13)for all 0 < θ < 1 and 1 ≤ q ≤ ∞, and the norms satisfy
||f ||(X0,X1)θ,q

≤ max {c0, c1} ||f ||(Y0,Y1)θ,q
.Furthermore, if X1 ⊂ X0 with ||x||X0

≤ c ||x||X1
for some c > 0 and for all

x ∈ X1, then
(X0, X1)θ2,q2 ⊂ (X0, X1)θ1,q1 (14)for all 0 < θ1 < θ2 < 1 and 1 ≤ q1, q2 ≤ ∞, and the norms satisfy

||f ||(X0,X1)θ1,q1
≤ c′ ||f ||(X0,X1)θ2,q2for some c′ > 0 depending at most on θ1, θ2, q1, q2, and c. In partiular,

||f ||(X0,X1)θ,q
≤ cθ,q ||f ||X1

(15)for all 0 < θ < 1, 1 ≤ q ≤ ∞ and some cθ,q > 0 depending only on θ and q,and
c−1
1 ||f ||X0

≤ ||f ||(X0,X1)θ,∞
≤ c1 ||f ||X1

(16)for all 0 < θ < 1 and c1 := max{c, 1}.In this paper, we will mostly interpolate between Lp(γ) and D1,p(γ).These interpolation spaes are alled Besov spaes in the literature; see e.g.[3, Corollary V.4.13℄ for the real line.When proving Theorem 1.1, we will also employ some other interpolationresults. For 2 < p < ∞ and θ = 1 − 2
p
, we need the identity

(L2(γ),L∞(γ))θ,p = Lp(γ), (17)whih follows from Theorems V.1.9 and V.2.4 of [3℄. The norms of the spaesare equivalent up to a multipliative onstant depending on p.We will need to interpolate between L2 and BMO as well:13



Theorem 2.12. Let 0 < θ < 1 and p = 2
1−θ

. Then
(

L0
2 (P), BMO

)

θ,p
= L0

p(P),where L0
q ⊂ Lq, 2 ≤ q < ∞, is the subspae of mean zero random variables,and the norms are equivalent up to a multipliative onstant depending onlyon p.This kind of result was inluded e.g. in [21℄ (see also [2℄, [15℄, and [16℄ aswell as [6℄, [7℄, and [22℄). Sine the proof is easier in our setting, it is inludedin the Appendix.Reall also the following interpolation theorem:Theorem 2.13 (Theorem V.1.12 of [3℄). Let (X0, X1) and (Y0, Y1) be om-patible ouples, and let 0 < θ < 1, 1 ≤ q ≤ ∞. Let T be an admissible linearoperator with respet to (X0, X1) and (Y0, Y1), i.e. T : X0 + X1 → Y0 + Y1is linear and the restrition of T to Xi is a bounded operator from Xi to Yiwith the norm Mi, i = 0, 1.Then T : (X0, X1)θ,q → (Y0, Y1)θ,q and

||Tf ||θ,q ≤ M1−θ
0 Mθ

1 ||f ||θ,qfor all f in (X0, X1)θ,q .3 Approximation and smooth funtions- the �D1,p ase�In this setion we prove Theorem 1.1 using an interpolation argument on thelevel of the derivative.Proof of Theorem 1.1. The approximation error C1(f, τ) does not, in fat,depend on f but on the derivative, as follows. Reall the de�nition
F (t, x) := E ( f (W1) | Wt = x) = E ( f(x + W1−t) )from Setion 1.1. Formula (6) for the derivative implies that

∂F

∂x
(t, x) = E ( f ′(x + W1−t) )for all x ∈ R and t ∈ ]0, 1[ whenever f ∈ D1,2(γ). De�ning G(t, x) :=E ( g(x + W1−t) ) for x ∈ R, t ∈ [0, 1], and a funtion g ∈ L2(γ), and

C̃t(g, τ) :=

∫ t

0

[

G(s, Ws) −
n
∑

i=1

χ]ti−1,ti] (s) G(ti−1, Wti−1
)

]

dWs14



for all 0 ≤ t ≤ 1, we see that
C̃1(f

′, τ) = C1(f, τ)for all f ∈ D1,2(γ) and all ω ∈ Ω.It follows from [12, Theorem 3.2℄ (see also [8, Theorem 2.6℄) that thereexists a onstant c′1 > 0 suh that if f ∈ D1,2(γ) , then
||C1(f, τ)||L2

≤ c′1 ||τ ||
1
2
∞ ||f ||D1,2(γ)for any time net τ . Using the expansion by Hermite polynomials

f =
L2

∞
∑

k=0

αkhk,we observe that
||f ||D1,2(γ) =

( ∞
∑

k=0

(k + 1)α2
k

)
1
2

≤
(

α2
0 + 2

∞
∑

k=1

kα2
k

)
1
2

≤ |α0| +
√

2 ||f ′||L2(γ) .Sine α0 has no e�et on C̃1(f
′, τ), we obtain

∣

∣

∣

∣

∣

∣
C̃1(f

′, τ)
∣

∣

∣

∣

∣

∣

L2

≤ c1 ||τ ||
1
2
∞ ||f ′||L2(γ)with c1 =

√
2c′1, for any time net τ , and the only ondition on f ′ being that

f ′ ∈ L2(γ). This means that
∣

∣

∣

∣

∣

∣C̃1(g, τ)
∣

∣

∣

∣

∣

∣

L2

≤ c1 ||τ ||
1
2
∞ ||g||L2(γ) (18)for any g ∈ L2(γ).If ||f ′||L∞(γ) < ∞, then formula (6) implies that

sup
0<t<1
x∈R

∣

∣

∣

∣

∂F

∂x
(t, x)

∣

∣

∣

∣

= sup
0<t<1

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣

L∞

≤ sup
0≤t≤1

||E ( f ′(W1) | Ft)||L∞

≤ ||f ′(W1)||L∞
= ||f ′||L∞(γ) .By Theorem 2.8, there exists a onstant c(2.8) > 0 suh that

∣

∣

∣

∣

∣

∣
C̃1(f

′, τ)
∣

∣

∣

∣

∣

∣

BMO
= ||C1(f, τ)||BMO ≤ c(2.8) ||τ ||

1
2
∞ ||f ′||L∞(γ)15



and thus
∣

∣

∣

∣

∣

∣
C̃1(g, τ)

∣

∣

∣

∣

∣

∣

BMO
≤ c(2.8) ||τ ||

1
2
∞ ||g||L∞(γ) (19)for all g ∈ L∞(γ).Now we employ Theorem 2.13 together with (17) and Theorem 2.12.Notie that E( C̃1(g, τ)

)

= 0 for any g ∈ L2(γ) and any time net τ so thatwe an use Theorem 2.12 for interpolation. As a result, applying (18) and(19) at the endpoints,
∣

∣

∣

∣

∣

∣
C̃1(g, τ)

∣

∣

∣

∣

∣

∣

Lp

≤ Cpc
2
p

1 c
1− 2

p

(2.8) ||τ ||
1
2
∞ ||g||Lp(γ) ,whenever g ∈ Lp(γ). The new onstant Cp > 0 omes from the interpolationsin (17) and Theorem 2.12, and depends only on p. Thus

||C1(f, τ)||Lp
≤ c(1.1) ||τ ||

1
2
∞ ,where c(1.1) = Cpc

2
p

1 c
1− 2

p

(2.8) ||f ′||Lp(γ) .4 Approximation and frational smoothnessThis setion ontains the proof of Theorem 1.2. The proof is divided intothree parts as follows:We start by developing an auxiliary but ritial result, Lemma 4.6, whihis a deoupling argument for estimating a norm of a martingale using stohas-ti integrals. In the seond subsetion, we onnet the �rst and seond deriva-tives of the funtion F of formula (1) with the frational smoothness of f .Linking the approximation rate to the seond derivative of F in the thirdsubsetion ompletes the proof - as we see in the last subsetion.4.1 Some important lemmasOur aim in this setion is Lemma 4.6, whih is a kind of �forward meanvalue theorem� for martingales: we estimate from above the Lp norm of amartingale at time a ≥ 0 by the norm of its stohasti integral from a to bdivided by √
b − a, or, more importantly, by the norm of its double stohastiintegral from a to b divided by b− a, allowing in both ases a multipliativeonstant.We begin by de�ning progressive measurability on a losed interval.16



De�nition 4.1. A real-valued stohasti proess L = (Lt)t∈[0,1] is progres-sively measurable if, for any t ∈ [0, 1] and any A in the Borel σ-algebra ofR, the set {(s, ω) : 0 ≤ s ≤ t, ω ∈ Ω, Ls(ω) ∈ A} belongs to the produt
σ-algebra B ([0, t]) ⊗ Ft, where B ([0, t]) is the Borel σ-algebra of [0, t].To de�ne the stohasti integral of a Hilbert spae valued proess, weneed to extend the onept of progressive measurability. Our aim here isLemma 4.5, whih is formulated for real valued proesses; whether it an beproven without these onepts is not known to the author.Let H be a separable Hilbert spae. For simpliity, let (en)∞n=1 be a �xedorthonormal basis in H . The following de�nitions do not, in e�et, dependon the hoie of the basis, but we will pass the details.De�nition 4.2. A proess (Gt)t∈[0,1], where Gt : Ω → H is measurablefor eah t ∈ [0, 1], is progressively measurable if for all n = 1, 2, . . ., theoordinate proess (〈Gt, en〉H)t∈[0,1] is a real-valued progressively measurableproess.Now, the stohasti integral ∫ t

0
GsdWs, where W is a real-valued Brownianmotion, an be de�ned oordinate-wise:De�nition 4.3. Let (Gt)t∈[0,1] be a progressively measurable proess with val-ues in H satisfying E( ∫ 1

0
||Gs||2H ds

)

< ∞, and let 0 < t ≤ 1. We de�nethe stohasti integral ∫ t

0
GsdWs by

〈
∫ t

0

GsdWs, en〉H =

∫ t

0

〈Gs, en〉HdWs, n = 1, 2, . . . ,where (Wt)t∈[0,1] is a standard Brownian motion.The following is a speial ase of the Burkholder-Davis-Gundy inequalitiesfor ontinuous loal martingales with values in Hilbert spaes, see e.g. [19,E.2 on p. 212℄ and the Doob inequality:Theorem 4.4. Let 2 ≤ p < ∞ and let (Gt)t∈[0,1] be a progressively measurableproess with values in a separable Hilbert spae H satisfyingE(∫ 1

0

||Gs||2H ds

)

< ∞.Then there exists a onstant c(4.4) > 0 depending only on p suh that, for any
0 < t ≤ 1, E ∣∣∣

∣

∣

∣

∣

∣

∫ t

0

GsdWs

∣

∣

∣

∣

∣

∣

∣

∣

p

H

∼c(4.4)
E ∣∣∣
∣

∫ t

0

||Gs||2H ds

∣

∣

∣

∣

p
2

,where (Wt)t∈[0,1] is a standard Brownian motion.17



For onveniene, we formulate this for a double stohasti integral:Lemma 4.5. Let 2 ≤ p < ∞ and let L = (Lt)t∈[0,1] be a progressivelymeasurable proess suh that E ∫ 1

0
L2

sds < ∞. Then, for any 0 ≤ a < b ≤ 1,
∣

∣

∣

∣

∣

∣

∣

∣

∫ b

a

∫ u

a

LsdWsdWu

∣

∣

∣

∣

∣

∣

∣

∣

Lp

∼c(4.5)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(
∫ b

a

∫ u

a

L2
sdsdu

)

1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lpfor some onstant c(4.5) > 0 depending only on p.Proof of Lemma 4.5. Let H := L2([0 , b]) with 〈h1, h2〉H =
∫ b

0
h1(s)h2(s)ds.Theorem 4.4 applied for the proess

Gt(u) :=

{

0, 0 ≤ t ≤ a

Ltχ[t,b] (u) a < t ≤ btogether with the Burkholder-Davis-Gundy inequalities and Fubini's theo-rem for stohasti proesses (see e.g. [18, Theorem 5.15℄) yield the desiredequivalene.Lemma 4.6. Let 2 ≤ p < ∞. If M = (Mt)0≤t<1 is a p-integrable martingale,then, for any 0 ≤ a < b < 1,(i)
||Ma||Lp

≤ c(4.6)(b − a)−
1
2

∣

∣

∣

∣

∣

∣

∣

∣

∫ b

a

MudWu

∣

∣

∣

∣

∣

∣

∣

∣

Lpand(ii)
||Ma||Lp

≤ c(4.6)(b − a)−1

∣

∣

∣

∣

∣

∣

∣

∣

∫ b

a

∫ u

a

MsdWsdWu

∣

∣

∣

∣

∣

∣

∣

∣

Lpfor some onstant c(4.6) > 0 depending only on p.Proof. Sine we have a Brownian �ltration, we an assume that all paths of
M and (∫ u

a
MsdWs

)

u∈]a,1]
are ontinuous.By the Burkholder-Davis-Gundy inequalities, there exists a onstant

cp > 0 depending only on p suh that
∣

∣

∣

∣

∣

∣

∣

∣

∫ b

a

MudWu

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ cp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(
∫ b

a

M2
udu

)

1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp18



≤ cp

(
∫ b

a

||Mu||2Lp
du

)

1
2

≤ cp(b − a)
1
2 ||Mb||Lp

< ∞.Similarly, Lemma 4.5 implies that
∣

∣

∣

∣

∣

∣

∣

∣

∫ b

a

∫ u

a

MsdWsdWu

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ c(4.5)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(
∫ b

a

∫ u

a

M2
s dsdu

)

1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ c(4.5)

(∫ b

a

∫ u

a

||Ms||2Lp
dsdu

)

1
2

≤ c(4.5)
(b − a)√

2
||Mb||Lp

< ∞.We �rst show (i) for a pieewise onstant approximation of M . Let n ∈
{1, 2, . . .} and de�ne

M
(n)
u := Ma+ b−a

n
(i−1) for u ∈

]

a + b−a
n

(i − 1), a + b−a
n

i
]

,

i = 1, . . . , n, and
M

(n)
a := Ma.Using the Burkholder-Davis-Gundy inequalities we obtain

∣

∣

∣

∣

∣

∣

∣

∣

∫ b

a

M (n)
u dWu

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≥ 1

cp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(
∫ b

a

(

M (n)
u

)2
du

)

1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

=
1

cp

(

b − a

n

)
1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

n
∑

i=1

(

Ma+ b−a
n

(i−1)

)2
)

1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

. (20)Assume another probability spae (Ω̃, F̃, P̃) and independent random vari-ables ri : Ω̃ → {−1, 1} with P̃ (ri = 1) = P̃ (ri = −1) = 1
2
, i = 1, 2, . . . , n.Khinthine inequalities imply that, for some onstant dp > 0 depending onlyon p,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

n
∑

i=1

(

Ma+ b−a
n

(i−1)

)2
)

1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≥ 1

dp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

riMa+ b−a
n

(i−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp(P̃)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp(P)19



≥ 1

dp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

E( n
∑

i=1

riMa+ b−a
n

(i−1) | Fa

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp(P)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp(P̃)

=
1

dp

||Ma||Lp(P)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

ri

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp(P̃)

≥ 1

d2
p

||Ma||Lp(P) n
1
2 .Together with (20) this proves that

∣

∣

∣

∣

∣

∣

∣

∣

∫ b

a

M (n)
u dWu

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≥ 1

cpd2
p

||Ma||Lp
(b − a)

1
2 .To omplete the proof of (i), we need to show that

lim
n→∞

∣

∣

∣

∣

∣

∣

∣

∣

∫ b

a

M (n)
u dWu

∣

∣

∣

∣

∣

∣

∣

∣

Lp

=

∣

∣

∣

∣

∣

∣

∣

∣

∫ b

a

MudWu

∣

∣

∣

∣

∣

∣

∣

∣

Lp

. (21)By the Burkholder-Davis-Gundy inequalities,
∣

∣

∣

∣

∣

∣

∣

∣

∫ b

a

M (n)
u dWu −

∫ b

a

MudWu

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ cp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(∫ b

a

(

M (n)
u − Mu

)2
du

)

1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ cp

(
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.Doob's maximal inequality yields, for any n = 1, 2, . . . and any u ∈ [a, b],
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= 0for all u ∈ [a, b], and (21) is proven.To prove (ii), notie that ∫ b

a
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a
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a
(b − u)g(u)du wheneverboth sides are well de�ned. Then Lemma 4.5 implies that
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=
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∣

∣
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∣
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∣
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.The Burkholder-Davis-Gundy inequalities and (i) omplete the proof.4.2 InterpolationThe following result is the prinipal tool for the proof of Theorem 1.2. Itonnets the frational smoothness of f and the growth rate of the �rst andseond state derivatives of F .Lemma 4.7. Let 2 ≤ p < ∞, f ∈ Lp(γ) and 0 < θ < 1. Then there areonstants c > 0 and c′ > 0 depending only on p and θ suh that
||f ||θ,∞ ∼c ||f ||Lp(γ) + sup

0<t<1
(1 − t)

1−θ
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∣

∣
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∣
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, (23)where ||f ||θ,∞ denotes the norm of f in the Besov spae (Lp(γ),D1,p(γ))
θ,∞.Though not needed in the proofs, it may be of interest to observe thatfor θ = 1 we have a slightly di�erent situation:Lemma 4.8. Let 2 ≤ p < ∞ and f ∈ Lp(γ). Then there exist onstants

c, c1, c2 > 0 depending only on p suh that
||f ||D1,p(γ) ∼c ||f ||Lp(γ) + sup
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∣

∣
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∣
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∣
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Proof of Lemma 4.7. Throughout the proof we use the notation W̃ to in-diate a Brownian motion independent of W , and Ẽ for the orrespondingexpetation.Assuming �rst that ||f ||θ,∞ < ∞, for any ǫ > 0 and any s > 0 we �ndfuntions f
s,ǫ
1 ∈ Lp(γ) and f

s,ǫ
2 ∈ D1,p(γ) suh that f = f

s,ǫ
1 + f

s,ǫ
2 and

||f s,ǫ
1 ||Lp(γ) + s ||f s,ǫ

2 ||D1,p(γ) ≤ sθ ||f ||θ,∞ + ǫ (27)by de�nition of the K-funtional. For the solutions F
s,ǫ
1 and F

s,ǫ
2 of (1)for terminal onditions f

s,ǫ
1 and f

s,ǫ
2 , respetively, we see that F (t, Wt) =

F
s,ǫ
1 (t, Wt) +F

s,ǫ
2 (t, Wt) for all t ∈ [0, 1]. For any t ∈ [0, 1[ and any t < b < 1,Lemma 4.6 and (2) allow the estimate
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∣

∣
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≤ c(4.6)(b − t)−
1
2 ||F s,ǫ

1 (b, Wb) − F
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1 (t, Wt)||Lp

.Letting b → 1 and ombining this with (27) leads to
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)

.Furthermore, f
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2 ∈ D1,p(γ) and (6) imply that
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+ sθ−1 ||f ||θ,∞ + s−1ǫfor all ǫ > 0 and all s > 0. Then, �x t ∈ ]0, 1[. Choosing s =
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1 − t weahieve
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+(1 − t)
θ−1
2 ||f ||θ,∞ + (1 − t)−

1
2 ǫ

= c(1 − t)
θ−1
2 ||f ||θ,∞ + c(1 − t)−

1
2 ǫwith c := 2c(4.6) + 1. Letting ǫ → 0 leads to
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≤ c ||f ||θ,∞ .22



Observing that ||f ||Lp(γ) ≤ ||f ||θ,∞ (see e.g. (16)), we obtain the �rst part of(22).Let us then assume that
||f ||Lp(γ) + sup

0<t<1
(1 − t)

1−θ
2
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(t, Wt)
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∣

∣

∣
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∣
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∣

Lp

≤ C < ∞.We will show that the K-funtional of Lp(γ) and D1,p(γ) for f at s > 0 anbe bounded from above by sθ with a onstant proportional to C, that is,there is a onstant cθ > 0 depending only on p and θ suh that
K(f, s; Lp,D1,p) ≤ cθCsθ for all 0 < s < ∞, (28)whih implies that
||f ||θ,∞ = sup

s>0
s−θK(f, s; Lp,D1,p) ≤ cθC .To show (28), de�ne for all t ∈ [0, 1] the funtions gt and ht by setting

gt(x) := F (t,
√

tx),

ht(x) := f(x) − F (t,
√

tx)and note that f(x) = gt(x) + ht(x) for any t ∈ [0, 1]. By de�nition of the
K-funtional,

K(f, s; Lp,D1,p) ≤ ||ht ||Lp(γ) + s ||gt ||D1,p(γ)for any t ∈ [0, 1[. Sine f ∈ Lp(γ), we see that, for s ≥ 1,
K(f, s; Lp,D1,p) ≤ ||f ||Lp(γ) ≤ ||f ||Lp(γ) s

θ ≤ Csθ.Thus we may assume that s < 1. Our aim is to �nd, for a given s ∈ ]0, 1[, anumber t ∈ ]0, 1[ suh that
||ht||Lp(γ) + s ||gt||D1,p(γ) ≤ dCsθ,where the onstant d may depend on p and θ, but not on s or t.Using Remark 2.3 and the fat that (F (t, Wt))t∈[0,1] is a martingale (see(2)), we ompute for the smooth part gt that, for any t ∈ [0, 1[,
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≤ ||F (1, W1)||pLp
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1−θ
2 . (29)For ht, we use the fat that both √

tW1 +
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1 − tW̃1 and W√
t + W̃1−

√
thave standard normal distribution, and ovariane √

t with W1. ApplyingJensen's inequality, triangle inequality, and It�'s formula yields
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∣
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,where the norm ||·||Lp
denotes the Lp-norm in the produt spae when ne-essary. By the Burkholder-Davis-Gundy inequalities we thus obtain the es-timate
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≤ cp,θC(1 − t)
θ
2 , (30)where cp is the onstant from the Burkholder-Davis-Gundy inequalities and

cp,θ = 2cpθ
− 1

2 .Reall that 0 < s < 1 and de�ne t1 := 1 − s2. Then t1 ∈ ]0, 1[ and
(1 − t1)

− 1−θ
2 = sθ−1. The laim (28) follows by ombining (29) and (30):
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θ
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− 1−θ

2

)

= cp,θCsθ + s ||f ||Lp(γ) + Csθ ≤ C(cp,θ + 2)sθ,beause s ≤ sθ. The proof of (22) is now omplete.For (23), assume �rst that
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≤ C

(
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1√
θ

+ ĉp
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(1 − t)
θ
2 ,where ĉp is the pth moment of the standard normal distribution. Lemma 4.6and (2) yield
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,and the �rst part of (23) is proven.Finally, assume that
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≤ C < ∞.As above, Lemma 4.6 with (2) yields
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(t, Wt)

∣

∣

∣

∣

Lp
≤

ĉp(1−t)−
1
2 ||f(W1) −E ( f(W1) | Ft)||Lp

in [13, Proof of Proposition 3.5℄ witha di�erent onstant). Using the Burkholder-Davis-Gundy inequalities weahieve
∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

=

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

∂2F

∂x2
(s, Ws)dWs +

∂F

∂x
(0, W0)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤
∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

∂2F

∂x2
(s, Ws)dWs

∣

∣

∣

∣

∣

∣

∣

∣

Lp

+

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(0, W0)

∣

∣

∣

∣

∣

∣

∣

∣
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≤ cp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

∫ t

0

[

∂2F

∂x2
(s, Ws)

]2

ds

)
1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

+ 2c(4.6)C

≤ cp

(

∫ t

0

∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
(s, Ws)

∣

∣

∣

∣

∣

∣

∣

∣

2

Lp

ds

)
1
2

+ 2c(4.6)C

≤ cpC

(
∫ t

0

(1 − s)θ−2ds

)
1
2

+ 2c(4.6)C

= C

(

cp√
1 − θ

(

(1 − t)θ−1 − 1
)

1
2 + 2c(4.6)

)

≤ C

(

cp + 2c(4.6)

)

√
1 − θ

(1 − t)
θ−1
2for any 0 < t < 1. This ompletes the proof.Proof of Lemma 4.8. Let us �rst onsider (24) for p = 2. Similarly to [12,Lemma 3.9℄, it an be shown thatE( ∂F

∂x
(t, Wt)

)2

=
∞
∑

k=1

α2
kktk−1for all 0 ≤ t < 1, where the onstants αk ome from the expansion of f inHermite polynomials, f =

∑∞
k=0 αkhk (see Setion 2.1). Thus

∞
∑

k=1

kα2
k = lim

t→1

∞
∑

k=1

α2
kktk−1 = sup

0<t<1

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣

2

L2

. (32)For 2 < p < ∞, (24) is lear beause f ∈ D1,2(γ) by the above and wean use (6).Inequality (26) is similar to the �rst part of (23). For (25), assume that
||f ||Lp(γ) + sup

0<t<1
(1 − t)

1
2

∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ C < ∞.As in the proof of the seond part of (23) above,
∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ cp

(

∫ t

0

∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
(s, Ws)

∣

∣

∣

∣

∣

∣

∣

∣

2

Lp

ds

)
1
2

+

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(0, 0)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ cpC

(
∫ t

0

(1 − s)−1ds

)
1
2

+ 2c(4.6)C27



= C
(

cp (− log(1 − t))
1
2 + 2c(4.6)

)

≤ C(cp + 2c(4.6))

(

(

log
1

(1 − t)

)
1
2

+ 1

)for any 0 < t < 1. Thus
sup

0<t<1

1
(

log 1
(1−t)

)
1
2

+ 1

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ C(cp + 2c(4.6))and the proof is omplete.4.3 Approximation rate and seond derivativeLemma 4.9. Let 2 ≤ p < ∞, f ∈ Lp(γ) and 0 < θ < 1. Then there exists aonstant c(4.9) > 0 depending only on p and θ suh that
sup

n

n
θ
2 ||C1(f, τn)||Lp

∼c(4.9)
sup

0<t<1
(1 − t)

2−θ
2

∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

.Proof. Assume �rst that supn n
θ
2 ||C1(f, τn)||Lp

≤ C < ∞. Reall that by(2), (∂2F
∂x2 (t, Wt)

)

t∈[0,1[
is a p-integrable martingale. For n ≥ 2 and theequidistant time net τn =

(

i
n

)n

i=0
, Lemma 4.6 implies for the penultimatetime point tnn−1 = n−1

n
that

∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
(tnn−1, Wtnn−1

)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ c(4.6)(1 − tnn−1)
−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ 1

tnn−1

∫ u

tnn−1

∂2F

∂x2
(s, Ws)dWsdWu

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

,where we �rst onsider the outer integral over the interval ]tnn−1, b
] for tnn−1 <

b < 1 and then let b → 1. Using (31) again we obtain
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ 1

tnn−1

∫ u

tnn−1

∂2F

∂x2
(s, Ws)dWsdWu

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ 1

tnn−1

[

∂F

∂x
(u, Wu) −

∂F

∂x
(tnn−1, Wtnn−1

)

]

dWu

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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=
∣

∣

∣

∣

∣

∣
C1(f, τn) − Ctnn−1

(f, τn)
∣

∣

∣

∣

∣

∣

Lp

.Therefore,
∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
(tnn−1, Wtnn−1

)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ 2c(4.6)(1 − tnn−1)
−1 ||C1(f, τn)||Lp

≤ 2c(4.6)(1 − tnn−1)
−1C

(

1

n

) θ
2

≤ 2c(4.6)C(1 − tnn−1)
θ
2
−1.To onsider time points 1

2
< t < 1 that are not of the form n−1

n
for any

n ≥ 2, let tnn−1 < t < tn+1
n and note that (1 − tn+1

n )
θ
2
−1 =

(

1
n

)
θ
2
−1 (n+1

n

)1− θ
2 ≤

2
(

1
n

)
θ
2
−1. Sine ∂2F

∂x2 is a martingale (see (2)), this yields
∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤
∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
(tn+1

n , Wtn+1
n

)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ 2c(4.6)C(1 − tn+1
n )

θ
2
−1

≤ 4c(4.6)C(1 − tnn−1)
θ
2
−1

≤ 4c(4.6)C(1 − t)
θ
2
−1.Finally, for 0 ≤ t < 1

2
,

∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤
∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
(
1

2
, W 1

2
)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ 2c(4.6)C(1 − 1

2
)

θ
2
−1

≤ 4c(4.6)C

≤ 4c(4.6)C(1 − t)
θ
2
−1,as desired.Now, we assume that

sup
0<t<1

(1 − t)
2−θ
2

∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ C < ∞.For any time net τ = (ti)
n

i=0, n = 1, 2, . . ., we see by (31) that
||C1(f, τ)||Lp

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

∫ ti

ti−1

[

∂F

∂x
(u, Wu) −

∂F

∂x
(ti−1, Wti−1

)

]

dWu

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ 1

0

∫ u

0

n
∑

i=1

χ[ti−1,ti[ (u)χ[ti−1,u[ (s)
∂2F

∂x2
(s, Ws)dWsdWu

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

.Applying the Burkholder-Davis-Gundy inequalities twie, this an be esti-mated from above by
cp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





∫ 1

0

(

∫ u

0

n
∑

i=1

χ[ti−1,ti[ (u)χ[ti−1,u[ (s)
∂2F

∂x2
(s, Ws)dWs

)2

du





1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ cp





∫ 1

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ u

0

n
∑

i=1

χ[ti−1,ti[ (u)χ[ti−1,u[ (s)
∂2F

∂x2
(s, Ws)dWs

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

Lp

du





1
2

≤ c2
p









∫ 1

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





∫ u

0

[

n
∑

i=1

χ[ti−1,ti[ (u)χ[ti−1,u[ (s)
∂2F

∂x2
(s, Ws)

]2

ds





1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

Lp

du









1
2

≤ c2
p





∫ 1

0

∫ u

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

χ[ti−1,ti[ (u)χ[ti−1,u[ (s)
∂2F

∂x2
(s, Ws)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

Lp

dsdu





1
2

= c2
p

(

n
∑

i=1

∫ ti

ti−1

∫ u

ti−1

∣

∣

∣

∣

∣

∣

∣

∣

∂2F

∂x2
(s, Ws)

∣

∣

∣

∣

∣

∣

∣

∣

2

Lp

dsdu

)
1
2

,where cp is the onstant from the Burkholder-Davis-Gundy inequalities. Thus
||C1(f, τ)||Lp

≤ c2
p

(

n
∑

i=1

∫ ti

ti−1

∫ u

ti−1

C2(1 − s)θ−2dsdu

)
1
2

≤ c2
pC

(

n
∑

i=1

∫ ti

ti−1

1

1 − θ

[

(1 − u)θ−1 − (1 − ti−1)
θ−1
]

du

)
1
2

= cp,θ

(

∫ 1

0

(1 − u)θ−1du −
n
∑

i=1

(ti − ti−1)(1 − ti−1)
θ−1

)
1
2

,where cp,θ = c2
pC(1−θ)−

1
2 . Sine (1−ti−1)

θ−1 ≥ (1−s)θ−1 when s < ti−1 < 1,we ompute for the equidistant time net that
||C1(f, τn)||Lp

≤ cp,θ

(

∫ 1

0

(1 − u)θ−1du −
n
∑

i=1

1

n
(1 − ti−1)

θ−1

)
1
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≤ cp,θ

(

1

θ
−

n
∑

i=2

∫ ti−1

ti−2

(1 − s)θ−1ds

)
1
2

≤ cp,θθ
− 1

2

(

1 + (1 − tnn−1)
θ − 1

)
1
2

= cp,θθ
− 1

2

(

1

n

)
θ
2

.This ompletes the proof.4.4 Proof of Theorem 1.2Combine Lemma 4.7 with Lemma 4.9.5 ExamplesLet us illustrate the results with some simple examples.By Remark 2.3, all the neessary derivatives in our examples an beomputed using the pieewise de�ned lassial derivative.5.1 Equidistant time netsExample 5.1. Let 2 ≤ p < ∞ and
f(x) := χ[0,∞[ (x) =

{

0, x < 0
1, x ≥ 0

.Then
||C1(f, τn)||Lp

≤ cn− 1
2pand, for all λ > 0, P(|C1(f, τn)| ≥ λ

n
1
2p

)

≤ cpλ−pfor some c > 0 depending only on p.Proof. For any 0 < t < 1 we an take the deomposition f = f t
0 + f t

1 with
f t

0(x) :=







0, x < 0
1 − x

t
, 0 ≤ x ≤ t

0, x > t

and f t
1(x) :=







0, x < 0
x
t
, 0 ≤ x ≤ t

1, x > t
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We see that
K(f, t; Lp(γ),D1,p(γ))

≤
∣

∣

∣

∣f t
0

∣

∣

∣

∣

Lp(γ)
+ t
∣

∣

∣

∣f t
1

∣

∣

∣

∣D1,p(γ)

≤ t
1
p + t

(
∫ t

0

(x

t

)p

dγ(x) +

∫ ∞

t

1pdγ(x) +

∫ t

0

(

1

t

)p

dγ(x)

)
1
p

≤ cpt
1
p ,for some cp > 0 depending only on p. The ase t ≥ 1 is majorized by

||f ||Lp(γ) < ∞, so that f ∈ (Lp(γ),D1,p(γ)) 1
p
,∞.Theorem 1.2 thus implies that ||C1(f, τn)||Lp

≤ cn− 1
2p , and the tail esti-mate follows using Chebyshev's inequality for |C1(f, τn)|p.Example 5.1 implies that, for any p ≥ 2, all onvex ombinations of jumpfuntions are in (Lp(γ),D1,p(γ)) 1

p
,∞. Improving integrability, i.e. inreasing

p, makes the frational smoothness derease - as well as the onvergene rate.For the tail estimate, with a larger p, the deay of the tail is faster, but thereare more time points needed for the same treshold.Example 5.2. Let 0 < α < 1 and
fα(x) :=

{

0, x < 0
xα, x ≥ 0

.Then, for p ≥ 2, we have the following:1. if α > 1 − 1
p
, then fα ∈ D1,p(γ), and2. if α < 1 − 1

p
, then fα ∈ (Lp(γ),D1,p(γ))α+ 1

p
,∞ .For the approximation error, this means that1. if α > 1 − 1

p
, then ||C1(fα, τn)||Lp

≤ c√
n
, and2. if α < 1 − 1

p
, then ||C1(fα, τn)||Lp

≤ c
(

1√
n

)α+ 1
pwith the equidistant time nets τn =

(

i
n

)n

i=0
and with some c > 0 dependingonly on p and α.
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Notie that in Example 5.2, the �rst ondition, α > 1 − 1
p
, implies that

1
2

< α < 1 beause p ≥ 2. The seond statement mathes with Example 5.1,where the jump funtion an be seen as the �α = 0� ase. The ase α = 1 isLipshitz and thus belongs to D1,p(γ) with any p ≥ 2 by Lemma A.5.The ase α = 1 − 1
p
is not expliitely overed by Example 5.2; however,by (13), the seond statement implies that f1− 1

p
∈ (Lp(γ),D1,p(γ))θ,∞ withany 0 < θ < 1.For p = 2, the approximation rates ahieved in Examples 5.1 and 5.2oinide with those omputed earlier in [14℄; see also [10, Remark 6.6 andexamples on p. 254℄.As in Example 5.1, the Lp onvergene rates in Example 5.2 imply tailestimates with deay λ−p.Proof of Example 5.2. For α > 1 − 1

p
,

||fα||pD1,p(γ) =

∫ ∞

0

xαpdγ(x) +

∫ ∞

0

(

αxα−1
)p

dγ(x) < ∞beause p(1 − α) < 1.So, let α < 1− 1
p
. As in the proof of (22) in Lemma 4.7, we need to provethat

sup
0<t<1

t
−(α+ 1

p)K(fα, t; Lp(γ),D1,p(γ)) < ∞.For any 0 < t < 1 we an take the deomposition
gt(x) :=







0, x < 0
xα − tα−1x, 0 ≤ x ≤ t

0, x > t

and ht(x) :=







0, x < 0
tα−1x, 0 ≤ x ≤ t

xα, x > t

.This yields the estimates
∣

∣

∣

∣gt
∣

∣

∣

∣

Lp(γ)
=

(
∫ t

0

(xα − tα−1x)pdγ(x)

)
1
p

≤ (tαp+1)
1
p = tα+ 1

pand
∣

∣

∣

∣ht
∣

∣

∣

∣D1,p(γ)
=

(
∫ t

0

(tα−1x)pdγ(x) +

∫ ∞

t

xαpdγ(x)

+

∫ t

0

tp(α−1)dγ(x) +

∫ ∞

t

(

αxα−1
)p

dγ(x)

)
1
p

≤
(

tp(α−1) tp+1

p + 1
+ ĉαp + tp(α−1)+1 + αp

∫ ∞

t

x−p(1−α)dγ(x)

)
1
p

, (33)33



where ĉαp =
∫∞
0

xαpdγ(x) < ∞. By integration by parts, we ahieve for any
y > 0 and any β > 1 the estimate

∫ ∞

y

x−βdγ(x) ≤ y1−β

β − 1
. (34)Applying this to (33) with β = p(1 − α) > 1, we obtain

∣

∣

∣

∣ht
∣

∣

∣

∣D1,p(γ)
≤

(

1

p + 1
tp(α−1)+p+1 + ĉαp + tp(α−1)+1 + αp t1−p(1−α)

p(1 − α) − 1

)

1
p

≤ cα,p

(

tp(α−1)+1
)

1
p

= cα,pt
α−1+ 1

p ,where cα,p =
(

2 + ĉαp + αp

p(1−α)−1

)
1
p . Therefore,

K(fα, t; Lp(γ),D1,p(γ)) ≤
∣

∣

∣

∣gt
∣

∣

∣

∣

Lp(γ)
+ t
∣

∣

∣

∣ht
∣

∣

∣

∣D1,p(γ)

≤ tα+ 1
p + tcα,pt

α−1+ 1
p ≤ ctα+ 1

p ,where c = cα,p + 1.Theorems 1.1 and 1.2 then imply the onvergene rates.5.2 Remark on non-equidistant time netsFor any 0 < θ ≤ 1, we de�ne the time nets τ θ
n =

(

t
n,θ
i

)n

i=0
by setting t

n,θ
i :=

1−(1− i
n
)

1
θ for i = 0, 1, . . . , n. For θ = 1, this de�nition yields the equidistanttime nets, and for smaller θ, the time nets are denser near 1.Using a similar interpolation argument as in Setion 3, we obtain thefollowing result:Theorem 5.3. Let 0 < η, θ < 1. If f ∈ (Bθ

2,2(γ), Lip)η, 2
1−η

, where Bθ
2,2(γ) =

(L2(γ),D1,2(γ))θ,2 and Lip denotes the spae of Lipshitz funtions equippedwith the norm ||g||Lip := |g(0)|+supx<y
|g(y)−g(x)|

y−x
, then there exists a onstant

c(5.3) > 0 not depending on n suh that
∣

∣

∣

∣C1(f, τ θ
n)
∣

∣

∣

∣

Lp
≤ c(5.3)√

nfor p = 2
1−η

.Notie that the onstant c(5.3) may depend on p, θ, and f .34



Proof. The proof follows the approah of Theorem 1.1 with minor hanges.We use interpolation for f , not for f ′, and for the other endpoint, we use
Bθ

2,2(γ) instead of D1,2(γ).For f ∈ Bθ
2,2(γ), Theorem 3.2 and formula (4) of [12℄ imply that

∣

∣

∣

∣C1(f, τ θ
n)
∣

∣

∣

∣

L2
≤ c1√

n
||f ||Bθ

2,2for some c1 > 0 not depending on n. For Lipshitz funtions, ∣∣∂F
∂x

(t, x)
∣

∣ ≤
||f ||Lip for all 0 < t < 1 and all x ∈ R, see e.g. the proof of Lemma A.5. Itremains to observe that

∣

∣

∣

∣τ θ
n

∣

∣

∣

∣

∞ ≤ 1

θnfor all n ≥ 1.Theorem 5.3 is not neessarily sharp, in the sense that the same optimal
Lp onvergene rate might be ahieved with time nets whose re�ning index
θ is loser to 1, or there ould be a larger lass of funtions that lead to thesame onvergene rate with the same time nets τ θ

n .Example 5.4. Let 0 < α < 1 and
fα(x) :=

{

0, x < 0
xα, x ≥ 0

.Then, for any 0 < p < 2
1−α

and any 0 < θ < 1
2
,

∣

∣

∣

∣C1(f, τ θ
n)
∣

∣

∣

∣

Lp
≤ c(5.3)√

n
.Proof. For any 0 < t < 1, we use the deomposition fα = f 0,t

α + f 1,t
α with

f 0,t
α (x) :=







0, x < 0
xα − tα−1x, 0 ≤ x ≤ t

0, x > t

and f 1,t
α (x) :=







0, x < 0
tα−1x, 0 ≤ x ≤ t

xα, x > t.With a omputation similar to Example 5.1 and using (34), we obtain theestimate
∣

∣

∣

∣f 0,t
α

∣

∣

∣

∣

(L2,D1,2) 1
2 ,∞

≤ 6tαfor any 0 < t < 1. Therefore,
K(fα, t; (L2(γ),D1,2(γ))1

2
,∞ , Lip) ≤

∣

∣

∣

∣f 0,t
α

∣

∣

∣

∣

(L2,D1,2) 1
2 ,∞

+ t
∣

∣

∣

∣f 1,t
α

∣

∣

∣

∣

Lip

≤ 7tα35



for 0 < t < 1. This means that
fα ∈

(

(L2(γ),D1,2(γ))1
2
,∞ , Lip

)

α,∞and, by (13) and (14),
fα ∈

(

(L2(γ),D1,2(γ))
θ,2 , Lip

)

α,∞for all 0 < θ < 1
2
. Reall the notation Bθ

2,2(γ) = (L2(γ),D1,2(γ))
θ,2 . By (15)and Lemma A.5,

||g||Bθ
2,2(γ) ≤ cθ ||g||D1,2(γ) ≤ cθc(A.5) ||g||Lipfor any g ∈ Lip. Thus by (14) again, for any 0 < β < α and any 0 < θ < 1

2
,

fα ∈ (Bθ
2,2(γ), Lip)β, 2

1−βand by Theorem 5.3, there exists a c(5.3) > 0 not depending on n suh that
∣

∣

∣

∣C1(f, τ θ
n)
∣

∣

∣

∣

Lp
≤ c(5.3)√

nfor p = 2
1−β

.Example 5.4 shows that we an inrease the power p over the limit 1
1−α

(or,equivalently, derease the regularity ondition from α > 1 − 1
p
to α > 1 − 2

p
)disovered in Example 5.2 and still get the optimal onvergene rate if weadjust the time nets by some index 0 < θ < 1

2
. However, the limit is onlyraised by fator 2; we do not know whether this an be improved further.6 Conluding remarksThere are several questions to onsider for further researh. Are these kindof onvergene results true for proesses other than Brownian motion? Inpartiular, to what extent an the same tehniques be used for more generalproesses? Could we generalize other known results from L2 to Lp, p > 2,suh as employing non-equidistant time nets to ahieve optimal onvergenerates? What about p < 2, or stronger smoothness onditions?It seems that Theorem 1.1 also has an analogue for geometri Brown-ian motion. The results under interpolation are almost the same for bothproesses, allowing for a transformation of the funtion f ; only instead of36



bounded mean osillation (BMO), geometri Brownian motion leads to aweighted BMO spae. Interpolation between this partiular type of weighted
BMO and L2 is not known to the author, but by stepping bak to Lq and in-terpolating between L2 and Lq with arbitrary large q, the onvergene resultshould follow for the Lp−ǫ norm.The tehniques developed in Setion 4 might arry us further. For p = 2,di�usions satisfying dYt = σ(Yt)dWt, Y0 = y0, with some onditions on σ,are treated in [8℄, and there extension to di�usions with drift is mentionedbut not onsidered in detail. Though the tehniques of [8℄ apply only to L2,this gives hope that similar results for more general proesses might be truein Lp, p > 2, too.In [8℄, the L2 onvergene rate is improved by using speial non-equi-distant time nets (see also [12℄). Improvement is also possible in Lp, p > 2,as seen in Theorem 5.3; however, this result is only a �rst observation to thatdiretion, and by no means sharp like the results in L2. This improvementin onvergene rate is not ontraditory to Corollary 1.3, sine there theoptimal onvergene rate is required to hold when using any kind of timenets, in partiular equidistant time nets. It would be interesting to hek ifa onnetion as in [8℄ between frational smoothness and re�nement of timenets required for the optimal onvergene rate ould be proved for p > 2.In this paper, approximations of stohasti integrals are of the �rst order,like the Euler sheme in simulations of SDE's. It might be of interest to alsoonsider higher order approximations, and see if onnetions between onver-gene properties and higher order frational smoothness ould be revealed.One might expet to see improved onvergene rates when onsidering fun-tions of higher smoothness.6.1 AknowledgementsThe author is greatly obliged to Professor Stefan Geiss for his invaluablee�ort and supervision for this work. Thanks also to Stanislaw Kwapien forhelpful suggestions. In addition, disussions with several others, espeiallythe partiipants of Workshop on Numeris and Stohastis held at HelsinkiUniversity on Tehnology in August 2008, were partiularly useful.Referenes[1℄ M. Abramowitz and I. A. Stegun, editors. Handbook of MathematialFuntions with Formulas, Graphs, and Mathematial Tables. Dover,1970. 37
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)

≤ c ||τ ||∞ sup
0<t<1
x∈R

∣

∣

∣

∣

∂F

∂x
(t, x)

∣

∣

∣

∣

2P-a.s. for all 0 ≤ s ≤ 1. The endpoint s = 1 is trivial.Fix a time net τ = (ti)
n
i=0, and a number s ∈ [0, 1[. Set i0 suh that

s ∈ [ti0−1, ti0 [, and de�ne a new time net on [s, 1] by setting ri0−1 := s and
ri = ti for i = i0, . . . , n. Then

[C1(f, τ) − Cs(f, τ)]2 ≤ 2(I2
1 + I2

2 ),where
I1 :=

∫ 1

s

∂F

∂x
(u, Wu)dWu −

n
∑

i=i0

∂F

∂x
(ri−1, Wri−1

)
(

Wri
− Wri−1

)39



and
I2 :=

(

∂F

∂x
(s, Ws) −

∂F

∂x
(ti0−1, Wti0−1

)

)

(

Wti0
− Ws

)

.First we observe that for I2, almost surely,E ( I2
2 | Fs

)

=

(

∂F

∂x
(s, Ws) −

∂F

∂x
(ti0−1, Wti0−1

)

)2E((Wti0
− Ws

)2 | Fs

)

=

(

∂F

∂x
(s, Ws) −

∂F

∂x
(ti0−1, Wti0−1

)

)2

|ti0 − s|

≤ 4 sup
0<t<1
x∈R

∣

∣

∣

∣

∂F

∂x
(t, x)

∣

∣

∣

∣

2

||τ ||∞ .For I1, we ondition the problem by Ws, i.e. start anew at Ws =: y0. Inase s = 0 we require that y0 = 0. Set f̃(y) := f(y0 + y), T̃ := 1 − s and
F̃ (t, x) := E( f̃(x + WT̃−t

)

= F (t + s, y0 + x). Here we use the fat that if
f ∈ L2(γ), then E ( f(y + Ws) )2 < ∞ for all y ∈ R and 0 < s < 1 (see (11)for omputation). From Theorem 4.4 of [10℄ we obtain, with some onstant
c1 > 0, that for any y0 ∈ R,E ( I2

1 | Ws = y0

)

= E(∫ 1

s

∂F

∂x
(u, y0 + Wu−s)dWu−s

−
n
∑

i=i0

∂F

∂x
(ri−1, y0 + Wri−1−s)(Wri−s − Wri−1−s)

)2

= E(∫ T̃

0

∂F̃

∂x
(v, Wv)dWv

−
n
∑

i=i0

∂F̃

∂x
(ri−1 − s, Wri−1−s)(Wri−s − Wri−1−s)

)2

≤ c2
1

n
∑

i=i0

∫ ri−s

ri−1−s

(ri − s − v)E( ∂2F̃

∂x2
(v, Wv)

)2

dv

≤ c2
1 ||τ ||∞

∫ T̃

0

E( ∂2F

∂x2
(v + s, y0 + Wv)

)2

dv.
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By monotone onvergene, this is the same as
c2
1 ||τ ||∞ sup

0<S̃<T̃

∫ S̃

0

E( ∂2F

∂x2
(v + s, y0 + Wv)

)2

dv

= c2
1 ||τ ||∞ sup

0<S̃<T̃

E(∫ S̃

0

[

∂2F

∂x2
(v + s, y0 + Wv)

]2

dv

)

= c2
1 ||τ ||∞ sup

0<S̃<T̃

E(∫ S̃

0

∂2F

∂x2
(v + s, y0 + Wv)dWv

)2

.Sine S̃ + s < 1, we an ontinue as in (31) and ahieveE ( I2
1 | Ws = y0

)

≤ c2
1 ||τ ||∞ sup

0<S̃<T̃

E( ∂F

∂x
(S̃ + s, y0 + WT̃ ) − ∂F

∂x
(0 + s, y0 + 0)

)2

≤ 4c2
1 ||τ ||∞ sup

0<t<1
x∈R

∣

∣

∣

∣

∂F

∂x
(t, x)

∣

∣

∣

∣

2so that the proof is omplete.A.2 Proof of Theorem 2.12Reall that the assumptions of Setion 1.1 imply that every square integrablemartingale M = (M)0≤t≤1 with mean zero an be written as a stohastiintegral: M0 = 0 and Mt =
∫ t

0
LsdWs for 0 < t ≤ 1 with some progressivelymeasurable proess (Lt)0≤t≤1 satisfying ∫ 1

0
E (L2

t ) dt < ∞. In this setionwe may assume that all martingales start at zero a.s.De�nition A.1 (Square braket/quadrati variation). For a square inte-grable martingale M = (Mt)0≤t≤1 we de�ne the quadrati variation [M ]t :=
∫ t

0
L2

sds for 0 < t ≤ 1 and [M ]0 := 0.De�nition A.2 (Hardy spaes). Let M be a square integrable martingaleand 2 ≤ p < ∞. Then M ∈ Hp if
||M ||Hp

:=
∣

∣

∣

∣

∣

∣
[M ]

1
2
1

∣

∣

∣

∣

∣

∣

Lp

< ∞,i.e. if E(∫ 1

0

L2
t dt

)

p
2

< ∞.41



Notie that the Burkholder-Davies-Gundy inequalities with Doob's max-imal inequality say that for 2 ≤ p < ∞, the Hardy and Lp spaes are equiv-alent, when onsidering only mean zero random variables:
||M ||Hp

∼cp
||M1||L0

p
, (35)for all square integrable martingales M = (M)0≤t≤1, where the onstant

cp > 0 depends only on p.Reall equation (17) from Setion 2 on interpolation between L2 and L∞.Here we will use it for entered random variables:
(

L0
2 ,L0

∞
)

θ,p
= L0

p (36)for 0 < θ < 1 and p = 2
1−θ

, and ||X||(L0
2 ,L0

∞)
θ,p

∼Cp
||X||L0

p
for any randomvariable X ∈ L0

p and some Cp > 0 depending only on p.The following result is inluded in [22, Proof of Theorem 2℄:Lemma A.3. Let M be a square integrable martingale. IfE( ([M ]1 − [M ]t)
1
2 | Ft

)

≤ ζ a.s.for all 0 < t < 1 and for some random variable ζ, then
∣

∣

∣

∣

∣

∣
[M ]

1
2
1

∣

∣

∣

∣

∣

∣

Lp

≤ 2pp

p − 1
||ζ ||Lpfor all 2 < p < ∞.Proof. We �rst notie that
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2
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∣
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∣

∣

∣

∣

p
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0
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1
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1

2
> α

)

dα
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0
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1
2
1

2
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dα.By [22, Lemma 1℄,
αE(χ

(
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1
2
1

2
> α

))

≤ E(χ
(

[M ]
1
2
1 > α

)

ζ
)for all α ≥ 0. Fubini's theorem and Hölder's inequality thus imply that
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= 2pE( pζ

∫ ∞

0

αp−2χ
(

[M ]
1
2
1 > α

)

dα

)

= 2p p

p − 1
E( ζ [M ]
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2

1
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≤ 2p p
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∣

∣

p−1

Lp

,whih ompletes the proof.Theorem A.4. Let 0 < θ < 1. Then, for p = 2
1−θ

,
(

L0
2 , BMO

)

θ,p
⊂ L0

pand there exists a onstant c(A.4) > 0 depending only on p suh that
||X||L0

p
≤ c(A.4) ||X||(L0

2 ,BMO)
θ,pfor any random variable X ∈ (L0

2 , BMO)θ,p.Proof. Let X ∈ L0
2 . For any t > 0 and any ǫ > 0 we �nd random variables

X
t,ǫ
0 ∈ L0

2 and X
t,ǫ
1 ∈ BMO suh that X = X

t,ǫ
0 + X

t,ǫ
1 and

∣
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∣X
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∣

∣
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+ t
∣
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∣

∣X
t,ǫ
1
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∣

∣

∣

BMO
≤ K(X, t; L0

2 , BMO) + ǫ.To avoid the disussion of the measurability of the sharp funtion
sup0≤s≤1E( ([X]1 − [X]s)

1
2 | Fs

), we de�ne
ζX := inf

{

sup
0≤s≤1
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1
2
1 | Fs
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+
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∣

∣X
t,ǫ
1

∣

∣

∣

∣

BMO

}

,where the in�mum extends over all t > 0, t ∈ Q and all ǫ > 0, ǫ ∈ Q. Notiethat by Jensen's inequality and It� isometry,E( ([X]1 − [X]s)
1
2 | Fs

)

≤ E( ([X t,ǫ
0 ]1 − [X t,ǫ

0 ]s
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1
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1
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)
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1
2
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)

+
(E ( [X t,ǫ
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1 ]s | Fs
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1
2

≤ ζXalmost surely for any s > 0. By the Burkholder-Davis-Gundy inequalitiesand Lemma A.3,
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||ζX ||Lp
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Furthermore, for all t > 0, t ∈ Q and all ǫ > 0, ǫ ∈ Q,
K(ζX , t; L2,L∞) ≤ K
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∣

∣
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∣
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)

≤ 2K(X, t; L0
2 , BMO) + 2ǫ,where we have employed Doob's maximal inequality and It�'s isometry. Let-ting ǫ → ∞, ǫ ∈ Q, we obtain

K(ζX , t; L2,L∞) ≤ 2K (X , t ; L0
2 , BMO)for all t > 0, t ∈ Q and, sine t 7→ K(x, t; X0, X1) is ontinuous for anyompatible ouple (X0, X1), for all t > 0. This means that

||ζX ||Lp
≤ Cp ||ζX ||(L2,L∞)θ,p

≤ 2Cp ||X||(L0
2 ,BMO)

θ,pand, by (37),
||X||Lp

≤ c(A.4) ||X||(L0
2 ,BMO)

θ,pwith c(A.4) = cpCp
2p+1p

p−1
.Proof of Theorem 2.12. Sine L0

∞ ⊂ BMO with ||M ||BMO ≤ 2 ||M1||L0
∞

forany M1 ∈ L0
∞, we see by (36) and (13) that

L0
p =

(

L0
2 ,L0

∞
)

θ,p
⊂
(

L0
2 , BMO

)

θ,pfor all 0 < θ < 1 and p = 2
1−θ

. Theorem 2.12 thus follows from TheoremA.4.Lemma A.5. If f ∈ Lip with
||f ||Lip := |f(0)| + sup

x<y

|f(y) − f(x)|
y − x

,then f ∈ D1,p(γ) for all 2 ≤ p < ∞, and
||f ||D1,p

≤ c(A.5) ||f ||Lipfor some onstant c(A.5) depending only on p.44



Proof. For some onstant dp > 0, we have (a + b)p ≤ dp(a
p + bp) for all

a, b ≥ 0. Sine |f(x)| ≤ |f(0)| + |x| · |f(x)−f(0)|
|x| for all x 6= 0, we obtain

||f ||p
Lp(γ) =

∫R [f(x)]p dγ(x)

≤ dp

(
∫R\{0}

|f(0)|pdγ(x) +

∫R\{0}

[

|x| · |f(x) − f(0)|
|x|

]p

dγ(x)

)

≤ dp

(

|f(0)|p + ||f ||pLip

∫R\{0}
|x|pdγ(x)

)

≤ dp(ĉp + 1) ||f ||pLip ,where ĉp =
∫R |x|pdγ(x).Equation (7) states that

∂F

∂x
(t, x) = E(f(x + W1−t)

W1−t

1 − t

)for all x ∈ R and all 0 < t < 1. Therefore,
∣

∣

∣

∣

∂F

∂x
(t, Wt)

∣

∣

∣

∣

=

∣

∣

∣

∣

E(f(x + W1−t)
W1−t

1 − t

)

−E(f(x)
W1−t

1 − t

)∣

∣

∣

∣

≤ E ∣∣∣
∣

[f(x + W1−t) − f(x)]
W1−t

1 − t

∣

∣

∣

∣

≤ E( |f(x + W1−t) − f(x)|
|W1−t|

· W 2
1−t

1 − t

)

≤ ||f ||LipE ∣∣∣
∣

W 2
1−t

1 − t

∣

∣

∣

∣

= ||f ||Lipfor all 0 < t < 1. This means that
sup

0<t<1

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂x
(t, Wt)

∣

∣

∣

∣

∣

∣

∣

∣

Lp

≤ ||f ||Lipso that Lemma 4.8 ompletes the proof.
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